Pixel Purity Index Applied to the Mapping of Degraded Soils by the Presence of Cangahuas in the Ilaló Volcano, Ecuador

Iván Palacios, Dennis Ushiña, David Carrera


Soil degradation is a severe problem in the northern region of Ecuador. Due to deforestation, expansion of the agricultural frontier, and poor tillage practices, the outcrop of cangahuas further aggravates. Remote Sensing allows mapping this type of subsoil, which is often related to eroded areas; the spatial resolution of free multispectral images contains more than one coverage. This means that techniques to discern the pure spectral signature of the object of interest are required. Pixel Purity Index (PPI) is an endmember extraction algorithm capable of selecting the pure pixel and classifying it better than object-oriented techniques. The study's objective was to map soils with outcrops of cangahua, by PPI applied to Landsat 8 images in Ilaló volcano and later performed a physicochemical characterization to know the magnitude of the soil degradation in the mapped areas. We used two models with PPI: SAM and LSU; both were compared with classifications based on three vegetation indexes. LSU obtained the best result (91.2% accuracy and 0.81 Kappa coefficient). The mapped cangahua was approximately 806.85 ha. The soil had an average porosity of 45%, a relative density of 2.271 g/cm3, low concentrations of nitrates, phosphates, and sulfates, electrical conductivity <500 µS/cm, and alkaline pH, this means there is soil degradation. The PPI method had good accuracy and was achieved in identifying cangahua outcrops, which demonstrated its potentiality in mapping land cover.


Endmembers; remote sensing; physicochemical characterization.

Full Text:



S. Jasmine and V. Pattabiraman, “Improved pure pixel identification algorithms to determine the endmembers in hyperspectral images,” Comput. Electr. Eng., vol. 71, pp. 515–532, Oct. 2018, doi: 10.1016/j.compeleceng.2018.07.023.

X. Wang et al., “A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery,” Int. J. Appl. Earth Obs. Geoinf., vol. 68, pp. 73–91, Jun. 2018, doi: 10.1016/j.jag.2018.01.018.

J. Behmann, J. Steinrücken, and L. Plümer, “Detection of early plant stress responses in hyperspectral images,” ISPRS J. Photogramm. Remote Sens., vol. 93, pp. 98–111, 2014, doi: 10.1016/j.isprsjprs.2014.03.016.

L. Chaerle, D. Hagenbeek, E. De Bruyne, R. Valcke, and D. Van Der Straeten, “Thermal and Chlorophyll-Fluorescence Imaging Distinguish Plant-Pathogen Interactions at an Early Stage,” Plant Cell Physiol, vol. 45, no. 7, pp. 887–896, 2004, [Online]. Available: http://pcp.oxfordjournals.org/.

Z. Oumar, O. Mutanga, and R. Ismail, “Predicting thaumastocoris peregrinus damage using narrow band normalized indices and hyperspectral indices using field spectra resampled to the hyperion sensor,” Int. J. Appl. Earth Obs. Geoinf., vol. 21, no. 1, pp. 113–121, 2013, doi: 10.1016/j.jag.2012.08.006.

Y. Li, X. Gong, Z. Guo, K. Xu, D. Hu, and H. Zhou, “An index and approach for water extraction using Landsat–OLI data,” Int. J. Remote Sens., vol. 37, no. 16, pp. 3611–3635, Aug. 2016, doi: 10.1080/01431161.2016.1201228.

I. Palacios, “Generación de un modelo de crecimiento tendencial urbano de la ciudad de Macas (Ecuador) al año 2030, mediante técnicas de modelación espacial multivariable,” Universitat de Barcelona, Barcelona, 2020.

M. Cepeda, I. Palacios, A. Tierra, and E. Kirby, “Multiresolution analysis in the visible spectrum of Landsat-TM images through Wavelet Transform,” Geogr. Tech., vol. 13, no. 1, pp. 20–29, 2018, doi: 10.21163/GT_2018.131.03.

J. Wu, Z. Gao, Q. Liu, Z. Li, and B. Zhong, “Methods for sandy land detection based on multispectral remote sensing data,” Geoderma, vol. 316, pp. 89–99, Apr. 2018, doi: 10.1016/j.geoderma.2017.12.015.

M. H. Mozaffar, M. J. V. Zoej, M. R. Sahebi, and Y. Rezaei, “Vegetation Endmember Extraction in Hyperion Images,” Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. XXXVI, no. B7, pp. 409–412, 2008.

C. Zhang, “Multiscale quantification of urban composition from EO-1/Hyperion data using object-based spectral unmixing,” Int. J. Appl. Earth Obs. Geoinf., vol. 47, pp. 153–162, 2016, doi: 10.1016/j.jag.2016.01.002.

