An Analysis of Surface Ocean Currents from HF Radar Measurements in the Bali Strait and the Flores Sea, Indonesia

Eko Supriyadi, Rahmat Hidayat, I Putu Santikayasa, Andri Ramdhani

Abstract


Analyze Surface Ocean Currents (SOCs) with one year of HF Radar data (2018-2019) for each season to determine the characteristics of the SOC direction and speed of the crossing route and its control factors carried out in the Bali Strait and the Flores Sea. Method of data analysis by computing the SOC speed and direction of the zonal and meridional components. The results showed that the SOC pattern in the Bali Strait affects the season where its speed in the DJF season is lower than the JJA season. Moreover, the SOC direction in the Bali Strait is dominant towards the south due to the influence of bathymetry. Meanwhile, the SOC pattern in the Flores Sea has a random pattern every season for the influence of topography in the form of small islands that influence the SOC dominant pattern. Furthermore, the SOC characteristics on the Bali Strait crossing route throughout the month are divided into two patterns: random on the eastern side of East Java Island and dominant towards the south on the west side of Bali Island with a maximum speed of 83 cm/s. Meanwhile, the crossing route in the Flores Sea is random, with a maximum speed of 32 cm/s. Whereas, based on the normal cross-correlation method, the SOC control factors in the Bali Strait tend to be influenced by tides, while the factors in the Flores Sea are less influential based on the distribution of zonal and meridional currents of HF Radar. 


Keywords


Surface ocean currents; HF radar; Bali strait; Flores sea; tides-wind.

Full Text:

PDF

References


L. R. Wyatt, “Measuring the ocean wave directional spectrum ‘First Five’ with HF radar,” Ocean Dyn., vol. 69, no. 1, pp. 123–144, 2019, doi: 10.1007/s10236-018-1235-8.

ITU, “Nomenclature of the frequency and wavelength bands used in telecommunications,” 2019. .

B. Lipa, D. Barrick, and C. Whelan, “A Quality Control Method for Broad-Beam HF Radar Current Velocity Measurements,” Journal of Marine Science and Engineering , vol. 7, no. 4. 2019, doi: 10.3390/jmse7040112.

Z. Tian et al., “Wave-Height Mapping From Second-Order Harmonic Peaks of Wide-Beam HF Radar Backscatter Spectra,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 925–937, 2020, doi: 10.1109/TGRS.2019.2941823.

Y. Tian, B. Wen, Z. Li, Y. Yin, and W. Huang, “Analysis and Validation of an Improved Method for Measuring HF Surface Wave Radar Antenna Pattern,” IEEE Antennas Wirel. Propag. Lett., vol. 18, no. 4, pp. 659–663, 2019, doi: 10.1109/LAWP.2019.2900562.

C.-A. Guérin and S. T. Grilli, “A probabilistic method for the estimation of ocean surface currents from short time series of HF radar data,” Ocean Model., vol. 121, pp. 105–116, 2018, doi: https://doi.org/10.1016/j.ocemod.2017.11.010.

D. Crombie, “Doppler spectrum of sea echo at 13.56 Mc./s.,” Nature, vol. 175, no. 4459, pp. 681–682, 1955, doi: 10.1038/175681a0.

A. Rubio et al., “HF Radar Activity in European Coastal Seas: Next Steps toward a Pan-European HF Radar Network,” Front. Mar. Sci., vol. 4, p. 8, 2017, doi: 10.3389/fmars.2017.00008.

H. Roarty et al., “The global high frequency radar network,” Frontiers in Marine Science, vol. 6. p. 164, 2019.

A. Caballero et al., “Integration of HF Radar Observations for an Enhanced Coastal Mean Dynamic Topography,” Front. Mar. Sci., vol. 7, p. 1005, 2020, doi: 10.3389/fmars.2020.588713.

Y. Liu, C. R. Merz, R. H. Weisberg, B. K. O’Loughlin, and V. Subramanian, “Data Return Aspects of CODAR and WERA High-Frequency Radars in Mapping Currents BT - Observing the Oceans in Real Time,” R. Venkatesan, A. Tandon, E. D’Asaro, and M. A. Atmanand, Eds. Cham: Springer International Publishing, 2018, pp. 227–240.

S. Cosoli and S. de Vos, “Interoperability of Direction-Finding and Beam-Forming High-Frequency Radar Systems: An Example from the Australian High-Frequency Ocean Radar Network,” Remote Sensing , vol. 11, no. 3. 2019, doi: 10.3390/rs11030291.

JCOMM, “High Frequency Radar Network, 10th Session of the JCOMM Observation Coordination Group,” Jakarta, 2019.

