Loads of Pollution to Lake Toba and Their Impacts

- Lukman, H. Hidayat, Luki Subehi, Rahmi Dina, Novi Mayasari, Irma Melati, Yuli Sudriani

Abstract


Lakes provide various ecosystem services that support biotic habitats and human life. In contrast, many lakes in the world are degraded due to pollutant supply from surrounding areas and human activities in the lake. Lake Toba, which is the largest lake in Indonesia, has indicated a polluted condition. However, the source and load of each pollutant are not yet known. A study has been conducted to determine nutrient and organic load levels entering the lake represented by Total Phosphorus (TP) and Chemical Oxygen Demand (COD), respectively. Observations were carried out in November 2017 at 22 locations, i.e., at 12 inlet rivers debouching to the lake and 10 sites at the lake. The pollutant impact was assessed from water class criteria based on COD, waters trophic status based on TP, and vertical oxygen profile representing cage aquaculture (CA) and non-cage aquaculture (NCA) areas. Based on COD and government regulation number 82/2001, water quality at the lake inlets was class III and IV. In the lake area, water class in NCA was III, while in CA the water class tends to be III and IV. Estimated TP loading from the catchment area was 138 tonnes/yr, while that from cage aquaculture activity was 570.33 tonnes/yr. Pollutants have caused the worsening of water class, increasing water column anoxia in the hypolimnion layer and eutrophication in Lake Toba.

Keywords


Pollutant load; Chemical Oxygen Demand; Total Phosphorus; Lake Toba

Full Text:

PDF

References


J. P. Jenny et al., “Scientists’ Warning to Humanity: Rapid degradation of the world’s large lakes,†Journal of Great Lakes Research. 2020, doi: 10.1016/j.jglr.2020.05.006.

C. Mammides, “A global assessment of the human pressure on the world’s lakes,†Glob. Environ. Chang., 2020.

D. C. Richardson, C. C. Carey, D. A. Bruesewitz, and K. C. Weathers, “Intra- and inter-annual variability in metabolism in an oligotrophic lake,†Aquat. Sci., 2017, doi: 10.1007/s00027-016-0499-7.

S. R. Carpenter, E. G. Booth, and C. J. Kucharik, “Extreme precipitation and phosphorus loads from two agricultural watersheds,†Limnol. Oceanogr., 2018, doi: 10.1002/lno.10767.

G. Muri et al., “Factors that contributed to recent eutrophication of two Slovenian mountain lakes,†J. Paleolimnol., 2018.

H. Du et al., “Evaluation of eutrophication in freshwater lakes: A new non-equilibrium statistical approach,†Ecol. Indic., 2019, doi: 10.1016/j.ecolind.2019.03.032.

K. Havens and E. Jeppesen, “Ecological responses of lakes to climate change,†Water (Switzerland). 2018, doi: 10.3390/w10070917.

Lukman, M. S. Syawal, and M. Maghfiroh, “Sumatran major lakes: limnological overviews,†IOP Conf. Ser. Earth Environ. Sci., vol. 535, no. 1, p. 012064, Aug. 2020, doi: 10.1088/1755-1315/535/1/012064.

H. A. Rustini, E. Harsono, and I. Ridwansyah, “Potential area for floating net fishery in Lake Toba,†in IOP Conference Series: Earth and Environmental Science, Feb. 2018, vol. 118, no. 1, p. 012032.

A. H. Harianja, A. E. Suoth, E. Nazir, G. S. Saragih, R. Fauzi, and M. Y. Hidayat, “Impact of land use and socio-economic changes in water catchment area on total suspended solid (TSS) in Lake Toba,†in IOP Conference Series: Earth and Environmental Science, Dec. 2019, vol. 407, p. 012005, doi: 10.1088/1755-1315/407/1/012005.

B. A. Biddanda et al., “Chronicles of hypoxia: Time-series buoy observations reveal annually recurring seasonal basin-wide hypoxia in Muskegon Lake – A Great Lakes estuary,†J. Great Lakes Res., 2018.

L. L. Yuan and J. R. Jones, “Modeling hypolimnetic dissolved oxygen depletion using monitoring data,†Can. J. Fish. Aquat. Sci., 2020, doi: 10.1139/cjfas-2019-0294.

T. Fukushima, B. Matsushita, L. Subehi, F. Setiawan, and H. Wibowo, “Will hypolimnetic waters become anoxic in all deep tropical lakes?,†Sci. Rep., 2017, doi: 10.1038/srep45320.

R. B. Baird, A. D. Eaton, and E. W. Rice, Standard Methods for the Examination of Water and Wastewater, American Public Health Association. 2017.

P. J. Dillon and F. H. Rigler, “A Simple Method for Predicting the Capacity of a Lake for Development Based on Lake Trophic Status,†J. Fish. Res. Board Canada, 1975, doi: 10.1139/f75-178.

S. A. Akrasi, “The assessment of suspended sediment inputs to Volta Lake,†Lakes Reserv. Res. Manag., 2005.

P. Chuenchum, M. Xu, and W. Tang, “Estimation of soil erosion and sediment yield in the lancang-mekong river using the modified revised universal soil loss equation and GIS techniques,†Water (Switzerland), 2020, doi: 10.3390/w12010135.

