Effect of Land Cover on Tsunami Overland Flow Propagation: A Case Study of Painan, West Sumatra, Indonesia

Mohammad Bagus Adityawan, Puspita Rahmasari, Asrini Chrysanti, Mohammad Farid, Bagus Pramono Yakti, Muhammad Rizki Purnama


Tsunami overland flow may cause severe destruction to the affected coastal area. Several tsunamis had hit Indonesia. Studies have shown that there is a high probability of a massive earthquake in the Mentawai fault, Sumatra, Indonesia. A massive earthquake with a magnitude of over 8 Mw might occur in the next 50 years. The nearshore tsunami propagation and inundation in Painan City, West Sumatra, Indonesia, is assessed using HEC-RAS. Various land cover types are simulated to investigate their effects on the tsunami overland flow. The model showed satisfactory results. The model can show the known behaviors of tsunami propagation in urban areas and in rivers. It was found that there is a significant effect of land cover types on the inundation at the coast. Inundation depth increases with roughness along the coast. On the other hand, high roughness decreases the inundated area. Furthermore, the land cover has a significant effect on the velocity. The velocity is much lower in higher Manning’s value. Simulation with a high surface roughness shows a significant reduction in both inundation area and velocity. The high roughness causes a blockage effect for tsunami propagation. Thus, the Tsunami cannot penetrate further inland. The information can be used for land use control suggestions. These provide significant information for future mitigation plans, e.g., placement of evacuation buildings and evacuation routes.


Tsunami; inundation; overland flow; land cover; roughness.

Full Text:



U.S. Geological Survey USGS, 2005. (2005) Available: http://earthquake. usgs.gov/eqinthenews/2004/usslav [Accessed: 31 August 2020).

T. Lay, H, Kanamori, C. J. Ammon, M. Nettles, S. N. Ward, R. C. Aster, S. L. Beck, S. L. Bilek, M. R. Brudzinski, R. Butler, H. R. DeShon, G. Ekström, K. Satake, and S. Sipkin. “The great Sumatra-Andaman earthquake of 26 December 2004,” Science 308, 1127– 1133, 2005.

Syamsidik, M. Al'ala, H. M. Fritz, M. Fahmi, T. M. Hafli. “Numerical simulations of the 2004 Indian Ocean tsunami deposits' thicknesses and emplacements” Nat. Hazards Earth Syst. Sci., 19(6), 1265-1280, 2019.

Q. Qiu, L. Feng, I. Hermawan, P. Banerjee, and D. H. Natawidjaja, “Afterslip following the 2007 Mw 8.4 Bengkulu earthquake in Sumatra loaded the 2010 Mw 7.8 Mentawai tsunami earthquake rupture zone” J. Geophys. Res. Solid Earth, 121, 9034–9049, 2016. doi:10.1002/2016JB013432.

L. Feng, S. Barbot, E. M. Hill, I. Hermawan, P. Banerjee, and D. H. Natawidjaja “Footprints of past earthquakes revealed in the afterslip of the 2010 Mw 7.8 Mentawai tsunami earthquake”, Geophys. Res. Lett., 43, 9518-9526, 2016.

R. Salman, E. M. Hill, L. Feng, E. O. Lindsey, D. Mele Veedu, S. Barbot, P. Banerjee, I. Hermawan, D.H. Natawidjaja “Piecemeal rupture of the Mentawai patch, Sumatra: The 2008 Mw 7.2 North Pagai earthquake sequence” J. Geophys. Res. Solid Earth, 122, 9404–9419, 2017.

D.H. Natawijaya, “Studi Periode Ulang Gempa berdasarkan Pertumbuhan Mikroatol di Mentawai. Simposium Internasional Gempa dan Tsunami,” Padang, 2005.

B. Philibosian, K. Sieh, J. Avouac, D.H. Natawidjaja, H. Chiang, C. Wu, C. Shen, M.R. Daryono, H. Perfettini, B.W. Suwargadi, et.al., “Earthquake supercycles on the Mentawai segment of the Sunda megathrust in the seventeenth century and earlier,” J. Geophys. Res. Solid Earth, 2012 122, 642–676, 2017.

Pusat Studi Gempa Nasional (PuSGen), “Peta Sumber dan Bahaya Gempa Tahun 2017. 1st ed.; Pusat Penelitian dan Pengembangan Perumahan dan Pemukiman,” Badan Penelitian dan Pengembangan: Kementerian Pekerjaan Umum dan Perumahan Rakyat, Indonesia, pp. 182, 189, 2017.