K. Aoki and T. Kataoka, “High-frequency ocean radar derived characteristics of sea surface currents in the Ariake Sea, Japan,” J. Oceanogr., vol. 74, no. 4, pp. 431–437, 2018, doi: 10.1007/s10872-018-0464-2.

L. Ren, Z. Hu, and M. Hartnett, “Short-Term Forecasting of Coastal Surface Currents Using High Frequency Radar Data and Artificial Neural Networks,” Remote Sensing , vol. 10, no. 6. 2018, doi: 10.3390/rs10060850.

A. Orasi et al., “HF radar for wind waves measurements in the Malta-Sicily Channel,” Measurement, vol. 128, pp. 446–454, 2018, doi: https://doi.org/10.1016/j.measurement.2018.06.060.

Y. Li and R. Toumi, “Improved Tropical Cyclone Intensity Forecasts by Assimilating Coastal Surface Currents in an Idealized Study,” Geophys. Res. Lett., vol. 45, no. 18, pp. 10,10-19,26, Sep. 2018, doi: https://doi.org/10.1029/2018GL079677.

L. Lukijanto, N. Hashimoto, and M. Yamashiro, “A Comparison of analysis methods for estimating directional wave spectrum from HF Ocean Radar,” Mem. Fac. Eng. Kyushu Univ., vol. 69, pp. 163–185, Dec. 2009.

Iswandi, R. Hidayat, B. Setiyanto, and S. B. Wibowo, “Study on Detection Mechanism of HF Radar for Early Tsunami Detection and Comparison to Other Tsunami Sensors,” in 2019 11th International Conference on Information Technology and Electrical Engineering (ICITEE), 2019, pp. 1–6, doi: 10.1109/ICITEED.2019.8929984.

D. Barrick, M. Evans, and B. Weber, “Ocean surface currents mapped by radar,” in Proceedings of the 1978 IEEE First Working Conference on Current Measurement, 1978, vol. 1, pp. 59–65, doi: 10.1109/CCM.1978.1158377.

L. Renault, J. C. McWilliams, and S. Masson, “Satellite Observations of Imprint of Oceanic Current on Wind Stress by Air-Sea Coupling,” Sci. Rep., vol. 7, no. 1, p. 17747, 2017, doi: 10.1038/s41598-017-17939-1.

E. Armenio, F. De Serio, and M. Mossa, “Analysis of data characterizing tide and current fluxes in coastal basins,” Hydrol. Earth Syst. Sci., vol. 21, no. 7, pp. 3441–3454, 2017, doi: 10.5194/hess-21-3441-2017.

K. Wyrtki, “An equatorial jet in the Indian Ocean,” Science (80-. )., vol. 181, no. 4096, pp. 262–264, Jul. 1973, doi: 10.1126/science.181.4096.262.

S. Pond and G. L. Pickard, “12 - Waves,” S. POND and G. L. B. T.-I. D. O. (Second E. PICKARD, Eds. Oxford: Butterworth-Heinemann, 1983, pp. 207–252.

R. Stewart, Introduction to Physical Oceanography. 2008.

K. Ogata, S. Seto, R. Fuji, T. Takahashi, and H. Hinata, “Real-Time Tsunami Detection with Oceanographic Radar Based on Virtual Tsunami Observation Experiments,” Remote Sensing , vol. 10, no. 7. 2018, doi: 10.3390/rs10071126.

Bakosurtanal, Atlas Nasional Indonesia Vol. 1, 1st ed. Bogor: Bakosurtanal, 2008.

J. D. Paduan, M. S. Cook, and V. M. Tapia, “Patterns of upwelling and relaxation around Monterey Bay based on long-term observations of surface currents from high frequency radar,” Deep Sea Res. Part II Top. Stud. Oceanogr., vol. 151, pp. 129–136, 2018, doi: https://doi.org/10.1016/j.dsr2.2016.10.007.

R. E. Thomson and W. J. Emery, “Chapter 5 - Time Series Analysis Methods,” R. E. Thomson and W. J. B. T.-D. A. M. in P. O. (Third E. Emery, Eds. Boston: Elsevier, 2014, pp. 425–591.

U. Mackenroth, Rational Transfer Functions. In: Robust Control Systems. Berlin, Heidelberg: Springer, 2004.

R. Valbuena et al., “Evaluating observed versus predicted forest biomass: R-squared, index of agreement or maximal information coefficient?,” Eur. J. Remote Sens., vol. 52, no. 1, pp. 345–358, Jan. 2019, doi: 10.1080/22797254.2019.1605624.

T. Lee, S. Fournier, A. L. Gordon, and J. Sprintall, “Maritime Continent water cycle regulates low-latitude chokepoint of global ocean circulation,” Nat. Commun., vol. 10, no. 1, p. 2103, 2019, doi: 10.1038/s41467-019-10109-z.

