Preparation and Characterization of Type 3 Resistant Starch from Cilacap Breadfruit (Artocarpus altilis (Parkinson) Fosberg) Starch

Nunuk Siti Rahayu, Danar Praseptiangga, Bambang Haryanto, - Samanhudi


The Cilacap breadfruit grown in Indonesia, possesses superior properties, although the application as a carbohydrate source is not very popular compared to other resources, including banana, corn, and cassava. Furthermore, they contain relatively high fiber content, hence the possibility of further development into beneficial resistant starch. This study aims to investigate the Cilacap breadfruit starch, and the type 3 resistant starch (RS3) produced at high temperatures, using a 3 cycle Autoclaving-Cooling method with strong acid hydrolysis. The autoclave was set at 100°C, 121°C, and 140°C, respectively, while the storage temperature was 4°C for 24 h and 48 h, followed by hydrolysis with 0.1 M HCl at 40°C for 24 h, and then neutralization using 1 M NaOH, at 4°C for 24 h. Therefore, both samples were evaluated based on chemical, functional, and physical characteristics. The results showed chemical changes in the Cilacap breadfruit starch converted to the resistant starch under similar autoclave treatment (100, 121, and 140°C). However, the extended cold storage (48 h) prompted a significant decline (p≤0.05) in carbohydrate, and starch levels, alongside increased antioxidant activity, insoluble fiber, and total dietary fiber content, compared to samples stored for 24-h. Furthermore, autoclaving at 140°C and cooling at 4°C for 48 h yielded products with the highest antioxidant activity (9.11%). Also, higher temperatures (121°C and 140°C), and subsequent storage at 4°C for 24, and 48 h causes an increase in the WAI and OHC values of native starch and modified the structure of the granule. The native starch has a type B crystal pattern.


Cilacap breadfruit starch; RS3; autoclaving-cooling; acid hydrolysis; chemical; functional and physical properties.

Full Text:



J.A.V. Famurewa, Y.O. Esan, G. I. Pele, and O. Arewa, “Effect of maturity and drying methods on rheological and Physico-chemical properties of reconstituted breadfruit (Artocarpus altilis) flour,” IOSR Journal of Engineering, vol. 5, no. 2, pp. 1–9, 2015.

J.A.V. Famurewa, G.I. Pele, Y.O. Esan, and B.P. Jeremiah, “Influence of maturity and drying methods on the chemical, functional and antioxidant properties of breadfruit (Artocarpus altilis),” British Biotechnology Journal, vol. 16, no.1, pp. 1–9, 2016.

Deivanai S., and S.J. Bhore, “Breadfruit (Artocarpus altilis Fosb.) - an underutilized and neglected fruit plant species,” Middle-East Journal of Scientific Research, vol. 6, no. 5, pp. 418–428, 2010.

D. Ragone, “Species profile for Pacific Island agroforestry. Artocarpus altilis (breadfruit),” ver.2.1, pp. 1–16, 2006.

A. Kusmana, A. Budiman, and A. Hidayat, (2017) “Perkembangan Produksi dan Konsumsi Pangan di Indonesia [Development production and food consumption in Indonesia],” [Online]. Available

D. Praseptiangga, A.A. Tryas, D.R. Affandi, W. Atmaka, A.R. Ariyantoro, and S. Minardi, “Physical and chemical characterization of composite flour from canna flour (Canna edulis) and lima bean flour (Phaseolus lunatus),” in Proc. AIP Conference, 2018, vol. 1927, paper 1927, 030020, pp. 030020-1-30020–6.

R.F. Utami, D. Praseptiangga, D.R. Affandi, and W. Atmaka, “Formulation and physicochemical characterization of composite flour from yam (Dioscorea alata) and lima beans (Phaseolus lunatus),” in Proc. AIP Conference, 2018, paper 1927, 030019, pp. 030019-1-030019-6.

Y.M. Lubis, S. Kumalaningsih, and T. Susanto, “Tepung Komposit Berbasis Tepung Sukun (Artocarpus altilis) Hasil Modifikasi Alkali untuk Pembuatan Biskuit,” Jurnal Teknologi Pertanian, vol. 7, no. 3, pp. 173–183, 2006.

A.B. Adepeju, O.A. Abiodun, O.L. Otutu, and I.G. Pele, “Development and quality evaluation of wheat/breadfruit cookies,” International Journal of Technical Research and Applications, vol. 3, no. 6, pp. 7–11, 2015.

