Automated Identification Model of Ground-Glass Opacity in CT-Scan Image by COVID-19

Jufriadif Na'am, Feriantano Sundang Pranata, Rahmat Hidayat, Arrianda Mardhika Adif, - Ellyzarti

Abstract


Ground-Glass Opacity (GGO) is an object found in the thorax due to infection. This object interferes with the normal function of the thorax in breathing. The characteristic of GGO has slightly lighter turbidity compared to normal thorax tissue on radiological images, so it is very difficult to identify it precisely. This study aims to identify the GGO pattern and find the exact area of the CT-scan image of COVID-19 sufferers. The data tested were 34 images from 34 different patients. The image was taken using CT-Scan equipment with the tube model 46274891G1 axially. Each patient is taken one image with the reading position right above the chest using the file format Joint Photographic Experts Group (jpg). An automatic image processing model developed in this study uses several interrelated and continuous technical steps; Image Enhancement, Convert to Binary Image, Morphology Operation, Image Inverted, Active Contour Model, Image Addition, Convert Matrix to Grayscale, Image Filtering, Convert to Binary Image, Image Subtraction and Region Properties. The results of this study can identify GGO in all patient test images, where each patient has GGO. The smallest area of GGO was 3.9%, and the highest was 34.2% of the total thorax area. This level of comparison is greatly influenced by the severity of the COVID-19 virus patient. This area of GGO weakens the normal function of the thorax in the respiratory process of the patient. Thus, this research can be used as a model recommendation in identifying thorax damage due to COVID-19 very well in following up on more intensive treatment in the future.

Keywords


COVID-19; Ground-Glass Opacity (GGO); CT-scan; thorax; automated identification.

Full Text:

PDF

References


L. Chang, Y. Yan, and L. Wang, “Coronavirus Disease 2019: Coronaviruses and Blood Safety,” Transfusion Medicine Reviews, vol. 34, no. 2, pp. 75-80, 2020. DOI: 10.1016/j.tmrv.2020.02.003.

T. Singhal, “A Review of Coronavirus Disease-2019 (COVID-19),” The Indian Journal of Pediatrics, vol. 87, pp. 281–286, 2020. DOI: 10.1007/s12098-020-03263-6.

C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, and P.-R. Hsueh, “Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and corona virus disease-2019 (COVID-19): the epidemic and the challenges,” International Journal of Antimicrobial Agents, vol. 55, no. 3, 2020. DOI: 10.1016/j.ijantimicag.2020.105924.

F. A. Rabi, M. S. Al Zoubi, G. A. Kasasbeh, D. M. Salameh, and A. D. Al-Nasser, “SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far,” Pathogens, vol.9, 2020. DOI: 10.3390/pathogens9030231.

Y. Han, and H. Yang, “The transmission and diagnosis of 2019 novel coronavirus infection disease (COVID‐19): A Chinese perspective,” Journal of Medical Virology, vol. 92, no. 6, pp. 639-644, 2020. DOI: 10.1002/jmv.25749.

D. Wang, B. Hu, C. Hu, et al., “Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China,” Journal of the American Medical Association, vol. 323, no. 11, pp. 1061–1069, 2020. DOI: 10.1001/jama.2020.1585.

S. Srivatsan, P. D. Han, K. van Raay, C. R. Wolf, et al., “Preliminary support for a dry swab, extraction free protocol for SARS-CoV-2 testing via RT-qPCR,” bioRxiv, 2020. DOI: 10.1101/2020.04.22.056283.

S. Ahuja, B. K. Panigrahi, N. Dey, V. Rajinikanth, and T. K. Gandhi, “Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices,” Applied Intelligence, 2020. DOI: 10.1007/s10489-020-01826-w.

M. Chung, A. Bernheim, X. Mei, N. Zhang, M. Huang, X. Zeng, J. Cui, W. Xu, Y. Yang, Z. A. Fayad, A. Jacobi, K. Li, S. Li, and H. Shan, “CT Imaging Features of 2019 Novel Coronavirus (2019-nCoV),” Radiology, vol. 295, no. 1, pp. 202-207, 2020. DOI: 10.1148/radiol.2020200230.

A. M. Sirisha and P. Venkateswararao, “Image Processing Techniques on Radiological Images of Human Lungs Effected by COVID-19,” JOIV : International Journal on Informatics Visualization, vol. 4, no. 2, pp. 69, 2020. DOI: 10.30630/joiv.4.2.359.

W. Guan, Z. Ni, Y. Hu, W. Liang, et al., ”Clinical Characteristics of Coronavirus Disease 2019 in China,” The New England Journal of Medicine, vol. 382, pp. 1708-1720, 2020. DOI: 10.1056/NEJMoa2002032.

