Karangkemiri Village Landslide Potential Risk Mapping Based on Integrating Litho-structure and Morphology

FX Anjar Tri Laksono, Muhammad Rifki Fauzan, Asmoro Widagdo, János Kovács


The Karangkemiri Village, Jeruklegi District, Cilacap Regency, Central Java Province, has a high risk of rock-mass movement. This is proven by the occurrence of a landslide in March 2020. The susceptibility of landslides is influenced by eight factors: slope, lithology, land cover, elevation, loading, rainfall, distance from rivers, and roads. Therefore, a landslide potential risk map is needed as a disaster mitigation effort. The integration between litho-structure and morphology was applied to understand the distribution of landslides vulnerability in Karangkemiri Village. The Analytical Hierarchy Process (AHP) method was adopted to find the dominant factor that causes a landslide. The result of this study was the geology of a research area consisting of 3 geomorphological units, namely the Structural Curve Slab Hills Unit (S3), Structural Waveed Hills Unit (S2), and Intrusion Unit to Basalt (S11). Stratigraphy of research areas is composed of sandstone (Tmph) and andesite lava (Tmpk) units. Special study methods use the AHP, assessment, and weighting against the landslide movement's causative factors, such calculations combined with primary and secondary data. The data and calculations were inserted into the parameter map then combined to obtain a map of the rock-mass movement susceptibility zone. Analyzing results show research areas divided into two levels of rock-mass movement vulnerability, medium, and high vulnerability levels. Medium levels of vulnerability cover 60% of Karangkemiri Village. Meanwhile, a high level of vulnerability encompasses 40% of Karangkemiri Village.


Susceptibility; litho-structure; landslide, Karangkemiri; Cilacap.

Full Text:



E. Gunawan and S. Widiyantoro, “Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate,†J. Geodyn., 2019, doi: 10.1016/j.jog.2019.01.004.

W. Fan, D. Bassett, J. Jiang, P. M. Shearer, and C. Ji, “Rupture evolution of the 2006 Java tsunami earthquake and the possible role of splay faults,†Tectonophysics, 2017, doi: 10.1016/j.tecto.2017.10.003.

N. D. Hananto et al., “Tsunami earthquakes: Vertical pop-up expulsion at the forefront of subduction megathrust,†Earth Planet. Sci. Lett., 2020, doi: 10.1016/j.epsl.2020.116197.

M. R. Daryono, D. H. Natawidjaja, B. Sapiie, and P. Cummins, “Earthquake Geology of the Lembang Fault, West Java, Indonesia,†Tectonophysics, 2019, doi: 10.1016/j.tecto.2018.12.014.

Suwarno, Misnah, and Mujiarto, “Analysis of static morphostructure conditions with dynamic morfostructure (Landslide type),†Geogr. Tech., 2020, doi: 10.21163/GT_2020.151.06.

S. K. Suhardja, S. Widiyantoro, J. P. Métaxian, N. Rawlinson, M. Ramdhan, and A. Budi-Santoso, “Crustal thickness beneath Mt. Merapi and Mt. Merbabu, Central Java, Indonesia, inferred from receiver function analysis,†Phys. Earth Planet. Inter., 2020, doi: 10.1016/j.pepi.2020.106455.

G. I. Marliyani, H. Helmi, J. R. Arrowsmith, and A. Clarke, “Volcano morphology as an indicator of stress orientation in the Java Volcanic Arc, Indonesia,†J. Volcanol. Geotherm. Res., 2020, doi: 10.1016/j.jvolgeores.2020.106912.

A. Koulali et al., “The kinematics of crustal deformation in Java from GPS observations: Implications for fault slip partitioning,†Earth Planet. Sci. Lett., 2017, doi: 10.1016/j.epsl.2016.10.039.