S. Widowati, “Prospek Sukun (Artocarpus communis) sebagai Pangan Sumber Karbohidrat dalam Mendukung Diversifikasi Konsumsi Pangan,” PANGAN, vol. XVIII, no. 56, pp. 67–75, 2009.

L.M. Nwokocha, and P.A. Williams, “Comparative study of physicochemical properties of breadfruit (Artocarpus altilis) and white yam starches,” Carbohydrate Polymers, vol. 85, pp. 294–302, 2011.

A. Slamet, D. Praseptiangga, R. Hartanto, and Samanhudi, “Process optimization for producing pumpkin (Cucurbita moschata D) and arrowroot (Marantha arundinaceae L) starch-based instant porridge,” in: Proc. IOP Conference Series: Material Science and Enginering. 2019, paper 633 012016, pp. 1–6.

T.A.A. Nasrin, and A.K. Anal, “Resistant starch III from culled banana and its functional properties in fish oil emulsion,” Food Hydrocolloids, vol. 35, pp. 403–409, 2014.

G.O. Olatunde, L.K. Arogundade, and O.I. Orija, “Chemical, functional and pasting properties of banana and plantain starches modified by pre-gelatinization, oxidation and acetylation,” Cogent Food & Agriculture, vol. 3, pp. 1–12, 2017.

K.O. Adebowale, B.I. Olu-Owolabi, E. kehinde Olawumi, and O.S. Lawal, “Functional properties of native, physically and chemically modified breadfruit (Artocarpus artilis) starch,” Industrial Crops and Products, vol. 21, pp. 343–351, 2005.

N.S. Rahayu, D. Praseptiangga, Samanhudi, and B. Haryanto, “Yield and color changes of starch from Cilacap breadfruit for producing breadfruit’s resistant starch type 3," in Proc. AIP Conference, 2020, paper 2219, 070008, pp. 070008-1-070008-6.

N.S. Rahayu, D. Praseptiangga, B. Haryanto, and Samanhudi, “Fruit identification and effect of starch isolation methods on color attributes of Cilacap breadfruit’s starch,” in: Proc. IOP Conference Series: Material Science and Enginering, 2019, paper 633 012037, pp. 1–6.

A. Slamet, D. Praseptiangga, R. Hartanto, and Samanhudi, “Physicochemical and sensory properties of pumpkin (Cucurbita moschata D) and arrowroot (Marantha arundinaceae L) starch-based instant porridge,” International Journal on Advanced Science Enginering Information Technology, vol. 9, no. 2, pp. 412-421, 2019.

A.N. Dundar, and D. Gocmen, “Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties,” Carbohydrate Polymers, vol. 97, pp. 764–771, 2013.

H. Englyst, H.S. Wiggins, and J.H. Cummings, “Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates,” Analyst, vol. 107, pp. 307–318, 1982.

S.G. Haralampu, “Resistant starch—A review of the physical properties and biological impact of RS 3,” Carbohydrate Polymers, vol. 41, pp. 285–292, 2000

R.H.B. Setiarto, B.S.L. Jenie, D.N. Faridah, and I. Saskiawan, “Kajian Peningkatan Pati Resisten yang Terkandung dalam Bahan Pangan Sebagai Sumber Prebiotik [Study of development resistant starch contained in food ingredients as prebiotic source],” Jurnal Ilmu Pertanian Indonesia, vol. 20, no. 3, pp. 191–200, 2015.

M.A. Patterson, M. Maiya, and M.L. Stewart, “Resistant starch content in foods commonly consumed in the United States: A narrative review,” Journal of the Academy of Nutrition and Dietetics, vol. 120, no. 2, pp. 230–244, 2020.

R.S.A. Rashid, A.M. Dos Mohamed, S.N. Achudan, and P. Mittis, “Physicochemical properties of resistant starch type III from sago starch at different palm stages,” in: Material Today Proc. vol. xxx, pp. 1–5, 2020.

E. Fuentes-Zaragoza, E. Sánchez-Zapata, E. Sendra, E. Sayas, C. Navarro, J. Fernández-Lõpez, and J.A. Pérez-Alvarez, “Resistant starch as prebiotic: A review,” Starch/Staerke, vol. 63, pp. 406–415, 2011.

