Rapid Detection of Escherchia coli and Salmonella Typhimurium Using Lab-Made Electronic Nose Coupled with Chemometric Tools

Wredha Sandhi Ardha Prakoso, Prima Febri Astantri, Kuwat Triyana, Tri Untari, Claude Mona Airin, Pudji Astuti


This study aims to investigate the performance of a lab-made electronic nose coupled with chemometric tools for detecting Escherichia coli (E. coli) and Salmonella Typhimurium (S. Typhimurium) inoculated in media. The pathogenic E. coli and S. Typhimurium play a significant role as the agent causing food-borne diseases, posing a threat to human health worldwide. Some advanced analytical instruments like RT-PCR and GC-MS are often used for detecting such pathogenic bacteria. Unfortunately, they are not suitable for rapid and routine measurements because of time-consuming, require experts, and complicated sample preparation. Otherwise, electronic nose (e-nose) has been reported to be successful for profiling volatile compounds released by various biological materials. The e-nose comprised eight types of metal oxide gas sensors connected with a data acquisition system and chemometric tools. For this purpose, Fast Fourier Transform (FFT) was applied for signal pre-processing and feature extraction to all datasets collected by the sensor array in the e-nose. Furthermore, chemometric tools are used for classification models of all extracted features, including linear and quadratic discriminant analysis (LDA and QDA) and support vector machine (SVM). As a result, SVM showed the highest performance, enabling identifying E. coli and S. Typhimurium inoculated TSB with an accuracy of 99% and 98%, respectively. Among the chemometric tools, the e-nose-SVM also resulted in the highest accuracy in differentiating E. coli from S. Typhimurium of 84%. These results motivated e-nose to have a high prospect to rapidly detect such bacteria for food safety and quality control inspection, particularly potential quarantine products.


Electronic nose; Escherichia coli; Salmonella Typhimurium; chemometric; metabolic volatile organic compounds.

Full Text:



C. Viet, M. Nguyet, T. Nguyen, M. Hanh, T. Truong, and X. Dong, “Screening for Optimal Parameters of Nattokinase Synthesis by Bacillus subtilis natto in Solid-State Fermentation,†vol. 10, no. 3, pp. 1207–1213, 2020.

S. L. Percival and D. W. Williams, Escherichia coli, Second Edi. Elsevier, 2013.

J. A. Crump and J. Wain, Salmonella, Third Edit. Elsevier Inc., 2016.

F. Fung, H. S. Wang, and S. Menon, “Food safety in the 21st century,†Biomed. J., vol. 41, no. 2, pp. 88–95, 2018, doi: 10.1016/j.bj.2018.03.003.

M. K. Sharif, K. Javed, and A. Nasir, Foodborne Illness: Threats and Control, vol. 15. Elsevier Inc., 2018.

M. Falasconi, I. Concina, E. Gobbi, V. Sberveglieri, A. Pulvirenti, and G. Sberveglieri, “Electronic Nose for Microbiological Quality Control of Food Products,†Int. J. Electrochem., vol. 2012, pp. 1–12, 2012, doi: 10.1155/2012/715763.

J. M. Cevallos-Cevallos, M. D. Danyluk, and J. I. Reyes-De-Corcuera, “GC-MS Based Metabolomics for Rapid Simultaneous Detection of Escherichia coli O157:H7, Salmonella typhimurium, Salmonella muenchen, and Salmonella hartford in Ground Beef and Chicken,†J. Food Sci., vol. 76, no. 4, pp. 238–246, 2011, doi: 10.1111/j.1750-3841.2011.02132.x.

Y. X. Yu and Y. Zhao, “Electronic Nose Integrated with Chemometrics for Rapid Identification of Foodborne Pathogen,†Chemom. Pract. Appl., 2012, doi: 10.5772/32099.

E. Tait, J. D. Perry, S. P. Stanforth, and J. R. Dean, “Identification of Volatile Organic Compounds Produced by Bacteria Using HS-SPME-GC-MS,†J. Chromatogr. Sci., vol. 52, no. 4, pp. 363–373, 2014, doi: 10.1093/chromsci/bmt042.

A. P. F. Turner and N. Magan., “Electronic Noses and Disease Diagnostics : Nature Reviews,†Microbiol. (Nature Rev., vol. 2, no. February, pp. 1–7, 2004, doi: 10.1038/nrmicro823.

X. Tian, J. Wang, and S. Cui, “Analysis of Pork Adulteration in Minced Mutton Using Electronic Nose of Metal Oxide Sensors,†J. Food Eng., vol. 119, no. 4, pp. 744–749, 2013, doi: 10.1016/j.jfoodeng.2013.07.004.

J. Carrillo and C. Durán, “Fast identification of Bacteria for Quality Control of Drinking Water through A Static Headspace Sampler Coupled to a Sensory Perception System,†Biosensors, vol. 9, no. 1, p. 23, 2019, doi: 10.3390/bios9010023.

M. R. Cavallari et al., “A hybrid electronic nose and tongue for the detection of ketones : Improved sensor orthogonality using graphene oxide-based detectors,†no. CVD, 2017, doi: 10.1109/JSEN.2017.2661067.

J. Fitzgerald and H. Fenniri, “Cutting edge methods for non-invasive disease diagnosis using e-tongue and e-nose devices,†Biosensors, vol. 7, no. 4, 2017, doi: 10.3390/bios7040059.