R. Schwengerdt, Remote Sensing: Models and Methods for Image Processing, 2nd ed. San Diego: Academic Press, 1997.

F. Chaudhry, S. Chakravarty, A. Plaza, and C.-I. Chang, “Design of Oast Algorithms for Pixel Purity Index for Endmember Extraction In Hyperspectral Imagery,” in ASPRS 2005 Annual Conference Geospatial Goes Global: From Your Neighborhood to the Whole Planet, 2005, pp. 1–12.

C. González, J. Resano, D. Mozos, A. Plaza, and D. Valencia, “FPGA Implementation of the pixel purity index algorithm for remotely sensed hyperspectral image analysis,” EURASIP J. Adv. Signal Process., vol. 2010, no. 1, pp. 1–13, 2010, doi: 10.1155/2010/969806.

W. Jiménez, V. Loayza, and E. Metzler, “Mapping cangahua in Ecuador using remote sensing,” Siembra, vol. 5, no. 1, pp. 38–50, 2018.

I. Palacios, S. Castro, and F. Rodríguez, “Almacenamiento de carbono como servicio ambiental en tres reservas naturales del Ecuador,” Rev. Geoespacial, vol. 16, no. 1, pp. 1–14, 2019, doi: 10.24133/geoespacial.v16i1.1275.

I. Palacios, D. Ushiña, and D. Carrera, “Identificación de Cangahuas para su recuperación mediante estudio multicriterio y constatación in situ en comunas del volcán Ilaló,” in Congreso de Ciencia y Tecnología ESPE, Jun. 2018, vol. 13, no. 1, pp. 9–12, doi: 10.24133/cctespe.v13i1.649.

M. Coltorti and C. Ollier, “Geomorphic and tectonic evolution of the Ecuadorian Andes,” Geomorphology, vol. 32, no. 1, pp. 1–19, 2000.

G. Trujillo and C. Zebrowski, “La cangahua y su rehabilitación,” in III Simposio Internacional de Desarrollo Sustentable de Montaña: entendiendo las interfaces ecológicas para la gestión de los paisajes culturales en los Andes, 1998, pp. 113–116.

P. Podwojewski and N. Germain, “Evolution of the soil structure in a deep tilled hardened volcanic ashsoil (Cangahua) in Ecuador,” Eur. J. Soil Sci., vol. 39, pp. 39–51, 2005.

I. Palacios, D. Ushiña, and D. Carrera, “Técnicas SIG para recuperación de suelos cangahuosos, con fines de agricultura comunitaria en el Ilaló,” Cienc. del Suelo, vol. 38, no. 2, pp. 295–309, 2020.

M. V. Sánchez, J. Genise, E. Bellosi, J. L. Román-Carrión, and L. Cantil, “Dung beetle brood balls from Pleistocene highland palaeosols of Andean Ecuador: A reassessment of Sauer’s Coprinisphaera and their palaeoenvironments,” Palaeogeogr. Palaeoclimatol. Palaeoecol., vol. 386, pp. 257–274, Sep. 2013, doi: 10.1016/j.palaeo.2013.05.028.

A. Alvarado et al., “Active tectonics in Quito, Ecuador, assessed by geomorphological studies, GPS data, and crustal seismicity,” Tectonics, vol. 33, no. 2, pp. 67–83, 2014, doi: 10.1002/2012TC003224.

T. R. Loveland and J. R. Irons, “Landsat 8: The plans, the reality, and the legacy,” Remote Sens. Environ., vol. 185, pp. 1–6, Nov. 2016, doi: 10.1016/j.rse.2016.07.033.

G. Chander, B. Markham, and D. Helder, “Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors,” Remote Sens. Environ., vol. 113, no. 5, pp. 893–903, May 2009, doi: 10.1016/j.rse.2009.01.007.

G. Krishna, R. Sahoo, S. Pradhan, T. Ahmad, and P. Sahoo, “Hyperspectral satellite data analysis for pure pixels extraction and evaluation of advanced classifier algorithms for LULC classification,” Earth Sci. Informatics, vol. 11, no. 2, pp. 159–170, Jun. 2017, doi: 10.1007/s12145-017-0324-4.

Y. Ke, J. Im, J. Lee, H. Gong, and Y. Ryu, “Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations,” Remote Sens. Environ., vol. 164, pp. 298–313, Jul. 2015, doi: 10.1016/j.rse.2015.04.004.

J. Yu, D. Chen, Y. Lin, and S. Ye, “Comparison of linear and nonlinear spectral unmixing approaches: a case study with multispectral TM imagery,” Int. J. Remote Sens., vol. 38, no. 3, pp. 773–795, Feb. 2016, doi: 10.1080/01431161.2016.1271475.