M. Foreman, “Manual for Tidal Currents Analysis and Prediction,” vol. 78, Oct. 2004.

E. León-Castro, E. Avilés-Ochoa, and J. M. Merigó, “Induced Heavy Moving Averages,” Int. J. Intell. Syst., vol. 33, no. 9, pp. 1823–1839, Sep. 2018, doi: https://doi.org/10.1002/int.21916.

A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos, “Comparing Similarity Perception in Time Series Visualizations,” IEEE Trans. Vis. Comput. Graph., vol. 25, no. 1, pp. 523–533, 2019, doi: 10.1109/TVCG.2018.2865077.

L. Cutroneo, G. Ferretti, D. Scafidi, G. D. Ardizzone, G. Vagge, and M. Capello, “Current observations from a looking down vertical V-ADCP: interaction with winds and tide? The case of Giglio Island (Tyrrhenian Sea, Italy),” Oceanologia, vol. 59, no. 2, pp. 139–152, 2017, doi: https://doi.org/10.1016/j.oceano.2016.11.001.

G. Wei et al., “Assessment of HF Radar in Mapping Surface Currents under Different Sea States,” J. Atmos. Ocean. Technol., vol. 37, no. 8, pp. 1403–1422, doi: 10.1175/JTECH-D-19-0130.1.

Y. Tian, B. Wen, Z. Li, Y. Hou, Z. Tian, and W. Huang, “Fully digital multi-frequency compact high-frequency radar system for sea surface remote sensing,” IET Radar, Sonar Navig., vol. 13, no. 8, pp. 1359–1365, Aug. 2019, doi: https://doi.org/10.1049/iet-rsn.2018.5655.

L. P. Corgnati et al., “Implementation and Validation of the ISMAR High-Frequency Coastal Radar Network in the Gulf of Manfredonia (Mediterranean Sea),” IEEE J. Ocean. Eng., vol. 44, no. 2, pp. 424–445, 2019, doi: 10.1109/JOE.2018.2822518.

Y. Liu and R. H. Weisberg, “Ocean Currents and Sea Surface Heights Estimated across the West Florida Shelf,” J. Phys. Oceanogr., vol. 37, no. 6, pp. 1697–1713, Jun. 2007, doi: 10.1175/JPO3083.1.

Y. Liu, R. H. Weisberg, C. R. Merz, S. Lichtenwalner, and G. J. Kirkpatrick, “HF Radar performance in a low-energy environment: CODAR SeaSonde experience on the West Florida Shelf*,” J. Atmos. Ocean. Technol., vol. 27, no. 10, pp. 1689–1710, Oct. 2010, doi: 10.1175/2010JTECHO720.1.

S. Saviano, D. Cianelli, E. Zambianchi, F. Conversano, and M. Uttieri, “An Integrated Reconstruction of the Multiannual Wave Pattern in the Gulf of Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea),” Journal of Marine Science and Engineering , vol. 8, no. 5. 2020, doi: 10.3390/jmse8050372.

L. Ren, M. Wang, H. Cai, Z. Hu, Q. Yang, and M. Hartnett, “Characteristics of coastal currents based on High Frequency radar and ADCP observations in the Strait of Georgia,” IOP Conf. Ser. Earth Environ. Sci., vol. 189, p. 52042, 2018, doi: 10.1088/1755-1315/189/5/052042.

A. Sentchev, P. Forget, Y. Barbin, and M. Yaremchuk, “Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF Radar mapping,” J. Mar. Syst., vol. 109–110, pp. S153–S168, 2013, doi: https://doi.org/10.1016/j.jmarsys.2011.11.024.

A. D. Hanifa et al., “Tomographic measurement of tidal current and associated 3-h oscillation in Bali Strait,” Estuar. Coast. Shelf Sci., vol. 236, p. 106655, 2020, doi: https://doi.org/10.1016/j.ecss.2020.106655.

A. Schaeffer, A. Gramoulle, M. Roughan, and A. Mantovanelli, “Characterizing frontal eddies along the East Australian Current from HF Radar observations,” J. Geophys. Res. Ocean., vol. 122, no. 5, pp. 3964–3980, May 2017, doi: 10.1002/2016JC012171.

J. Guo, Z. Zhang, C. Xia, B. Guo, and Y. Yuan, “Topographic–baroclinic instability and formation of Kuroshio current loop,” Dyn. Atmos. Ocean., vol. 81, pp. 15–29, 2018, doi: https://doi.org/10.1016/j.dynatmoce.2017.11.002.

R. J. Brokaw, B. Subrahmanyam, and S. L. Morey, “Loop current and Eddy-driven salinity variability in the Gulf of Mexico,” Geophys. Res. Lett., vol. 46, no. 11, pp. 5978–5986, Jun. 2019, doi: 10.1029/2019GL082931.

