Polyisoprenoid Profiling of Mangrove Litters–based Zonations and Salinity Groups in North Sumatra, Indonesia

Mohammad Basyuni, Rahmah Hayati, Arif Nuryawan, Etti Sartina Siregar, Sumaiyah Sumaiyah, Tadashi Kajita

Abstract


The polyprenols and dolichols in mangrove litter–based salinity groups and zonations in Lubuk Kertang, North Sumatra, Indonesia, was performed using two-dimensional thin-layer chromatography. Eight sites with twenty-four samples consisting of 0, 2, and 3% salt concentrations and five zonations (Avicennia spp, Bruguiera spp, Nypa fruticans community, Rhizophora spp, and Sonneratia spp) were analyzed. In the zonations, two types concerning the distribution of polyprenols and dolichols were detected. Type-I, showing predominance of dolichols over polyprenols, was observed in Avicennia spp, Bruguiera spp, Nypa fruticans, and Rhizophora spp. Type-II, having both polyprenols and dolichols, was observed in Sonneratia spp. In contrast, no type-I distribution was found in the salinity group. A type-II distribution was also observed in 0, 2, and 3% salt concentrations. The diversity of polyisoprenoid composition in the mangrove litters of salinity groups was noted, whereas dolichols predominated in the zonations (80%). In Avicennia spp litter, dolichols were found to be longer than other types of community litter (Bruguiera spp, Nypa, and Rhizophora spp). These conditions can be caused by leaf litter factors that have different ages and environments. A dendrogram was constructed using the Unweighted-Pair Group Method with Arithmetic mean (UPGMA) method to confirm these findings. The dendrogram demonstrated that the zonations and salinity groups were generally clustered according to appropriate species and families. The study suggested that dominated dolichols function as chemotaxonomic markers, useful in identifying and classifying mangroves, and in phylogenetic studies.

Keywords


Chemotaxonomic marker; phylogenetic; polyprenol reductase; rehabilitation, true mangrove.

Full Text:

PDF

References


Tomlinson, P.B. "The Botany of Mangroves, first ed". Cambridge University Press. London. 2016.

D. R. Vaughn, T. S. Bianchi, M. R. Shields, W. F. Kenney, and T.Z. Osborne. "Increased organic carbon burial in northern Florida mangroveâ€salt marsh transition zones". Global Biogeochem. Cy., vol. 34 pp. 5, 2020, doi:10.1029/2019gb006334

S. Sreelekshmi, C. M. Preethy, R. Varghese, P. Joseph, C.V. Asha, S. B. Nandan, and C. K. Radhakrishnan. "Diversity, stand structure, and zonation pattern of mangroves in southwest coast of India". J. Asia Pac. Biodivers., vol. 11(4), pp. 573-582, 2018, doi:10.1016/j.japb.2018.08.001

M. Basyuni, A. Hayullah, M. Hamka, L. A. Putri, and S. Baba. "Growth of salt-secretor and non-salt secretor mangrove seedlings with varying salinity and their relations to habitat zonation". IOP Conf. Ser.: Earth Environment Sci., vol. 236, pp. 012050, 2019, doi:10.1088/1755-1315/236/1/012050

A. I. Inyang and Y. S. Wang. "Phytoplankton diversity and community responses to physicochemical variables in mangrove zones of Guangzhou Province, China". Ecotoxicology, vol. 29, pp. 650-668, 2020, doi:10.1007/s10646-020-02209-0.

T. L. Nham-Tran, A. F. Miranda, A. Gupta, M. Puri, A. S. Ball, B. Adhikari, and A. Mouradov. The nutritional and pharmacological potential of new Australian thraustochytrids isolated from mangrove sediments. Mar. Drugs, vol. 18, pp. 151, 2020, doi:10.3390/md18030151

E. Swiezewska and W. Danikiewicz. "Polyisoprenoids: Structure, biosynthesis and function". Prog. Lipid Res., vol. 44, pp. 235–258, 2005, doi:10.1016/j.plipres.2005.05.002.