F. Chaudhry, C.-C. Wu, W. Liu, C.-I. Chang, and A. Plaza, “Pixel purity index-based algorithms for endmember extraction from hyperspectral imagery,” in Recent Advances in Hyperspectral Signal and Image Processing, C.-I. Chang, Ed. Kerala: Transworld Research Network, 2006, pp. 29–62.

P. Switzer and A. Green, “Min/max autocorrelation factors for multivariate spatial imagery,” California, 1984.

H. Suryoprayogo, F. Ramdani, and F. Utaminingrum, “Mapping Paddy Growth Stage Based-on Hyperspectral EO-1 Hyperion using Pixel Purity Index Endmember Extraction Algorithm,” J. Telecommun. Electron. Comput. Eng., vol. 10, no. 1–6, pp. 47–54, 2018.

O. Carvalho, A. Ferreria, R. Guimarães, P. Meneses, and Y. Shimabukuro, “Special mixture: (i) member detection finals using simplex geometry,” Espaço Geogr., vol. 6, no. 1, pp. 147–173, 2003.

N. Xu, Y. HU, B. Lei, C. Zhang, D. Wang, and T. Shi, “Automated mineral information extraction based on PPI algorithm for hyperspectral imagery,” Sci. Surving Mapp., vol. 38, no. 1, pp. 138–141, 2013.

X. Wu, B. Huang, A. Plaza, Y. Li, and C. Wu, “Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 5, pp. 955–959, 2014, doi: 10.1109/LGRS.2013.2283214.

F. Ramdani, “Urban Vegetation Mapping from Fused Hyperspectral Image and LiDAR Data with Application to Monitor Urban Tree Heights,” J. Geogr. Inf. Syst., vol. 5, no. 4, pp. 404–108, 2013, doi: 10.4236/jgis.2013.54038.

N. Kumar et al., “A new hybrid spectral similarity measure for discrimination among vigna species,” Int. J. Remote Sens., vol. 32, no. 14, pp. 4041–4053, 2011, doi: 10.1080/01431161.2010.484431.

D. Gudex, J. Pontius, and A. Adams, “Enhanced forest cover mapping using spectral unmixing an object-based classification of multi-temporal Landsat imagery,” Remote Sens. Environ., vol. 196, pp. 193–204, 2017.

W. Yang, J. Chen, J. Song, P. Gong, and C. Chen, “A new spectral mixture analysis method based on spectral correlation matching,” J. Remote Sens., vol. 12, no. 3, pp. 454–461, 2008.

X. Li, Z. Gao, Z. Li, L. Bai, and B. Wang, “Estimation of sparse vegetation coverage in arid region based on hyperspectral mixed pixel decomposition,” J. Appl. Ecol., vol. 21, no. 1, pp. 152–158, 2010.

Secretaria de Medio Ambiente y Recursos Naturales, NOM-021-SEMARNAT-2000: Norma Oficial Mexicana que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudio, muestreo y análisis. México: Diario Oficial de la Federación, 2002.

APHA, Standard Methods for the examination of water and wastewater. Washington: Publication office American Public Health Association, 1995.

E. Chuvieco, Teledetección ambiental, La observación de la tierra desde el espacio, 3rd ed. Barcelona: Ariel S.A., 2008.

J. Delegido, L. Alonso, G. González, and J. Moreno, “Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC),” Int. J. Appl. Earth Obs. Geoinf., vol. 12, no. 3, pp. 165–174, Jun. 2010, doi: 10.1016/j.jag.2010.02.003.

A. Rasul et al., “Applying built-up and bare-soil indices from Landsat 8 to cities in dry climates,” Land, vol. 7, no. 3, pp. 81–94, Sep. 2018, doi: 10.3390/land7030081.

J. Jones, Laboratory guide for conducting soil tests and plant analysis. New York: CRC Press, 2001.

J. Z. Castellanos, J. X. Uvalle, and S. Aguilar, Manual de interpretación de análisis de suelos, aguas agricolas, plantas y ECP, 2nd ed. México: INTAGRI, 2000.

D. Horneck, D. Sullivan, J. Owen, and J. Hart, Soil Test Interpretation Guide. Oregon: Oregon State University, 2011.

P. Hazelton and B. Murphy, Interpreting Soil Test Results: What Do All the Numbers Mean?, 3rd ed. Clayton South: CSIRO Publishing, 2016.

S. Garrido, Interpretación de análisis de suelos. Madrid: Rivadeneyra S.A., 1994.

C. Ortega and S. Calderón, “Evaluación del potencial productivo de Cangahuas de diferentes edades de habilitación con dos especies forrajeras (Lolium multiflorum y Trifolium pratense),” Universidad Central del Ecuador, Quito, 2015

DOI: http://dx.doi.org/10.18517/ijaseit.11.5.14684


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development