Forecasting Mortality Trend of Indonesian Old Aged Population with Bayesian Method

Christian Evan Chandra, Sarini Abdullah

Abstract


From around the nineteenth until the beginning of the twenty-first century, mortality rates show a declining trend. However, recent data on the United States population shows that the rate of decline started to slow down in the 2010s. Insurance companies need to be prepared in both ways: either mortality rates continue to decline, or there will be a turning point, and mortality rates start to increase. In this paper, we aim to get the whole picture of the mortality trend of Indonesian males, detect the possibility of a turning point in the mortality rates, and forecast mortality rates in the future. To reach this aim, we propose adjustments to the Makeham mortality model by including period and cohort information of the population via quadratic function. We also propose using the Bayesian method to estimate the parameters for the Indonesian old-aged males' population, where some adjustments were made in determining the priors, and the estimates were sampled from the posterior distribution using the Gibbs sampling algorithm. We found that our forecasting accuracy is satisfactory by considering the mean absolute percentage error values and coefficient of determination (R2). We found that mortality rates are declining in the long term, but the probability of a turning point in the future is statistically significant. We identified two risks, longevity risk because of more centenarians in the future and mortality risk before their children complete compulsory education.

Keywords


Longevity risk; Makeham model; mortality rates.

Full Text:

PDF

References


F. Sari, “Minat masyarakat bergeser, kontribusi premi produk asuransi jiwa tradisional turun,” Kontan.co.id, Jul. 08, 2019. https://keuangan.kontan.co.id/news/minat-masyarakat-bergeser-kontribusi-premi-produk-asuransi-jiwa-tradisional-turun (accessed Jan. 21, 2021).

D. Dickson, M. Hardy, M. Hardy, and H. Waters, Actuarial Mathematics for Life Contingent Risks, 2nd ed. New York: Cambridge University Press, 2018.

M. H. Hsieh, C. J. Tsai, and J. L. Wang, “Mortality Risk Management Under the Factor Copula Framework—With Applications to Insurance Policy Pools,” North Am. Actuar. J., vol. 25, no. S1, pp. S119–S131, 2021, doi: 10.1080/10920277.2019.1653201.

R. MacMinn and A. Richter, “The choice of trigger in an insurance linked security: the mortality risk case,” Insur. Math. Econ., vol. 78, pp. 174–182, 2018.

T. Andersen and M. Gestsson, “Annuitization and aggregate mortality risk,” J. Risk Insur., vol. 88, no. 1, pp. 79–99, 2021.

A. Wibisana and M. Novita, “Simulation of mortality immunization for life insurance companies in Indonesia using duration and convexity approach,” J. Phys. Conf. Ser., vol. 1725, p. 12082, 2021, doi: 10.1088/1742-6596/1725/1/012082.

M. D. Schmeck and H. Schmidli, “Mortality options: the point of view of an insurer,” Insur. Math. Econ., vol. 96, pp. 98–115, 2021.

S. Both, V. Horneff, B. Kaschützke, and R. Maurer, “Surplus participation schemes for life annuities under Solvency II,” Eur. Actuar. J., vol. 9, no. 2, pp. 391–421, Dec. 2019, doi: 10.1007/s13385-019-00203-3.

S. H. Cox, Y. Lin, and S. Liu, “Optimal longevity risk transfer and investment strategies,” North Am. Actuar. J., vol. 25, no. S1, pp. S40–S65, 2021, doi: 10.1080/10920277.2019.1692617.

T. Moenig, “Variable annuities: Market incompleteness and policyholder behavior,” Insur. Math. Econ., vol. 99, pp. 63–78, 2021.

A. R. Bacinello, P. Millossovich, and A. Chen, “The Impact of longevity and investment risk on a portfolio of life insurance liabilities,” Eur. Actuar. J., vol. 8, no. 2, pp. 257–290, 2018.

D. Blake, A. J. G. Cairns, K. Dowd, and A. R. Kessler, “Still living with mortality: the longevity risk transfer market after one decade,” Br. Actuar. J., vol. 24, pp. 1–80, 2019, doi: 10.1017/S1357321718000314.

M. A. Mlevsky, “Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?,” Insur. Math. Econ., vol. 92, pp. 147–161, 2020.

H.-C. Wang, C. S. J. Yue, and C. T. Chong, “Mortality models and longevity risk for small populations,” Insur. Math. Econ., vol. 78, pp. 351–359, 2018.

A. Kessler, “New Solutions to an Age-Old Problem: Innovative Strategies for Managing Pension and Longevity Risk,” Taylor Fr., vol. 25, no. S1, pp. S7–S24, 2019, doi: 10.1080/10920277.2019.1672566.

N. Bugler, K. Maclean, V. Nicenko, and P. Tedesco, “Reinsurance Sidecars: The Next Stage in the Development of the Longevity Risk Transfer Market,” North Am. Actuar. J., vol. 25, no. S1, pp. S25–S39, 2021, doi: 10.1080/10920277.2019.1673183.

M. Roser, E. Ortiz-Ospina, and H. Ritchie, “Life expectancy,” Our World in Data, 2019. https://ourworldindata.org/life-expectancy (accessed Dec. 21, 2020).