J. L. Largier, B. A. Magnell, and C. D. Winant, “Subtidal circulation over the northern California shelf,” J. Geophys. Res. Ocean., vol. 98, no. C10, pp. 18147–18179, Oct. 1993, doi: 10.1029/93JC01074.

M. K. Gough, N. Garfield, and E. McPhee-Shaw, “An analysis of HF radar measured surface currents to determine tidal, wind-forced, and seasonal circulation in the Gulf of the Farallones, California, United States,” J. Geophys. Res. Ocean., vol. 115, no. C4, Apr. 2010, doi: 10.1029/2009JC005644.

W. S. Pranowo, “Sirkulasi arus vertikal di Selat Bali pada monsun tenggara 2004,” Palembang, 2006.

D. J. Webb, “A simple model of the effect of the Kerguelen Plateau on the strength of the Antarctic Circumpolar Current,” Geophys. Astrophys. Fluid Dyn., vol. 70, no. 1–4, pp. 57–84, Jun. 1993, doi: 10.1080/03091929308203587.

G. Franz, M. Delpey, D. Brito, L. Pinto, P. Leitão, and R. Neves, “Modelling of sediment transport and morphological evolution under the combined action of waves and currents,” Ocean Sci. Discuss., pp. 1–26, Mar. 2017, doi: 10.5194/os-2017-8.

N. Taniguchi, C.-F. Huang, M. Arai, and B. M. Howe, “Variation of Residual Current in the Seto Inland Sea Driven by Sea Level Difference Between the Bungo and Kii Channels,” J. Geophys. Res. Ocean., vol. 123, no. 4, pp. 2921–2933, Apr. 2018, doi: https://doi.org/10.1029/2017JC013618.

T. Rizki, “Studi pemodelan numerik oseanografi untuk mendukung perencanaan manajemen wilayah pesisir terpadu di Taman Nasional Komodo,” Appl. Technol. Comput. Sci. J., vol. 1, pp. 114–123, Dec. 2018, doi: 10.33086/atcsj.v1i2.859.

B. Sadhotomo, “Review of environmental features of the Java Sea,” Indones. Fish. Res. J., vol. 12, no. 2, pp. 129–157, 2006, doi: http://dx.doi.org/10.15578/ifrj.12.2.2006.129-157.

Y.-C. Chang, R.-S. Tseng, G.-Y. Chen, P. C. Chu, and Y.-T. Shen, “Ship routing utilizing strong ocean currents,” J. Navig., vol. 66, no. 6, pp. 825–835, 2013, doi: DOI: 10.1017/S0373463313000441.

R. Yan, S. Wang, and Y. Du, “Development of a two-stage ship fuel consumption prediction and reduction model for a dry bulk ship,” Transp. Res. Part E Logist. Transp. Rev., vol. 138, p. 101930, 2020, doi: https://doi.org/10.1016/j.tre.2020.101930.

A. Bayhaqi, “Kajian pola pergerakan arus di Perairan Selat Bali,” Universitas Brawijaya, 2014.

H. Vindenes, K. A. Orvik, H. Søiland, and H. Wehde, “Analysis of tidal currents in the North Sea from shipboard acoustic Doppler current profiler data,” Cont. Shelf Res., vol. 162, pp. 1–12, 2018, doi: https://doi.org/10.1016/j.csr.2018.04.001.

S. Roland, “9 - The Atmospheric Boundary Layer,” J. M. Wallace and P. V. B. T.-A. S. (Second E. Hobbs, Eds. San Diego: Academic Press, 2006, pp. 375–417.

I. Hamdani et al., “Seasonal and diurnal evaporation from a deep hypersaline lake: The Dead Sea as a case study,” J. Hydrol., vol. 562, pp. 155–167, 2018, doi: https://doi.org/10.1016/j.jhydrol.2018.04.057.

F. Syamsudin et al., “Observing Internal Solitary Waves in the Lombok Strait by Coastal Acoustic Tomography,” Geophys. Res. Lett., vol. 46, no. 17–18, pp. 10475–10483, Sep. 2019, doi: https://doi.org/10.1029/2019GL084595.

D. Berlianty and T. Yanagi, “Tide and tidal Current in the Bali Strait, Indonesia,” J. Mar. Res., vol. 36, pp. 25–36, Jan. 2011, doi: 10.14203/mri.v36i2.39.

P. Hasanah, “Simulated Circulation and Variability in the Bali sea-Flores sea based on models of INDESO 2008-2014,” IPB University, 2017.




DOI: http://dx.doi.org/10.18517/ijaseit.11.4.14265

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development