T. Zi-Ni, A. Rosma, A. Karim, and M. Liong, “Functional properties of resistant starch type-III from metroxylon sagu as affected by processing conditions,” Pertanika Journal Tropical Agricultural Science, vol. 38, no. 3, pp. 399–412, 2015.

X. Zhou, and S.T. Lim, “Pasting viscosity and in vitro digestibility of retrograded waxy and normal corn starch powders,” Carbohydrate Polymers, vol. 87, pp. 235–239, 2012.

Y. Ai, J. Hasjim, and J. Jane, “Effects of lipids on enzymatic hydrolysis and physical properties of starch,” Carbohydrate Polymers, vol. 92, pp. 120–127, 2013.

S. Lockyer, and A.P. Nugent, “Health effects of resistant starch,” Nutrition Bulletin, vol. 42, pp. 10–41, 2017.

L. Haynes, J. Zimeri, and V. Arora, “Biscuit baking and extruded snack applications of type III resistant starch” in Resistant starch : Application and health benefits. 1st ed., Y. Shi, and C.C. Maningat, Ed., IFT Press, Willey Blackwell, 2013.

F. Kusnandar, H.P. Hastuti, and E. Syamsir, “Pati Resisten Sagu Hasil Proses Hidrolisis Asam dan Autoclaving-Cooling [Resistant starch of sago from acid hydrolyzis and autoclaving-cooling processes],” Jurnal Teknologi Dan Industri Pangan, vol. 26, no. 1, pp. 52–62, 2015.

S. Ozturk, H. Koksel, and P.K.W. Ng, “Production of resistant starch from acid-modified amylotype starches with enhanced functional properties,” Journal of Food Enginering, vol. 103, pp. 156–164, 2011.

I.G.P.A. Palguna, Sugiyono; and B. Haryanto, “Optimasi Rasio Pati Terhadap Air dan Suhu Gelatinisasi untuk Pembentukan Pati Resisten Tipe III Pada Pati Sagu [Ratio optimization of starch to water and gelatinization temperature to produce resistant starch type III of sago starch (Metroxylon sagu)],” PANGAN, vol. 22, no. 3, pp. 253–261, 2013.

D.N. Faridah, W.P. Rahayu, and M.S. Apriyadi, “Modifikasi Pati Garut (Marantha arundinacea L.) dengan Perlakuan Hidrolisis Asam dan Siklus Pemanasan-Pendinginan untuk Menghasilkan Pati Resisten Tipe 3 [Modification of arrowroot (Marantha arundinacea L.) starch through acid hydrolisis and autoclaving-cooling cycling treatment to produce resistant starch type 3],” Jurnal Teknologi Industri Pertanian, vol. 23, no. 1, pp. 61–69, 2013.

Sugiyono, R. Pratiwi, and D.N. Faridah, “Modifikasi Pati Garut (Marantha arundinacea) dengan Perlakuan Siklus Pemanasan Suhu Tinggi-Pendinginan (autoclaving-cooling cycling) untuk Menghasilkan Pati Resisten Tipe III [Arrowroot (Marantha arundinacea) starch modification through autoclaving-cooling cycling treatment to produce resistant starch type III]” Jurnal Teknologi Dan Industri Pangan, vol. XX, no. 1, pp. 17–24, 2009.

P. Lertwanawatana, R.A. Frazier, and K. Niranjan, “High pressure intensification of cassava resistant starch (RS3) yields,” Food Chemistry, vol.181, pp. 85–93, 2015.

J. Pongjanta, A. Utaipattanaceep, O. Naivikul, and K. Piyachomkwan, “Debranching enzyme concentration effected on physicochemical properties and α-amylase hydrolysis rate of resistant starch type III from amylose rice starch,” Carbohydrate Polymers, vol. 78, pp. 5–9, 2009.

X. Li, W. Chen, Q. Chang, Y. Zhang, B. Zheng, and H. Zeng, “Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch : A comparative study,” International Journal of Biological Macromolecules. vol. 144, pp. 67–75, 2020.

C.K. Reddy, M. Suriya, and S. Haripriya, “Physico-chemical and functional properties of resistant starch prepared from red kidney beans (Phaseolus vulgaris L) starch by enzymatic method,” Carbohydrate Polymers, vol. 95, pp. 220–226, 2013.