W. Herring. “Learning radiology : recognizing the basics,” 4th ed., Philadelphia: Elsevier. pp. 2–4, 2020.

S. Salehi, A. Abedi, S. Balakrishnan, and A. Gholamrezanezhad, “Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients,” American Journal of Roentgenology, vol. 215, no. 1, pp. 87-93, 2020. DOI: 10.2214/AJR.20.23034.

S. Zhou, Y. Wang, T. Zhu, and L. Xia, “CT Features of Coronavirus Disease 2019 (COVID-19) Pneumonia in 62 Patients in Wuhan, China,” American Journal of Roentgenology, vol. 214, no. 6, pp. 1287-1294, 2020. DOI: 10.2214/AJR.20.22975.

W. Zhao, Z. Zhong, X. Xie, Q. Yu, and J. Liu, “Relation Between Chest CT Findings and Clinical Conditions of Coronavirus Disease (COVID-19) Pneumonia: A Multicenter Study,” American Journal of Roentgenology, vol. 214, no. 5, pp. 1072-1077, 2020. DOI: 10.2214/AJR.20.22976.

V. Rajinikanth, N, Dey, A. N. J. Raj, A. E. Hassanien, K. C. Santosh, and N. S. M. Raja, “Harmony-Search and Otsu based System for Coronavirus Disease (COVID-19) Detection using Lung CT Scan Images,” arXiv, 2020. arXiv: 2004.03431.

D. P. Fan, T. Zhou, G. P. Ji, Y. Zhou, G. Chen, H. Fu, J. Shen, and L. Shao, “Inf-Net: Automatic COVID-19 Lung Infection Segmentation from CT Images,” arXiv, 2020. arXiv: 2004.14133.

D. Das, K. C. Santosh, and U. Pal, “Truncated inception net: COVID‑19 outbreak screening using chest X-rays,” Physical and Engineering Sciences in Medicine, vol. 43, pp. 915–925, 2020. DOI: 10.1007/s13246-020-00888-x.

T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. R. Acharya, “Automated detection of COVID-19 cases using deep neural networks with X-ray images,” Computers in Biology and Medicine, vol. 121, 2020. DOI: 10.1016/j.compbiomed.2020.103792.

S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. J. Soufi, “Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning,” Medical Image Analysis, vol. 65, 2020. DOI: 10.1016/j.media.2020.101794.

I. D. Apostolopoulos, and T. A. Mpesiana, “Covid‑19: automatic detection from X-ray images utilizing transfer learning,” Physical and Engineering Sciences in Medicine, vol. 43, pp. 635-640, 2020. DOI: 10.1007/s13246-020-00865-4.

A. Narin, C. Kaya, and Z. Pamuk, “Automatic Detection of Coronavirus Disease (COVID-19) Using X-ray Images and Deep Convolutional Neural Networks,” arXiv, 2020. arXiv: 2003.10849.

G. Siracusano, A. L. Corte, M. Gaeta, G. Cicero, M. Chiappini, and G. Finocchio, “Pipeline for Advanced Contrast Enhancement (PACE) of chest X-ray in evaluating COVID-19 patients by combining bidimensional empirical mode decomposition and CLAHE,” Sustainability, vol. 12, 2020. DOI: 10.3390/su12208573.

M. Loey, G. Manogaran, and N. E. M. Khalifa, “A deep transfer learning model with classical data augmentation and CGAN to detect COVID-19 from chest CT radiography digital images,” Neural Computing and Applications, 2020. DOI: 10.1007/s00521-020-05437-x.

D. Singh, V. Kumar, Vaishali and M. Kaur, “Classification of COVID-19 patients from chest CT images using multi-objective differential evolution–based convolutional neural networks,” European Journal of Clinical Microbiology & Infectious Diseases, 2020. DOI: 10.1007/s10096-020-03901-z.

Y. Yunus, J. Harlan, J. Santony, R. Hidayat, and J. Naam, “Enhancement on Enlarge Image for Identification Lumbar Radiculopathy at Magnetic Resonance Imaging,” TEM Journal, vol. 9, no. 2, pp. 649-655, 2020. DOI: 10.18421/TEM92-30.

S. M. Pizer, E. P. Amburn, J. D. Austin, R. Cromartie, A. Geselowitz, et al., “Adaptive histogram equalization and its variations, Computer Vision, Graphics, and Image Processing,” Computer Vision, Graphics and Image Processing, vol. 39, pp. 355–68, 1987. DOI: 10.1016/S0734-189X(87)80186-X.

Sonali, S. Sahu, A. K. Singh, S. P. Ghrera, M. Elhoseny, “An approach for de-noising and contrast enhancement of retinal fundus image using CLAHE,” Optics & Laser Technology, vol. 110, pp. 87-98, 2019. DOI: 10.1016/j.optlastec.2018.06.061.