E. Oral, H. Weng, and J. P. Ampuero, “Does a Damaged-Fault Zone Mitigate the Near-Field Impact of Supershear Earthquakes?—Application to the 2018 Mw 7.5 Palu, Indonesia, Earthquake,†Geophys. Res. Lett., 2020, doi: 10.1029/2019GL085649.

F. Guzzetti et al., “Geographical landslide early warning systems,†Earth-Science Reviews. 2020, doi: 10.1016/j.earscirev.2019.102973.

H. A. Nefeslioglu and T. Gorum, “The use of landslide hazard maps to determine mitigation priorities in a dam reservoir and its protection area,†Land use policy, 2020, doi: 10.1016/j.landusepol.2019.104363.

M. Shafique, “Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake,†Geomorphology, 2020, doi: 10.1016/j.geomorph.2020.107228.

Y. Pan, G. Wu, Z. Zhao, and L. He, “Analysis of rock slope stability under rainfall conditions considering the water-induced weakening of rock,†Comput. Geotech., 2020, doi: 10.1016/j.compgeo.2020.103806.

Q. Lv, Y. Liu, and Q. Yang, “Stability analysis of earthquake-induced rock slope based on back analysis of shear strength parameters of rock mass,†Eng. Geol., 2017, doi: 10.1016/j.enggeo.2017.07.007.

Y. Tang et al., “Integrating principal component analysis with statistically-based models for analysis of causal factors and landslide susceptibility mapping: A comparative study from the loess plateau area in Shanxi (China),†J. Clean. Prod., 2020, doi: 10.1016/j.jclepro.2020.124159.

M. F. Barchia, “Options for Land Conservation Practices Based on Land Uses in Kungkai Watershed, Bengkulu, Sumatera, Indonesia,†Int. J. Environ. Sci. Dev., 2016, doi: 10.7763/ijesd.2016.v7.772.

H. Han, B. Shi, and L. Zhang, “Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change,†Eng. Geol., 2020, doi: 10.1016/j.enggeo.2020.105876.

D. Rohit, S. M. K. Pasha, H. Hazarika, T. Kokusho, A. Arsyad, and S. Nurdin, “Influence of low permeability capping layers on liquefaction induced ground failure,†2020.

P. Schlotfeldt, D. Elmo, and B. Panton, “Overhanging rock slope by design: An integrated approach using rock mass strength characterisation, large-scale numerical modelling and limit equilibrium methods,†J. Rock Mech. Geotech. Eng., 2018, doi: 10.1016/j.jrmge.2017.09.008.

P. Zhou and S. Xia, “Effects of the heterogeneous subducting plate on seismicity: Constraints from b-values in the Andaman–Sumatra–Java subduction zone,†Phys. Earth Planet. Inter., 2020, doi: 10.1016/j.pepi.2020.106499.

R. Paris, K. Goto, J. Goff, and H. Yanagisawa, “Advances in the study of mega-tsunamis in the geological record,†Earth-Science Reviews. 2020, doi: 10.1016/j.earscirev.2020.103381.

K. Pawluszek, “Landslide features identification and morphology investigation using high-resolution DEM derivatives,†Nat. Hazards, 2019, doi: 10.1007/s11069-018-3543-1.

K. Pawłuszek, S. Marczak, A. Borkowski, and P. Tarolli, “Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features,†ISPRS Int. J. Geo-Information, 2019, doi: 10.3390/ijgi8080321.

M. Panahi, A. Gayen, H. R. Pourghasemi, F. Rezaie, and S. Lee, “Spatial prediction of landslide susceptibility using hybrid support vector regression (SVR) and the adaptive neuro-fuzzy inference system (ANFIS) with various metaheuristic algorithms,†Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2020.139937.

S. Truttmann, M. Herwegh, G. Schreurs, A. Ebert, and S. Hardmeier, “The Effect of Pre-Existing Structures on the Moosfluh Landslide and its Lateral Propagation (Great Aletsch Glacier, Switzerland),†Geomorphology, 2020, doi: 10.1016/j.geomorph.2020.107530.