A. Case and A. Deaton, “Mortality and morbidity in the 21st century,” Brookings Pap. Econ. Act., p. 397, 2017.

C. E. Chandra and S. Abdullah, “Estimating Indonesian complete life table and fair annual pure premium range from abridged life table with Bayesian method and bootstrapping.” Under review in a peer-reviewed journal, 2021.

United Nations, “World population prospects - population division - United Nations,” Department of Economic and Social Affairs Population Dynamics, 2020. https://population.un.org/wpp/default.aspx?aspxerrorpath=/wpp/Download/Standard/Mortality/WPP2019_MORT_F17_3_ABRIDGED_LIFE_TABLE_FEMALE.xlsx. (accessed Oct. 02, 2020).

United Nations, “World population prospects - population division - United Nations,” Department of Economic and Social Affairs Population Dynamics, 2020. https://population.un.org/wpp/default.aspx?aspxerrorpath=/wpp/Download/Standard/Mortality/WPP2019_MORT_F17_2_ABRIDGED_LIFE_TABLE_MALE.xlsx. (accessed Oct. 01, 2020).

F. Janssen, “Advances in mortality forecasting: introduction,” Genus, vol. 74, no. 1. Springer International Publishing, pp. 1–12, Dec. 01, 2018, doi: 10.1186/s41118-018-0045-7.

A. Hunt and D. Blake, “On the structure and classification of mortality models,” North Am. Actuar. J., vol. 25, no. S1, pp. S215–S234, 2020, doi: 10.1080/10920277.2019.1649156.

L. Safitri, S. Mardiyati, and H. Rahim, “Forecasting the mortality rates of Indonesian population by using neural network,” J. Phys., vol. 974, no. 1, Mar. 2018, doi: 10.1088/1742-6596/974/1/012030.

Y. Dong, F. Huang, H. Yu, and S. Haberman, “Multi-population mortality forecasting using tensor decomposition,” Scand. Actuar. J., vol. 2020, no. 8, pp. 754–775, Sep. 2020, doi: 10.1080/03461238.2020.1740314.

C. Qiao and M. Sherris, “Managing systematic mortality risk with group self-pooling and annuitization schemes,” J. Risk Insur., vol. 80, no. 4, pp. 949–974, Dec. 2013, doi: 10.1111/j.1539-6975.2012.01483.x.

J. Hilton, E. Dodd, J. J. Forster, and P. W. F. Smith, “Projecting UK mortality by using Bayesian generalized additive models,” J. R. Stat. Soc. Ser. C Appl. Stat., vol. 68, no. 1, pp. 29–49, Jan. 2019, doi: 10.1111/rssc.12299.

H. K. Kindsvater, N. K. Dulvy, C. Horswill, M.-H. Juan-Jorda, M. Mangel, and J. Matthiopoulos, “Overcoming the data crisis in biodiversity conservation,” Trends Ecol. Evol., vol. 33, no. 9, pp. 676–688, 2018.

M. Miočević, D. P. Mackinnon, and R. Levy, “Power in Bayesian Mediation Analysis for Small Sample Research,” Struct. Equ. Model. A Multidiscip. J., vol. 24, no. 5, pp. 666–683, Sep. 2017, doi: 10.1080/10705511.2017.1312407.

A. Gelman, D. Simpson, and M. Betancourt, “The Prior Can Often Only Be Understood in the Context of the Likelihood,” Entropy, vol. 19, p. 555, 2017, doi: 10.3390/e19100555.

S. C. Smid, D. McNeish, M. Miocevic, and R. van de Schoot, “Bayesian versus frequentist estimation for structural equation models in small sample contexts: a systematic review,” Struct. Equ. Model. A Multidiscip. J., vol. 27, no. 1, pp. 131–169, 2019.

C. W. Jordan, Society of Actuaries’ Textbook on Life Contingencies. Chicago: The Society of Actuaries, 1991.

D. J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, “WinBUGS - A Bayesian modelling framework: Concepts, structure, and extensibility,” Stat. Comput., vol. 10, no. 4, pp. 325–337, 2000, doi: 10.1023/A:1008929526011.

S. Sturtz, U. Ligges, and A. Gelman, “R2WinBUGS: A Package for Running WinBUGS from R,” 2005. Accessed: Jun. 21, 2020. [Online]. Available: http://www.jstatsoft.org/.

P. J. C. M. Gatabazi and E. Pindza, “Modeling cryptocurrencies transaction counts using variable-order Fractional Grey Lotka-Volterra dynamical system,” Solitons & Fractals, vol. 127, pp. 283–290, 2019.

Jakarta Open Data, “Data jumlah kelahiran berdasarkan usia ayah,” Jakarta Open Data, Jul. 18, 2018. https://data.jakarta.go.id/dataset/jumlah-kelahiran-berdasarkan-usia-ayah-tahun-2015 (accessed Jun. 21, 2020).

Jakarta Open Data, “Data kelahiran bayi berdasarkan usia ibu,” Jakarta Open Data, Jun. 22, 2018. https://data.jakarta.go.id/dataset/data-kelahiran-bayi-berdasarkan-usia-ibu-melahirkan-tahun-2017/resource/58c1f680-bae3-4a61-ab9d-88ccdbb22a99. (accessed Jun. 21, 2020).




DOI: http://dx.doi.org/10.18517/ijaseit.12.2.15219

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development