Numerical-Based Computerized Modelling for Tsunami: Initiating Planning for Natural Disaster of South Kota Denpasar-Bali

Gusti Ayu Made Suartika, Servasius M, Said, Kadek Edi Saputra

Abstract


This article addresses planning for natural disaster management. It focuses on composing preventive measures before a natural disaster. Assuming a potential tsunami hitting the coast of Sanur (the southern and eastern coastal-fronts of Kota Denpasar - Bali’s capital), analysis is grounded by conducting numerical-based computer modeling. It relies on three sets of data: slope, coefficient of surface roughness, and wave height impact. This computer modeling generates scenarios of potential inundation whose catastrophic consequences would have serious impacts on urban life, individuals, and the island's economy. Based on the height of the wave hitting the coast, three scenarios of 5, 10, and 15 Meters are projected. A numerical-based modeling system provides hypothetical data that is then deterministic in analyzing critically impacted urban areas before any spatial-based evacuation scenario can be developed. The study concludes that Denpasar is potentially in a perilous situation. There is a great and present danger that demands impact-based mitigation planning for natural disasters, which is currently absent. Working with a priority, study findings lead to the most urgent need to constitute a plan for tsunami-based mitigation for Serangan Island – one among ten administrative territories of the selected case study - inundation caused by all three scenarios fully submerge that. However, given Denpasar’s extensive and encompassing littoral zones, the need for such a plan – for all ten spatial units that come under its administration - is now urgent and of maximum priority.

Keywords


Numerical-based computer modelling; tsunami; disaster impact mitigation; inundation; South Kota Denpasar.

Full Text:

PDF

References


BBC News, “Indian Ocean tsunami anniversary: Memorial events held,” https://www.bbc.com/ news/ world-asia-30602159, December 26, 2014.

G. A. M. Suartika, N. P. D. A. Permanasuri, and K. E. Saputra, “Provision Of a Sustainable Public Space: Lebih Coastal Area in the Aftermath of Rampant Abrasions,” IOP Conf. Ser. Earth Environ. Sci., vol. 396, no. 1, 2019, doi: 10.1088/1755-1315/396/1/012029.

G. A. M. Suartika, “Sand, Sea and Ceremony: Conflict over the Littoral Public Realm in Sanur, Bali,” Procedia - Soc. Behav. Sci., vol. 179, pp. 128–140, 2015, doi: 10.1016/j.sbspro.2015.02.416.

K. Berryman, Review of Tsunami Hazard and Risk in New Zealand. New Zealand: Institute of Geological and Nuclear Sciences, 2006.

N. Rakowsky and A. Immerz, “How vulnerable is the coast of Bali? Tsunami simulations for Indonesia,” [Online]. Available: https://www.eskp.de/en/natural-hazards/tsunami-simulations-for-indonesia-935979.

T. Takabatake, P. St-Germain, I. Nistor, J. Stolle, and T. Shibayama, “Numerical modelling of coastal inundation from Cascadia Subduction Zone tsunamis and implications for coastal communities on western Vancouver Island, Canada,” Nat. Hazards, vol. 98, no. 1, pp. 267–291, 2019, doi: 10.1007/s11069-019-03614-3.

A. Piatanesi and S. Tinti, “Numerical modelling of the September 8, 1905 Calabrian (southern Italy) tsunami,” Geophys. J. Int., vol. 150, no. 1, pp. 271–284, 2002, doi: 10.1046/j.1365-246X.2002.01700. x.

X. Wang and P. L.-F. LIU, “Numerical Simulations of the 2004 Indian Ocean Tsunamis — Coastal Effects,” J. Earthq. Tsunami, vol. 01, no. 03, pp. 273–297, 2007, doi: 10.1142/s179343110700016x.

D. Sugianto, I. W. Nurjaya, N. MN Natih, and W. W. Pandoe, “Potensi Rendaman Tsunami di Wilayah Lebak Banten,” J. Kelaut. Nas., vol. 12, no. 1, p. 9, 2017, doi: 10.15578/jkn. v12i1.6241.

Nurfitriani, M. Gybert E., R. Djamaluddin, and T. Yatimantoro, “Analisis potensi rambatan tsunami di Pantai Utara Desa Dulukapa dan Deme 1 Kabupaten Gorontalo Utara untuk mitigasi bencana tsunami,” J. Maj. Ilm. Globe, vol. 20, no. 2, pp. 67–76, 2018.