M. Basyuni, M. Wasilah, P. A. Z. Hasibuan, N. Sulistiyono, Sumardi Y. Bimantara, R. Hayati, H. Sagami, and H. Oku. "Salinity and subsequent freshwater influences on the growth, biomass and polyisoprenoids distribution of Rhizophora apiculata seedlings". Biodiversitas, vol. 20, pp. 388–395, 2019, doi:10.13057/biodiv/d200146.

M. Basyuni, H. Sagami, S. Baba, H. Iwasaki, and H. Oku. "Diversity of polyisoprenoids in ten Okinawan mangroves". Dendrobiology, vol. 75, pp. 167–175, 2016. doi: 10.12657/denbio.075.016.

T. Qurrohman, M. Basyuni, and P. A. Z. Hasibuan. "Polyisoprenoids from Avicennia marina induces on P13k, Akt1, mammalian target of rapamycin, Egfr, and P53 gene expression using reverse transcription-polymerase chain reaction". Open Access Maced. J. Med. Sci., vol. 8, pp. 146-152, 2020, doi:10.3889/oamjms.2020.3328.

C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, and K. W. Eliceiri. "ImageJ2: ImageJ for the next generation of scientific image data". BMC bioinformatics, vol. 18, no. 1, pp. 1-26, 2017, doi:10.1186/s12859-017-1934-z

M. Basyuni, H. Sagami, S. Baba, and H. Oku. "Distribution, occurrence, and cluster analysis of new polyprenyl acetones and other polyisoprenoids from North Sumatran mangroves". Dendrobiology, vol. 78, pp. 18-31, 2017, doi:10.12657/denbio.078.003.

N. L. Dahibhate, D. Kumar, and K. Kumar. "Determination of bioactive polyphenols in mangrove species and their in-vitro anti-Candida activities by ultra-high-performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UPLC-ESI-MS/MS)". Anal. Lett., vol. 54 (4), pp. 608-624., 2021. doi:10.1080/00032719.2020.1774600.

S. Yamashita and S. Takahashi. "Molecular mechanisms of natural rubber biosynthesis". Ann. Rev. Biochem., vol. 89, 821-851, 2021. Yamashita, S., & Takahashi, S. (2020). Molecular Mechanisms of Natural Rubber Biosynthesis. Annual Review of Biochemistry, 89(1), doi:10.1146/annurev-biochem-013118-111107.

J. H. Medina-Calderón, J. E. Mancera-Pineda, E. Castañeda-Moya, and V. H. Rivera-Monroy. "Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia)". Front. Mar. Sci., vol. 7, 1194, 2021, doi.org/10.3389/fmars.2020.598132.

K. Van Gelder, L. K. Virta, J. Easlick, N. Prudhomme, J. A. McAlister, J. Geddes-McAlister, and T. A. A. Akhtar "Central role for polyprenol reductase in plant dolichol biosynthesis". Plant Sci., vol. 303, 110773, 2021, doi:10.1016/j.plantsci.2020.110773.

D. E. Long, A. G. Villasante Tezanos, J. N. Wise, P. A. Kern, M. M. Bamman, C. A. Peterson, and R. A. A. Dennis "Guide for using NIH Image J for single slice cross-sectional area and composition analysis of the thigh from computed tomography". PloS One, vol. 14(2), pp. e0211629, 2019, doi:10.1371/journal.pone.0211629.

H. Sagami, E. Swiezewska, and Y. Shidoji. "The history and recent advances in research of polyprenol and its derivatives". Biosci. Biotechnol. Biochem., vol. 82, pp. 947-955, 2018, doi:10.1080/09168451.2017.1411775.

J. Wang, Y. Xu, and G. Wu. "The integration of species information and soil properties for hyperspectral estimation of leaf biochemical parameters in mangrove forest". Ecol. Indic., vol. 115, pp. 106467, 2020, doi:10.1016/j.ecolind.2020.106467.

M. F. Adame, R. Reef, N. S. Santini, E. Najera, M. P. Turschwell, M. A. Hayes, and C. E. Lovelock. "Mangroves in arid regions: Ecology, threats, and opportunities". Estuar. Coast. Shelf Sci.,vol. 248, pp. 106796, 2021, doi:10.1016/j.ecss.2020.106796 .




DOI: http://dx.doi.org/10.18517/ijaseit.11.5.13941

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development