E. Gunawan, I. Meilano, N. R. Hanifa, and S. Widiyantoro, “Effect of coseismic and postseismic deformation on homogeneous and layered half-space and spherical analysis: Model simulation of the 2006 Java, Indonesia, tsunami earthquake,†J. Appl. Geod., 2017, doi: 10.1515/jag-2017-0009.

Z. Li, Q. Liu, H. Zhu, X. Zhang, M. Li, and Q. Zhao, “Compositional relationship between the source-to-sink segments and their sedimentary response to diverse geomorphology types in the intrabasinal lower uplift of continental basins,†Mar. Pet. Geol., 2021, doi: 10.1016/j.marpetgeo.2020.104716.

S. L. Gallop et al., “Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification,†Science of the Total Environment. 2020, doi: 10.1016/j.scitotenv.2020.139123.

M. K. Khalifa and K. J. Mills, “Facies analysis relationships depositional environments of the subsurface stratigraphy of the Snake Cave Interval in the Bancannia Trough, western Darling Basin, New South Wales, SE Australia,†Mar. Pet. Geol., 2020, doi: 10.1016/j.marpetgeo.2020.104279.

A. Giri, R. Anand, S. Balakrishnan, J. K. Dash, and D. S. Sarma, “Neoarchean magmatism in Shimoga greenstone belt, India: Evidence for subduction-accretion processes in the evolution of the western Dharwar stratigraphy,†Lithos, 2019, doi: 10.1016/j.lithos.2019.02.015.

A. Bischoff, M. Schleiting, R. Wieler, and M. Patzek, “Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies,†Geochim. Cosmochim. Acta, 2018, doi: 10.1016/j.gca.2018.07.020.

J. L. H. Cailteux, P. Muchez, J. De Cuyper, S. Dewaele, and T. De Putter, “Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo),†J. African Earth Sci., 2018, doi: 10.1016/j.jafrearsci.2017.12.029.

F. E. Gruber, J. Baruck, V. Mair, and C. Geitner, “From geological to soil parent material maps - A random forest-supported analysis of geological map units and topography to support soil survey in South Tyrol,†Geoderma, 2019, doi: 10.1016/j.geoderma.2019.113884.

A. Beniest and W. P. Schellart, “A geological map of the Scotia Sea area constrained by bathymetry, geological data, geophysical data and seismic tomography models from the deep mantle,†Earth-Science Reviews. 2020, doi: 10.1016/j.earscirev.2020.103391.

M. B. González, D. Rodríguez-Oroz, J. Alcalá-Reygosa, and N. Campos, “Geomorphological mapping and landforms characterization of a high valley environment in the Chilean Andes,†J. South Am. Earth Sci., 2020, doi: 10.1016/j.jsames.2020.102918.

T. Oguchi, “Geomorphological debates in Japan related to surface processes, tectonics, climate, research principles, and international geomorphology,†Geomorphology, 2020, doi: 10.1016/j.geomorph.2019.06.019.

C. Wang, X. Ma, and J. Chen, “Ontology-driven data integration and visualization for exploring regional geologic time and paleontological information,†Comput. Geosci., 2018, doi: 10.1016/j.cageo.2018.03.004.

J. Guo et al., “Explicit-implicit-integrated 3-D geological modelling approach: A case study of the Xianyan Demolition Volcano (Fujian, China),†Tectonophysics, 2020, doi: 10.1016/j.tecto.2020.228648.

S. Moretto, F. Bozzano, C. Esposito, P. Mazzanti, and A. Rocca, “Assessment of landslide pre-failure monitoring and forecasting using satellite SAR interferometry,†Geosci., 2017, doi: 10.3390/geosciences7020036.

Y. Zhang et al., “Forecasting the magnitude of potential landslides based on InSAR techniques,†Remote Sens. Environ., 2020, doi: 10.1016/j.rse.2020.111738.