R. Putra, “Kajian risiko tsunami terhadap bangunan gedung non-hunian dengan skenario variasi ketinggian run-up pada garis pantai (studi kasus: Kota Banda Aceh, Indonesia),” Thesis Pascasarj. UGM, p. 174, 2008, doi: 10.14710/pwk. v9i2.6534.

P. Akbar, “Tingkat risiko bencana tsunami dan variasi spasialnya “studi kasus Kota Padang, Sumatra Barat,” Thesis Megister Ilmu Geogr. Wil. dan Kota Univ. Indones., 2010.

R. A. Pratomo and I. Rudiarto, “Permodelan Tsunami dan Implikasinya Terhadap Mitigasi Bencana di Kota Palu,” J. Pembang. Wil. Kota, vol. 9, no. 2, p. 174, 2013, doi: 10.14710/pwk. v9i2.6534.

R. C. Smith et al., “Comparing approaches for numerical modelling of tsunami generation by deformable submarine slides,” Ocean Model., vol. 100, pp. 125–140, 2016, doi: 10.1016/j.ocemod.2016.02.007.

F. Dias, D. Dutykh, L. O’Brien, E. Renzi, and T. Stefanakis, “On the modelling of tsunami generation and tsunami inundation,” Procedia IUTAM, vol. 10, pp. 338–355, 2014, doi: 10.1016/j.piutam.2014.01.029.

R. Weiss, K. Wünnemann, and H. Bahlburg, “Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: Model strategy and technical solutions,” Geophys. J. Int., vol. 167, no. 1, pp. 77–88, 2006, doi: 10.1111/j.1365-246X.2006.02889. x.

T. I. H. Rahiman, J. R. Pettinga, and P. Watts, “The source mechanism and numerical modelling of the 1953 Suva tsunami, Fiji,” Mar. Geol., vol. 237, no. 1–2, pp. 55–70, 2007, doi: 10.1016/j.margeo.2006.10.036.

J. Xie, I. Nistor, and T. Murty, “Tsunami risk for Western Canada and numerical modelling of the Cascadia fault tsunami,” Nat. Hazards, vol. 60, no. 1, pp. 149–159, 2012, doi: 10.1007/s11069-011-9958-6.

A. Santos, A. O. Tavares, and M. Queirós, “Numerical modelling and evacuation strategies for tsunami awareness: lessons from the 2012 Haida Gwaii Tsunami,” Geomatics, Nat. Hazards Risk, vol. 7, no. 4, pp. 1442–1459, 2016, doi: 10.1080/19475705.2015.1065292.

C. N. Whittaker, R. I. Nokes, H. Y. Lo, P. L. F. Liu, and M. J. Davidson, “Physical and numerical modelling of tsunami generation by a moving obstacle at the bottom boundary,” Environ. Fluid Mech., vol. 17, no. 5, pp. 929–958, 2017, doi: 10.1007/s10652-017-9526-z.

A. Prasetyo, T. Yasuda, T. Miyashita, and N. Mori, “Physical modeling and numerical analysis of tsunami inundation in a coastal city,” Front. Built Environ., vol. 5, no. April 2019, doi: 10.3389/fbuil.2019.00046.

M. McSaveney and M. Rattenbury, “Tsunami impact in Hawke’s Bay,” Inst. Geol. Nucl. Sci., vol. 10, no. December, pp. 0–12, 2000.

“https://www.ngdc.noaa.gov/nndc/struts/ results?bt_0=1815&st_0=2011&type_8 =EXACT&query_8= None+Selected&op_14=eq&v_14=INDONESIA&st_1=-6&bt_2=114&st_2=116&bt_1=-9&bt_10=&st_10=&ge_9=&le_9=&bt_3=&st_3=&type_19=EXACT&query_19=None+Selected&op_17=eq&v_17.”

T. Matsui, F. Imamura, E. Tajika, Y. Nakano, and Y. Fujisawa, “Generation and propagation of a tsunami from the Cretaceous-Tertiary impact event,” Spec. Pap. Geol. Soc. Am., vol. 356, no. December, pp. 69–77, 2002, doi: 10.1130/0-8137-2356-6.69.




DOI: http://dx.doi.org/10.18517/ijaseit.11.2.12600

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development