The Influence of Anthropogenic Activities on the Concentration of Pesticides, Physicochemical and Microbiological Properties in the Chumbao River, Andahuaylas, Perú

Carlos A. Ligarda Samanez, David Choque Quispe, Betsy S. Ramos Pacheco, Diego E. Peralta Guevara, Elibet Moscoso Moscoso, Henry Palomino Rincon, Mary L. Huamán Carrión


The province of Andahuaylas is located in the region of Apurimac, a Peruvian city located in the Andes. Andahuaylas has three important districts: San Jerónimo, Andahuaylas and Talavera. These areas are highly populated, and their buildings are close to the Chumbao River. This research aimed to determine the influence of anthropogenic activities on the concentration of pesticides, physicochemical and microbiological characteristics in the Chumbao River. Five agricultural activities, 19 organochlorine pesticides, and 25 organophosphorus pesticides were studied. Eighteen physicochemical properties and two microbiological properties were also studied at seven sampling points along the Chumbao River during the rainy and dry seasons. Several veterinary and agricultural products were identified in the agricultural activities studied. However, no significant concentration values of organochlorine and organophosphate pesticides were found; no weed control products were found. In the case of livestock farming, albendazole and ivermectin are frequently used as anthelmintics. Organophosphate and pyrethroid insecticides are used to control flies and other ectoparasites. Several pesticides have been identified in the surveys in the case of quinoa, potato, and corn crops. Some of the physicochemical and microbiological properties are above environmental quality standards according to current Peruvian regulations; these properties increase at points where wastewater is discharged directly into the river. The study evidenced a progressive deterioration of water quality in the Chumbao River caused by anthropic activities in the basin. These may cause infectious and parasitic diseases in the urban population of the Chumbao river valley.


Environment; public health; water contamination.

Full Text:



Instituto Nacional de Estadística e Informática INEI, “Sistema de Información Regional para la Toma de Decisiones,” 2020. [Online]. Available:

B. L. G. Barragán, M. A. G. Rivillas, M. S. C. Villegas, and J. D. O. Medina, “Presence of pesticides, mercury and trihalomethanes in the water supply systems of Ibagué, Colombia: threats to human health,” Ambient. e Agua - An Interdiscip. J. Appl. Sci., vol. 15, no. 2, p. 1, Apr. 2020.

J. A. Díaz-Martínez and C. A. Granada-Torres, “Effect of anthropic activities on the physicochemical and microbiological characteristics of the Bogotá River along the municipality of Villapinzón-Cundinamarca,” Rev. Fac. Med., vol. 66, no. 1, pp. 45–52, 2018.

O. Gómez-Duarte, “Contaminación de agua en países de bajos y medianos recursos es un problema de salud pública global,” Rev. la Fac. Med., vol. 66, no. 1, pp. 7–8, Jan. 2018.

K. Nakagawa, H. Amano, M. Persson, and R. Berndtsson, “Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area,” Sci. Rep., vol. 11, no. 1, pp. 1–13, 2021.

D. Choque-Quispe et al., “Water quality index in the high-Andean micro-basin of the Chumbao River, Andahuaylas, Apurímac, Peru,” Tecnol. y Ciencias del Agua, vol. 12, no. 1, 2021.

M. P. da Rocha et al., “Tools for monitoring aquatic environments to identify anthropic effects,” Environ. Monit. Assess., vol. 190, no. 2, 2018.

Z. N. Garba, A. K. Abdullahi, A. Haruna, and S. A. Gana, “Risk assessment and the adsorptive removal of some pesticides from synthetic wastewater: a review,” Beni-Suef Univ. J. Basic Appl. Sci., ol. 10, no. 1, 2021.

I. Md Meftaul, K. Venkateswarlu, R. Dharmarajan, P. Annamalai, and M. Megharaj, “Pesticides in the urban environment: A potential threat that knocks at the door,” Sci. Total Environ., vol. 711, p. 134612, 2020.