W. N. J. H. W. Yussof, M. S. Hitam, E. A. Awalludin, and Z. Bachok, “Performing contrast limited adaptive histogram equalization technique on combined color models for underwater image enhancement,” International Journal of Interactive Digital Media, vol. 1, no. 1, pp. 1-6, 2013.

D. J. Hemanth, O. Deperlioglu and U. Kose, “An enhanced diabetic retinopathy detection and classification approach using deep convolutional neural network,” Neural Computing and Applications, vol. 2, no. 3, pp. 707-721, 2020. DOI: 10.1007/s00521-018-03974-0.

P. Parida, and R. Rout, “Transition region based approach for skin lesion segmentation,” ELCVIA: Electronic Letters on Computer Vision and Image Analysis, vol. 19, no. 1, pp. 28-37, 2020. DOI: 10.5565/rev/elcvia.1177.

G. K. Chadha, A. Srivastava, A. Singh, R. Gupta, and D. Singla, “An Automated Method for Counting Red Blood Cells using Image Processing,” Procedia Computer Science, vol. 167, pp. 769-778, 2020. DOI: 10.1016/j.procs.2020.03.408.

E. Murali, and K. Meena, “Brain Tumor Detection from MRI using Adaptive Thresholding and Histogram based Techniques,” Scalable Computing: Practice and Experience, vol. 21, no. 1, pp. 3-10, 2020. DOI: 10.12694/scpe.v21i1.1600.

A. Ledda, “Mathematical Morphology in Image Processing,” Doctoral dissertation, PhD thesis, Ghent University, Ghent, Belgium, 2007.

R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 4, pp. 532-550, 1987. DOI: 10.1109/TPAMI.1987.4767941.

J. Serra, Image Analysis and Mathematical Morphology, London: Academic Press, 1982.

B. Li, and S. T. Acton, “Active contour external force using vector field convolution for image segmentation,” IEEE Transactions on Image Processing, vol. 16, no. 8, pp. 2096-2106, 2007. DOI: 10.1109/TIP.2007.899601.

R. Ronfard, “Region-based strategies for active contour models,” International Journal of Computer Vision, vol. 13, no. 2, pp. 229-251, 1994. DOI: 10.1007/BF01427153.

M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: Active contour models,” International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988. DOI: 10.1007/BF00133570.

R. C. Gonzalez, and R. E. Woods, Digital image processing, Upper Saddle River, New Jersey: Prentice Hall, 2002.

Y. Zhang, J. Qian, O. Zaltzhendler, et al., “Analysis of in vivo uterine peristalsis in the non-pregnant female mouse,” Interface Focus, vol. 9, no. 4, 2019. DOI: 10.1098/rsfs.2018.0082.

L. Novamizanti, A. L. Prasasti, and I. F. N. Kiranda, “Comparison of discrete cosine transform and dual-tree complex wavelet transform based on arithmetic coding in medical image compression,” In Journal of Physics: Conference Series, 2020, vol. 1367, no. 1, p. 012021. DOI: 10.1088/1742-6596/1367/1/012021.

Y. Zhu,, and C. Huang, “An improved median filtering algorithm for image noise reduction,” Physics Procedia, vol. 25, pp. 609-616, 2012. DOI: 10.1016/j.phpro.2012.03.133.

M. P. Sukassini, and T. Velmurugan, “Noise removal using morphology and median filter methods in mammogram images,” In The 3rd International Conference on Small and Medium Business, 2016, pp. 413-419.

A. A. Sheikh, M. S. Azmi, M. A. Aziz, M. N. Al-Mhiqani, and S. S. Bafjaish, “Diacritic segmentation technique for arabic handwritten using region-based,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 18, no. 1, pp. 478-484, 2020. DOI: 10.11591/ijeecs.v18.i1.pp478-484.

J. Ananthanarasimhan, P. Leelesh, M. S. Anand, and R. Lakshminarayana, “Validation of projected length of the rotating gliding arc plasma using ‘regionprops’ function,” Plasma Research Express, vol. 2, no. 3, 2020. DOI: 10.1088/2516-1067/abae49.

N. J. Shoumy, P. Ehkan, S. N. Yaakob, M. S. Ali, and S. Khatun, “Feature extraction for neural network pattern recognition for bloodstain analysis,” International Journal of Applied Engineering Research, vol. 11, no. 15, pp. 8583-8589, 2016.

F. S. Pranata, J. Naam, and R. Hidayat, “Color Feature Segmentation Image for Identification of Cotton Wool Spots on Diabetic Retinopathy Fundus,” International Journal on Advanced Science, Engineering and Information Technology, vol. 10, no. 3, pp. 974-979, 2020. DOI: 10.18517/ijaseit.10.3.11877.




DOI: http://dx.doi.org/10.18517/ijaseit.11.2.14143

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development