S. Saha et al., “Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on cross-validation method,†Sci. Total Environ., 2020, doi: 10.1016/j.scitotenv.2020.142928.

A. M. Youssef and H. R. Pourghasemi, “Landslide susceptibility mapping using machine learning algorithms and comparison of their performance at Abha Basin, Asir Region, Saudi Arabia,†Geosci. Front., 2020, doi: 10.1016/j.gsf.2020.05.010.

D. Sun, H. Wen, D. Wang, and J. Xu, “A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm,†Geomorphology, 2020, doi: 10.1016/j.geomorph.2020.107201.

L. Lombardo and H. Tanyas, “Chrono-validation of near-real-time landslide susceptibility models via plug-in statistical simulations,†Eng. Geol., 2020, doi: 10.1016/j.enggeo.2020.105818.

I. G. Tunas and R. Maadji, “The use of GIS and hydrodynamic model for performance evaluation of flood control structure,†Int. J. Adv. Sci. Eng. Inf. Technol., 2018, doi: 10.18517/ijaseit.8.6.7489.

M. F. Barchia, K. Amri, and R. Apriantoni, “Land Degradation and Option of Practical Conservation Concepts in Manna Watershed Bengkulu Indonesia,†TERRA J. L. Restor., 2019, doi: 10.31186/terra.1.2.23-30.

A. Arabameri, B. Pradhan, K. Rezaei, M. Sohrabi, and Z. Kalantari, “GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms,†J. Mt. Sci., 2019, doi: 10.1007/s11629-018-5168-y.

M. E. Fauzan, A. Damayanti, and R. Saraswati, “Vulnerability assessment of landslide areas in Ci Manuk Upstream Watershed, Garut District, West Java Province,†Int. J. Adv. Sci. Eng. Inf. Technol., 2020, doi: 10.18517/ijaseit.10.1.6755.

I. G. Tunas, A. Tanga, and S. R. Oktavia, “Impact of landslides induced by the 2018 palu earthquake on flash flood in bangga river Basin, Sulawesi, Indonesia,†J. Ecol. Eng., 2020, doi: 10.12911/22998993/116325.

P. T. Thi Ngo et al., “Evaluation of deep learning algorithms for national scale landslide susceptibility mapping of Iran,†Geosci. Front., 2020, doi: 10.1016/j.gsf.2020.06.013.

D. Bălteanu et al., “National-scale landslide susceptibility map of Romania in a European methodological framework,†Geomorphology, 2020, doi: 10.1016/j.geomorph.2020.107432.

D. Tien Bui et al., “Spatial prediction of rainfall-induced landslides for the Lao Cai area (Vietnam) using a hybrid intelligent approach of least squares support vector machines inference model and artificial bee colony optimization,†Landslides, 2017, doi: 10.1007/s10346-016-0711-9.

B. T. Pham, D. Tien Bui, and I. Prakash, “Landslide Susceptibility Assessment Using Bagging Ensemble Based Alternating Decision Trees, Logistic Regression and J48 Decision Trees Methods: A Comparative Study,†Geotech. Geol. Eng., 2017, doi: 10.1007/s10706-017-0264-2.

B. T. Pham et al., “GIS-based ensemble soft computing models for landslide susceptibility mapping,†Adv. Sp. Res., 2020, doi: 10.1016/j.asr.2020.05.016.

A. Milia, P. Iannace, and M. M. Torrente, “Active tectonic structures and submarine landslides offshore southern Apulia (Italy): A new scenario for the 1743 earthquake and subsequent tsunami,†Geo-Marine Lett., 2017, doi: 10.1007/s00367-017-0493-7.

A. Anugrahadi, U. Sumotarto, and T. T. Purwiyono, “Geomorphological impact of Palu earthquake,†2019, doi: 10.1088/1742-6596/1402/3/033015.

DOI: http://dx.doi.org/10.18517/ijaseit.12.2.12189


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development