A. Hernández-Antonio and A. M. Hansen, “Uso de plaguicidas en dos zonas agrícolas de México y evaluación de la contaminación de agua y sedimentos,” Revista internacional de contaminación ambiental, vol. 27. scielomx, pp. 115–127, 2011.

Ministerio del Ambiente, “Decreto Supremo N° 004-2017-MINAM.,” Estándares de Calidad Ambiental (ECA) para aguas, 2017. [Online]. Available:

S. Kouadri, S. Kateb, and R. Zegait, “Spatial and temporal model for WQI prediction based on back-propagation neural network, application on EL MERK region (Algerian southeast),” J. Saudi Soc. Agric. Sci., 2021.

S. Gupta and S. K. Gupta, “A critical review on water quality index tool: Genesis, evolution and future directions,” Ecol. Inform., vol. 63, no. January, p. 101299, 2021.

X. Zhang, Y. Zhang, P. Shi, Z. Bi, Z. Shan, and L. Ren, “Science of the Total Environment The deep challenge of nitrate pollution in river water of China,” Sci. Total Environ., vol. 770, p. 144674, 2021.

M. Custodio and R. Peñaloza, “Data on the spatial and temporal variability of physical-chemical water quality indicators of the Cunas River, Peru,” Chem. Data Collect., vol. 33, 2021.

L. Håkanson, “Internal loading : A new solution to an old problem in aquatic sciences,” no. January, pp. 2–23, 2018.

Z. W. Leibowitz, L. A. F. Brito, P. V. De Lima, E. M. Eskinazi-Sant’Anna, and N. O. Barros, “Significant changes in water pCO2 caused by turbulence from waterfalls,” Limnologica, vol. 62, pp. 1–4, Jan. 2017.

O. A. Gamarra Torres, M. A. Barrena Gurbillón, E. Barboza Castillo, J. Rascón Barrios, F. Corroto, and L. A. Taramona Ruiz, “Fuentes de contaminación estacionales en la cuenca del río Utcubamba, región Amazonas, Perú,” Arnaldoa, vol. 25. scielo, pp. 179–194, 2018.

P. Ivo Isá Barrenha et al., “Multivariate analyses of the effect of an urban wastewater treatment plant on spatial and temporal variation of water quality and nutrient distribution of a tropical mid-order river,” Env. Monit Assess, vol. 190: 43, 2018.

J. Antonio, P. Aguilar, J. Campo, S. Nebot, and E. Gimeno-garcía, “Analysis of existing water information for the applicability of water quality indices in the fl uvial-littoral area of turia and Jucar Rivers , valencia , Spain,” Appl. Geogr., vol. 111, no. August, p. 102062, 2019.

M. Rusiñol et al., “Microbiological contamination of conventional and reclaimed irrigation water: Evaluation and management measures,” Sci. Total Environ., vol. 710, p. 136298, Mar. 2020.

Apurímac Dirección Regional de Salud, “Dirección Ejecutiva de Inteligencia Sanitaria.,” Dirección de Epidemiologia. Sala Situacional, 2020. [Online]. Available:

A. F. Fagbamigbe, O. P. Ologunwa, E. K. Afolabi, O. S. Fagbamigbe, and A. O. Uthman, “Decomposition analysis of the compositional and contextual factors associated with poor-non-poor inequality in diarrhoea among under- fi ve children in low- and middle-income countries,” Public Health, vol. 193, pp. 83–93, 2021.

C. Troeger et al., “Estimates of the global, regional, and national morbidity, mortality, and aetiologies of diarrhoea in 195 countries: a systematic analysis for the Global Burden of Disease Study 2016,” Lancet Infect. Dis., vol. 18, no. 11, pp. 1211–1228, 2018.

Instituto Nacional de Estadística e Informática (INEI), “Encuesta Nacional de Programas Presupuestales (ENAPRES),” 2020. [Online]. Available:

Congreso de la Republica del Perú, “Ley N° 30588,” Reforma constitucional, reconoce el derecho de acceso al agua como derecho constitucional, 2017. [Online]. Available:



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development