J. A. Covington, E. W. Westenbrink, N. Ouaret, R. Harbord, K. D. Bardhan, and R. P. Arasaradnam, “Application of a Novel Tool for Diagnosing Bile Acid Diarrhoea,†pp. 11899–11912, 2013, doi: 10.3390/s130911899.

P. F. Astantri, W. S. A. Prakoso, K. Triyana, T. Untari, C. M. Airin, and P. Astuti, “Lab-made electronic nose for fast detection of Listeria monocytogenes and bacillus cereus,†Vet. Sci., vol. 7, no. 1, pp. 1–11, 2020, doi: 10.3390/vetsci7010020.

U. Siripatrawan, “Rapid Differentiation between E. coli and Salmonella Typhimurium Using Metal Oxide Sensors Integrated with Pattern Recognition,†Sensors Actuators, B Chem., vol. 133, no. 2, pp. 414–419, 2008, doi: 10.1016/j.snb.2008.02.046.

G. C. Green, A. D. C. Chan, H. Dan, and M. Lin, “Using a metal oxide sensor (MOS)-based electronic nose for discrimination of bacteria based on individual colonies in suspension,†Sensors Actuators, B Chem., vol. 152, no. 1, pp. 21–28, 2011, doi: 10.1016/j.snb.2010.09.062.

S. Balasubramanian, S. Panigrahi, C. M. Logue, H. Gu, and M. Marchello, “Neural networks-integrated metal oxide-based artificial olfactory system for meat spoilage identification,†J. Food Eng., vol. 91, no. 1, pp. 91–98, 2009, doi: 10.1016/j.jfoodeng.2008.08.008.

I. A. Casalinuovo, D. Di Pierro, M. Coletta, and P. Di Francesco, “Application of Electronic Noses for Disease Diagnosis and Food Spoilage Detection,†pp. 1428–1439, 2006.

J. Yan et al., “Electronic nose feature extraction methods: A review,†Sensors (Switzerland), vol. 15, no. 11, pp. 27804–27831, 2015, doi: 10.3390/s151127804.

S. N. Hidayat et al., “The Electronic Nose Coupled with Chemometric Tools for Discriminating the Quality of Black Tea Samples In Situ,†Chemosensors, vol. 7, no. 3, p. 29, Jul. 2019, doi: 10.3390/chemosensors7030029.

S. N. Hidayat and K. Triyana, “Optimized Back-Propagation Combined with Radial Basic Neural Network for Improving Performance of the Electronic Nose : Case Study on the Fermentation Process of Tempeh,†vol. 1755, pp. 7–11, 2016, doi: 10.1063/1.4958466.

K. Triyana, M. Taukhid Subekti, P. Aji, S. Nur Hidayat, and A. Rohman, “Development of Electronic Nose with Low-Cost Dynamic Headspace for Classifying Vegetable Oils and Animal Fats,†Appl. Mech. Mater., vol. 771, pp. 50–54, 2015, doi: 10.4028/www.scientific.net/amm.771.50.

S. Panigrahi, S. Balasubramanian, H. Gu, C. Logue, and M. Marchello, “Neural-Network-Integrated Electronic Nose System for Identification of Spoiled Beef,†LWT - Food Sci. Technol., vol. 39, no. 2, pp. 135–145, 2006, doi: 10.1016/j.lwt.2005.01.002.

H. Elgaali, T. R. Hamilton-Kemp, M. C. Newman, R. W. Collins, K. Yu, and D. D. Archbold, “Comparison of long-chain alcohols and other volatile compounds emitted from food-borne and related Gram positive and Gram negative bacteria,†J. Basic Microbiol., vol. 42, no. 6, pp. 373–380, 2002, doi: 10.1002/1521-4028(200212)42:6<373::AID-JOBM373>3.0.CO;2-4.

N. Karami et al., “Initial study of three different pathogenic microorganisms by gas chromatography-mass spectrometry,†F1000Research, vol. 6, no. 0, p. 1415, 2018, doi: 10.12688/f1000research.12003.3.

U. Siripatrawan and B. R. Harte, “Solid phase microextraction/gas chromatography/mass spectrometry integrated with chemometrics for detection of Salmonella typhimurium contamination in a packaged fresh vegetable,†Anal. Chim. Acta, vol. 581, no. 1, pp. 63–70, 2007, doi: 10.1016/j.aca.2006.08.007.

K. P. Talaro and B. Chess, Foundations in Microbiology, 8th ed. New York: McGraw-Hill Companies, Inc, 2012.

H. H. Nguyen, S. Y. Yi, A. Woubit, and M. Kim, “A Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Salmonella typhimurium,†Appl. Sci. Converg. Technol., vol. 25, no. 3, pp. 61–65, 2016, doi: 10.5757/asct.2016.25.3.61.

A. T. Arfao, C. L. Djimeli, O. V. N. Ewoti, M. Nola, and T. Sime-ngando, “Detachment of adhered enteropathogenic Escherichia coli cells from polythene fragments immersed in aquatic microcosm using Eucalyptus microcorys extract ( Myrtaceae ),†no. May 2016, 2017.

I. Tazi, K. Triyana, D. Siswanta, A. C. A. Veloso, A. M. Peres, and L. G. Dias, “Dairy Products Discrimination According to the Milk Type Using an Electrochemical Multisensor Device Coupled with Chemometric Tools,†J. Food Meas. Charact., vol. 12, no. 4, pp. 2385–2393, 2018, doi: 10.1007/s11694-018-9855-8.

DOI: http://dx.doi.org/10.18517/ijaseit.11.4.12844


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development