N. Ratnaningsih, Suparmo, E. Harmayani, and Y. Marsono, “Physicochemical properties, in vitro starch digestibility, and estimated glycemic index of resistant starch from cowpea (Vigna unguiculata) starch by autoclaving-cooling cycles,” International Journal of Biological Macromolecules, vol. 142, pp. 191–200, 2020.

AOAC. Official methods of analysis of AOAC international. 18th ed., Washington: Association of Official Analytical Chemist. 2007.

I. Goñi, L. García-Diz, E. Mañas, and F. Saura-Calixto, “Analysis of resistant starch: a method for foods and food products,” Food Chemistry, vol. 56, no. 4, pp. 445–449, 1996.

B.A. Ashwar, A. Gani, I.A. Wani, A. Shah, F.A. Masoodi, and D.C. Saxena, “Production of resistant starch from rice by dual autoclaving- retrogradation treatment : invitro digestibility, thermal and structural characterization,” Food Hydrocolloid, vol. 56, pp. 108–117, 2016.

N.G. Asp, C.G. Johansson, H. Hallmer, and M. Siljestróm, “Rapid enzymatic assay of insoluble and soluble dietary fiber," Journal of Agricultural Food Chemistry, vol. 31, no. 3, pp. 476–482, 1983.

C.F. Chau, P.C.K. Cheung, and Y.S. Wong, “Functional properties of protein concentrates from three Chinese indigenous legume seeds,” Journal of Agricultural Food Chemistry, vol. 45, no.7, pp. 2500–2503, 1997.

T.O. Akanbi, S.Nazamid, and A.A. Adebowale, “Functional and pasting properties of a tropical breadfruit (Artocarpus altilis) starch from Ile-Ife, Osun State, Nigeria,” International Food Research Journal, vol. 16, pp. 151–157, 2009.

X. Tan, X. Li, L. Chen, F. Xie, L. Li, and J. Huang, “Effect of heat-moisture treatment on multi-scale structures and physicochemical properties of breadfruit starch,“ Carbohydrate Polymers, vol. 161, pp. 1–38, 2017.

S. Masita, M. Wijaya, and R. Fadilah, “Karakteristik Sifat Fisiko-Kimia Tepung Sukun (Artocarpus altilis) dengan Varietas Toddo’puli [Characteristics of physicochemical properties of breadfruit flour (Artocarpus altilis) with toddo’puli varieties],” Jurnal Pendidikan Teknologi Pertanian, Vol. 3, pp. 234–241, 2017.

C.S. Budiyati, A.C. Kumoro, R. Ratnawati, and D.S. Retnowati, “Modifikasi Pati Sukun (Artocarpus Altilis) dengan Teknik Oksidasi Menggunakan Hidrogen Peroksida Tanpa Katalis,” Teknik, vol. 37, no. 1, pp. 32–40, 2016.

M.S. Sikarwar, B.J. Hui, K. Subramaniam, B.D. Valeisamy, L.K. Yean, and K. Balaji, “A review on Artocarpus altilis (Parkinson) Fosberg (breadfruit),” Journal of Applied Pharmaceutical Science, vol. 4, no. 8, pp. 91–97, 2014.

Standar Nasional Indonesia, Badan Standarisasi Nasional. SNI 3751: ICS 67.060, “Tepung terigu sebagai bahan makanan,” 2009

Standar Nasional Indonesia, Badan Standarisasi Nasional. SNI 3451: ICS 67.180.20, “Tapioka,” 2011.

A. Escarpa, M.C. González, M.D. Morales, and F. Saura-Calixto, “An approach to the influence of nutrients and other food constituents on resistant starch formation,” Food Chemistry, vol. 60, no. 4, pp. 527–532, 1997.

E. Fuentes-Zaragoza, M.J. Riquelme-Navarrete, E. Sánchez-Zapata, and J.A. Pérez-Álvarez, “Resistant starch as functional ingredient: A review,” Food Research International, vol. 43, pp. 931–942, 2010.

C. Mutungi, F. Rost, C. Onyango, D. Jaros, and H. Rohm, “Crystallinity, thermal and morphological characteristics of resistant starch type III produced by hydrothermal treatment of debranched cassava starch,” Starch/Staerke, vol. 61, pp. 634–645, 2009.

L.V. Sari, A.R. Yanti Eff, and E.P. Boedijono, “Karakteristik Amilum Buah Sukun (Artocarpus altilis) dan Uji Aktivitas Antioksidan Secara In-Vitro,” UEU Jurnal, pp. 1–8, 2017.