S.C. Singh, N.D. Hananto, A.P.S. Chauhan, H. Permana, M. Denolle, A. Hendriyana, D. Natawidjaja, “Evidence of acrive backthrusting at the NE Margin of Mentawai Islands, SW Sumatra,” Geophys. J. Int, 180,703-714, 2010.

J.C. Borrero, “Tsunami inundation modeling for western Sumatra.” PNAS, vol. 103 no. 52. 19677, 2006.

J. McCloskey, A. Antonioli, A. Piatanesi, “Tsunami Threat in the Indian Ocean from a Future Megathrust Earthquake West of Sumatra,” EPSL, 265(1):61-81, 2008.

A. Muhari, F. Imamura, D.H. Natawidjaja, S. Diposaptono, H. Latief, J. Post, and F.A. Ismail, “Tsunami Mitigation Efforts With pTA In West Sumatra Province, Indonesia,” J. of Earthquake and Tsunami, Vol. 04, No. 04, pp. 341-368, 2010.

A. Prasetyo, T. Yasuda, T. Miyashita, N. Mori. “Physical Modeling and Numerical Analysis of Tsunami Inundation in a Coastal City” Front. Built Environ. 5:46, 2019.

V. Titov, F. Gonzalez, “Implementation and Testing of the Method of Splitting Tsunami (MOST) (National Oceanic and Atmospheric Administration, Washington, DC) 1997,” Technical Memorandum ERL PMEL-112, Seattle, WA: Pacific Marine Environmental Laboratory, November, 1997, pp. 1–11.

P.S. Rasch, N.H. Pedersen, T. Sato, “Modelling of the Asian Tsunami off the coast of Northern Sumatra”, DHI, pp. 1–13, 2017.

L. Li, Z. Huang, Q. Qiu, D.H., Natawidjaja, K. Sieh, “Tsunami-Induced Coastal Change: Scenario Studies for Painan, West Sumatra, Indonesia’” J. of Earth, Planets Sp, Vol. 64, pp. 799-816, 2012.

G.W. Brunner, HEC-RAS, “River Analysis System Hydraulic Reference Manual, version 5.0, U.S. Army Corps of Engineers, Institute for Water Resources,” Hydrologic Engineering Center, 2016, pp. 2-53 – 3-60.

M.B. Adityawan, H. Tanaka, “Bed stress assessment under solitary wave run-up,” Earth Planet Sp, 64, 12, 2012.

B.P. Yakti, M.B. Adityawan, M. Farid, Y. Suryadi, J. Nugroho, I.K. Hadihardaja, “2D Modeling of Flood Propagation due to Failure of Way Ela Natural Dam,” in The Third International Conference on Sustainable Infrastructure and Built Environment (SIBE 2017), Indonesia. Matec Web Conf. 2018, 147 03009.

G.W. Brunner, A. Sanchez, T. Molls, D.A. Parr, “HEC-RAS Verification and Validation Tests, U.S. Army Corps of Engineers, Institute for Water Resources,” Hydrologic Engineering Center, 2016, pp. 52 – 55.

J.D. Bricker, S. Gibson, H. Takagi, F. Imamura, “On the need for larger Manning's roughness coefficients in depth-integrated tsunami inundation models”, Coastal Engineering Journal 57 (02), 1550005, 2015.

G. Kaiser, L. Scheele, A. Kortenhaus, F. Løvholt, H. R ̈omer, S. Leschka, “The influence of land cover roughness on the results of high resolution tsunami inundation modeling,” Nat. Hazard and Earth Syst. Sci., 2011.

M. Cramman, R. Coombs, “Fixed and Variable Roughness Regimes for Rapid Inundation Modelling”, Smart Dams and Reservoirs, 543-551, 2018.

R. Akoh, T. Ishikawa, T. Kojima, M. Tomaru, S. Maeno, “High-resolution modeling of tsunami run-up flooding: a case study of flooding in Kamaishi city, Japan, induced by the 2011 Tohoku tsunami”, Nat. Hazards Earth Syst. Sci., 17, 1871–1883, https://doi.org/10.5194/nhess-17-1871-2017, 2017.

J. D. Jakeman, O. M. Nielsen, K. van Putten, R. Mleczko, D. Burbidge, N. Horspool, “Towards spatially distributed quan-titative assessment of tsunami inundation models,” Ocean Dynam, 60(5), 1115–1138, 2010.

M.B. Adityawan, M. Roh, H. Tanaka, A. Mano, K. Udo, “Investigation of tsunami propagation characteristics in river and on land induced by the Great East Japan Earthquake 2011,” J. of Earthq. and Tsunami, 2012.