T. Lambert and M. E. Perga, “Non-conservative patterns of dissolved organic matter degradation when and where lake water mixes,†Aquat. Sci., 2019, doi: 10.1007/s00027-019-0662-z.

S. Singh, P. Dash, S. Silwal, G. Feng, A. Adeli, and R. J. Moorhead, “Influence of land use and land cover on the spatial variability of dissolved organic matter in multiple aquatic environments,†Environ. Sci. Pollut. Res., 2017, doi: 10.1007/s11356-017-8917-5.

M. Camara, N. R. Jamil, and A. F. Bin Abdullah, “Impact of land uses on water quality in Malaysia: a review,†Ecological Processes. 2019, doi: 10.1186/s13717-019-0164-x.

A. J. Rodríguez-Romero, A. E. Rico-Sánchez, E. Mendoza-Martínez, A. Gómez-Ruiz, J. E. Sedeño-Díaz, and E. López-López, “Impact of changes of land use on water quality, from tropical forest to anthropogenic occupation: A multivariate approach,†Water (Switzerland), 2018, doi: 10.3390/w10111518.

N. Kuczyńska-Kippen and T. Joniak, “Chlorophyll a and physical-chemical features of small water bodies as indicators of land use in the Wielkopolska region (western Poland),†Limnetica, 2010.

M. Søndergaard, T. L. Lauridsen, L. S. Johansson, and E. Jeppesen, “Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover,†Hydrobiologia, 2017, doi: 10.1007/s10750-017-3110-x.

S. Nomosatryo and Lukman, “Nitrogen (N) and phosphorus (P) nutrients availability in Lake Toba Norh Sumatra Indonesia,†Limnotek, vol. 18, no. 2, pp. 127–137, 2011.

T. Steinsberger, R. Schwefel, A. Wüest, and B. Müller, “Hypolimnetic oxygen depletion rates in deep lakes: Effects of trophic state and organic matter accumulation,†Limnol. Oceanogr., 2020, doi: 10.1002/lno.11578.

R. Marcé, E. Moreno-Ostos, P. López, and J. Armengol, “The role of allochthonous inputs of dissolved organic carbon on the hypolimnetic oxygen content of reservoirs,†Ecosystems, 2008.

Lukman, “Evaluasi keseimbangan fosfor di Danau Toba (Evaluation of phosphor balance in Lake Toba),†in Prosiding Seminar Nasional Limnologi VI tahun 2012, 2012, pp. 423–431.

Lukman and I. Ridwansyah, “Kajian morfometri dan beberapa parameter stratifikasi perairan Danau Toba (Study of morphometry and several parameters of Lake Toba stratiphication),†Limnotek, vol. 17, no. 2, pp. 158–170, 2010.

Z. I. Azwar, N. Suhenda, and O. Praseno, “Manajemen pakan pada usaha budi daya ikan dalam karamba jaring apung (Fish Feeding Management in Cage Aquaculture),†in Pengembangan Budi Daya Perikanan di Perairan Waduk, A. Sudradjat, S. E. Wardoyo, Z. I. Azwar, H. Supriyadi, and B. Priono, Eds. Pusat Riset Perikanan Budidaya. BRKP. DKP, 2004, pp. 37–44.

A. Sunaryani, E. Harsono, H. A. Rustini, and S. Nomosatryo, “Spatial distribution and assessment of nutrient pollution in Lake Toba using 2D-multi layers hydrodynamic model and DPSIR framework,†IOP Conf. Ser. Earth Environ. Sci., vol. 118, p. 012031, Feb. 2018.

S. Miao et al., “Long-term and longitudinal nutrient stoichiometry changes in oligotrophic cascade reservoirs with trout cage aquaculture,†Sci. Rep., 2020, doi: 10.1038/s41598-020-68866-7.

Lukman, I. Srtyobudiandi, I. Muchsin, and S. Hariyadi, “Impact of Cage Aquaculture on Water Quality Condition in Lake Maninjau, West Sumatera Indonesia,†Int. J. Sci. Basic Appl. Res., vol. 23, no. 1, pp. 120–137, 2015.

P. Leinweber et al., “Handling the phosphorus paradox in agriculture and natural ecosystems: Scarcity, necessity, and burden of P,†Ambio, 2018, doi: 10.1007/s13280-017-0968-9.

J. P. Jenny et al., “Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes,†Proc. Natl. Acad. Sci. U. S. A., 2016, doi: 10.1073/pnas.1605480113.

J. Rhodes, H. Hetzenauer, M. A. Frassl, K. O. Rothhaupt, and K. Rinke, “Long-term development of hypolimnetic oxygen depletion rates in the large Lake Constance,†Ambio, 2017.

B. Müller, T. Steinsberger, R. Schwefel, R. Gächter, M. Sturm, and A. Wüest, “Oxygen consumption in seasonally stratified lakes decreases only below a marginal phosphorus threshold,†Sci. Rep., 2019.

S. Missaghi, M. Hondzo, and W. Herb, “Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate,†Clim. Change, 2017, doi: 10.1007/s10584-017-1916-1.




DOI: http://dx.doi.org/10.18517/ijaseit.11.3.12733

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development