A.W. Soehendro, G.J. Manuhara, and E. Nurhartadi, “Pengaruh Suhu Terhadap Aktivitas Antioksidan dan Antimikrobia Ekstraksi Biji Melinjo (Gnetum gnemon L.) dengan Pelarut Etanol dan Air [Effects of Temperatures on Antioxidant and Antimicrobia Activity of Melinjo Seed (Gnetum gnemon L.) with Ethanol and Water as Solvent],” Jurnal Teknosains Pangan, vol. IV, no. 4, pp. 15–24, 2015.

D. Praseptiangga, S.E. Invicta, and L.U. Khasanah, “Sensory and physicochemical characteristics of dark chocolate bar with addition of cinnamon (Cinnamomum burmannii) bark oleoresin microcapsule,” Journal of Food Science and Technology, vol. 56, no.9, pp. 4323–4332, 2019.

Y. Aisyah, Rasdiansyah, and Muhaimin, “Pengaruh Pemanasan Terhadap Aktivitas Antioksidan Pada Beberapa Jenis Sayuran,” Jurnal Teknologi Dan Industri Pertanian Indonesia, vol. 6, no. 2, pp. 28–32, 2014.

Karseno, Erminawati, Tri Yanto, R. Setyawati, and P. Haryanti, "Effect of pH and temperature on browning intensity of coconut sugar and its antioxidant activity,” Food Reserach, vol. 2, pp. 1–6, 2017.

B. Kunarto, S. Sutardi, Supriyanto, and C. Anwar, “Antioxidant activity of melinjo ketan (Gnetum gnemon L ., 'Ketan') seed extract at various ripening stages and ethanol solvent concentration,” International Journal on Advanced Science Engineering Information Technology, vol. 9, no. 4, pp. 1344–1351, 2019.

A.B. Adepeju, S.O. Gbadamosi, A.H. Adeniran, and T.O. Omobuwajo, “Functional and pasting characteristics of breadfruit (Artocarpus altilis) flours,” African Journal of Food Science, vol. 5, no. 9, pp, 529–535, 2011.

B.S.L. Jenie, S. Widowati, and S. Nurjanah, “Pengembangan Produk Tepung Pisang dengan Indeks Glikemik Rendah dan Sifat Prebiotik sebagai Bahan Pangan Fungsional,” Laporan akhir hibah kompetisi penelitian sesuai prioritas nasional. Lembaga penelitian dan pengabdian pada masyarakat Insitut Pertanian Bogor, Bogor, Indonesia. 2009.

X. Shu, L. Jia, J. Gao, Y. Song, H. Zhao, Y. Nakamura, and D. Wu, “The influences of chain length of amylopectin on resistant starch in rice (Oryza sativa L.),” Starch/Staerke, vol. 59, pp, 504–509, 2007.

A. Perera, V. Meda, and R.T. Tyler, “Resistant starch : A review of analytical protocols for determining resistant starch and of factors affecting the resistant starch content of foods,” Food Research International, vol. 43, pp. 1959–1974, 2010

Q. Xue, R.K. Newman, and C.W. Newman, “Effects of heat treatment of barley starches on in vitro digestibility and glucose responses in rats,” Cereal Chemistry, vol. 73, no. 5, pp. 588–592, 1996.

C. Sarawong, R. Schoenlechner, K. Sekiguchi, E. Berghofer, and P.K.W. Ng, “Effect of extrusion cooking on the physicochemical properties, resistant starch, phenolic content and antioxidant capacities of green banana flour,” Food Chemistry, vol. 143, pp. 33–39, 2014.

O.S. Lawal, “Studies on the hydrothermal modifications of new cocoyam (Xanthosoma sagittifolium),” International Journal of Biological Macromolecules, vol. 37, pp. 268–277, 2005.

S. Naguleswaran, T. Vasanthan, R. Hoover, and D. Bressler, “Amylolysis of amylopectin and amylose isolated from wheat, triticale, corn and barley starches,” Food Hydrocolloid, vol. 35, pp. 686–693, 2014.

L. Li, T.Z. Yuan, and Y. Ai, “Development, structure and in vitro digestibility of type 3 resistant starch from acid-thinned and debranched pea and normal maize starches,” Food Chemistry, vol. 318, pp. 1–8, 2020.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development