Y.I. Sihombing, M.B. Adityawan, A. Chrysanti, Widyaningtias, M. Farid, J. Nugroho, A.A. Kuntoro, M.A. Kusuma, “Tsunami Overland Flow Characteristic and Its Effect on Palu Bay Due to the Palu Tsunami 2018” J.of Earthq. Tsunami, 14 1-20, 2019.

M.H. Dao, P. Tkalich, “Tsunami propagation modelling – a sensitivity study,” Nat. Hazard and Earth Syst. Sci, 2007.

B. Adriano, S. Hayashi, H. Gokon, E. Mas, S. Koshimura, “Understanding the Extreme Tsunami Inundation in Onagawa Town by the 2011 Tohoku Earthquake, Its Effects in Urban Structures and Coastal Facilities”, Coastal Engineering Journal, 58:4, 1640013-1-1640013-19, DOI: 10.1142/S0578563416400131, 2016.

H. Yanagisawa, S. Koshimura, T. Miyagi, F. Imamura, “Tsunami damage-reduction performance of a mangrove forest in Banda Aceh, Indonesia inferred from field data and a numerical model”, J. Geophys. Res., Vol. 115, C06032, 2010.

D. Tognin, P. Peruzzo, F. De Serio, M. B. Meftah, L. Carniello, A. Defina, M. Mossa, “Experimental Setup and Measuring System to Study Solitary Wave Interaction with Rigid Emergent Vegetation”, Sensors, 10.3390/s19081787, 19, 8, (1787), 2019.

G. A. Pasha, N. Tanaka, “Critical Resistance Affecting Sub- to Super-Critical Transition Flow by Vegetation”, J.of Earthq. Tsunami, 10.1142/S1793431119500040, (1950004), 2019.

H. Torita, N. Tanaka, K. Masaka, K. Iwasaki, “Effects of forest management on resistance against tsunamis in coastal forests”, Ocean Engineering, 10.1016/j.oceaneng.2018.09.013, 169, (379-387), 2018.

K. Forbes and J. Broadhead, “The role of coastal forests in the mitigation of tsunami impacts,” Food and Agriculture Organization (FAO) of the United Nations Regional Office for Asia and the Pacific, 2017, http://www.fao.org/forestry/14561-09bf06569b748c827dddf4003076c480c.pdf [accessed November 10, 2019].

S. Koshimura, S. Hayashi, “Tsunami flow measurement using the video recorded during the 2011 Tohoku tsunami attack.” In 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 2009, pp. 6693 – 6696.

M. Kotani, F. Imamura, N. Shuto, “Tsunami run-up simulation and damage estimation by using geographical information system,” Proc. Coastal Eng, 45, 356-360 (in Japanese), 1998.

E. M. Hill, J.C. Borrero, Z. Huang, Q. Qiu, P. Banerjee, D.H. Natawidjaja, P. Elosegui, H.M. Fritz, B.W. Suwargadi, I.R. Pranantyo, et.al., “The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near-field GPS data,” J. Geophys. Res., 117, B06402, 2012.

Google earth V (February 13, 2019). Painan, West Sumatra. 47 S 676,829.18 m E and 984,9202.47 m S, Eye alt 5.56 km. CNES/Airbus, Maxar Technologies, AfriGIS (Pty) Ltd. http://www.earth.google.com [Accessed: 27 July 2020].

H. Tanaka, K. Kayane, M. B. Adityawan, M. Roh, M. Farid, “Study on the relation of river morphology and tsunami propagation in rivers,” Ocean Dyn, 64(9), 1319–1332, 2014.

Y. Aoyama, M.B. Adityawan, W. Widiyanto, Y. Mitobe, D. Komori, H. Tanaka, “Numerical Study on Tsunami Propagation into a River,” J. of Coast. Res, 75 (sp1), 1017-1021, 2016.

Syamsidik, R.S. Oktari, K. Munadi, S. Arief, I. Z. Fajri, “Changes in coastal land use and the reasons for selecting places to live in Banda Aceh 10 years after the 2004 Indian Ocean tsunami”, Nat Hazards 88, 1503–1521, https://doi.org/10.1007/s11069-017-2930-3, 2017.

T. Otake, C. T. Chua, A. Suppasri, F. Imamura, “Justification of Possible Casualty-Reduction Countermeasures Based on Global Tsunami Hazard Assessment for Tsunami-Prone Regions over the Past 400 Years,” J. Disaster Res., Vol.15, No.4, pp. 490-502, 2020.

DOI: http://dx.doi.org/10.18517/ijaseit.11.5.14261


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development