The Rate of Formation of Main Compounds in the Pyrolysis of Cinnamon Wood

Rahmi Eka Putri, Anwar Kasim, - Emriadi, Alfi Asben

Abstract


Cinnamon wood has chemical and physical properties that can be optimized for use other than firewood. Lignocellulose compounds and a high density of raw materials would produce beneficial new compounds through pyrolysis. This research aims to make liquid smoke from cinnamon using pyrolysis and identify the concentration of the chemical compounds in liquid smoke and the rate of formation of the main compounds of liquid smoke. The Pyrolysis process was done twice, and the results were observed every 30 minutes. Chemical compounds of liquid smoke were analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The crystal structure of charcoal produced from pyrolysis was analyzed using an X-ray diffractometer (XRD). The results showed that the liquid smoke, tar, charcoal, and the content lost after 150-minutes of pyrolysis was 28.94; 3.6; 42.92, and 24.54 %, respectively. Chromatography yielded ten peaks corresponding to compounds present in each stage of the process after 30 mins of pyrosis up to 150 mins. GC-MS analysis showed five chemical compounds, methanol, acetic acid, furfural, phenol, and guaiacol, as always present during the pyrolysis processes. Methanol, acetic acid, and phenol reached their highest concentration at the end of pyrolysis. The rate of formation of these compounds, particularly the methanol, continuously increased during the pyrolysis process. The length of the pyrolysis was proportional to the speed of methanol formation and the total yield.

Keywords


Cinnamon; pyrolysis; liquid smoke; GC-MS analysis

Full Text:

PDF

References


A. Kasim, “Sifat Fisis Dan Mekanis Kayu Kulit Manis Sebagai Limbah Yang Dapat Terbarui Dan Peluang Pemanfaatannya,” J. Menara Ilmu, vol. 3, no. 1, pp. 1–5, 2003.

Gusmailina and D. Setiawan, “Analisis Kimia Kayu Kasiavera (Cinnamommum burmanii Ness ex. BL) dan Prospek Pemanfaatanya,” J. Has. Hutan, vol. 3, no. 1, pp. 1–7, 1996.

K. Ridhuan, D. Irawan, Y. Zanaria, and F. Firmansyah, “Pengaruh Jenis Biomassa Pada Pembakaran Pirolisis Terhadap Karakteristik Dan Efisiensi bioarang - Asap Cair Yang Dihasilkan,” J. Ilm. Tek. Mesin, vol. 20, no. 1, pp. 18–27, 2019.

Girrard, Technology of Meat and Meat Product. 1992.

Y. Park, J. Kim, S. Kim, and Y. Park, “Bioresource Technology Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor,” Boiresource Technol., vol. 100, pp. 400–405, 2009, doi: 10.1016/j.biortech.2008.06.040.

A. Kumar, L. Singh, R. Shankar, and P. Mondal, “Pyrolysis of wood sawdust : Effects of process parameters on products yield and characterization of products,” Waste Manag., vol. 89, pp. 224–235, 2019, doi: 10.1016/j.wasman.2019.04.016.

S. Jiang et al., “Oxidative pyrolysis of mallee wood biomass , cellulose and lignin,” Fuel, vol. 217, no. October 2017, pp. 382–388, 2018, doi: 10.1016/j.fuel.2017.12.075.

R. E. Putri, A. Kasim, Emriadi, and A. Asben, “Characterization Of Liquid Smoke From Coconut Shell Based Pyrolysis Process,” in International Conference on Advance and Scientific Innovation, 2018.

SNI 07-3018-2006, “Baja lembaran pelat dan gulungan canai panas untuk tabung gas (Bj TG).” Badan Standar Nasional Indonesia, 2006.

T. Kan, V. Strezov, and T. J. Evans, “Lignocellulosic biomass pyrolysis : A review of product properties and effects of pyrolysis parameters,” Renew. Sustain. Energy Rev., vol. 57, pp. 1126–1140, 2016, doi: 10.1016/j.rser.2015.12.185.

S. Al Arni, “Comparison of slow and fast pyrolysis for converting biomass into fuel,” Renew. Energy, pp. 1–5, 2017, doi: 10.1016/j.renene.2017.04.060.

D. Mohan, C. U. Pittman, and P. H. Steele, “Pyrolysis of Wood / Biomass for Bio-oil : A Critical Review,” Energy and Fuels, vol. 20, no. 4, pp. 848–889, 2006, doi: 10.1021/ef0502397.

SNI 01-1683-1989, “Arang Kayu.” Badan Standar Nasional Indonesia, 1989.

-6235-2000 SNI, “Briket Arang Kayu.” Badan Standar Nasional Indonesia, 2000.

SNI 06-3730-1995, “Arang Aktif Teknis.” Badan Standar Nasional Indonesia, 1995.

G. Pari, A. Santoso, and D. Hendra, “Pembuatan dan Pemanfaatan Arang Aktif sebagai Reduktor Emisi Formaldehida Kayu Lapis,” J. Penelit. Has. Hutan, vol. 24, no. 5, pp. 425–436, 2006.

S. Wei et al., “Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw , pine wood , pig manure and sewage sludge,” Chemosphere, vol. 218, pp. 624–631, 2019, doi: 10.1016/j.chemosphere.2018.11.177.

X. Hu et al., “Effects of biomass pre-pyrolysis and pyrolysis temperature on magnetic biochar properties,” J. Anal. Appl. Pyrolysis, vol. 127, no. August 2016, pp. 196–202, 2017, doi: 10.1016/j.jaap.2017.08.006.

M.Muller-Hagedorn, H. Bockhorn, L. Krebs, and U. Muller, “A comparative Kinetic Study on the Pyrolysis of Three Different Wood Species,” J. Anal. Appl. Pyrolysis, vol. 68–69, pp. 231–249, 2003, doi: 10.1016/S0165-2370(03)00065-2.

S. Darmawan, W. Syafii, N. J. Wistara, A. Maddu, and G. Pari, “Kajian Struktur Arang -Pirolisis , Arang-Hidro Dan Karbon Aktif Dari Kayu Acacia Mangium Willd Menggunakan Difraksi Sinar-X ( X-Ray Diffraction),” J. Penelit. Has. Hutan, vol. 33, no. 2, pp. 81–92, 2015.

S. Komarayati and H. S. Wibisono, “Pengaruh Arang dan Asap Cair Terhadap Pertumbuhan Anakan Gyrinops sp .,” J. Penelit. Has. Hutan, vol. 36, no. 1, pp. 23–31, 2018.

D. R. Mustikawati, “Effect of Plant Growth Promoting Rhizobacteria ( pgpr ) and Liquid Smoke Against Diseases Attacks and Growth of Pepper ( Piper nigrum L .),” Int. J. Sci. Basic Appl. Res., vol. 31, no. 3, pp. 145–155, 2017.

Pszczola Donald E, “Tour Highlights Production and Uses of Smoke-Based Flavors,” Food Technol., vol. 49, no. 1, pp. 70–74, 1995.

C. Cortesia et al., “Acetic acid, the active component of vinegar, is an effective tuberculocidal disinfectant,” MBio, vol. 5, no. 2, 2014, doi: 10.1128/mBio.00013-14.

L. Bouarab-chibane, V. Forquet, P. Lantéri, and Y. Clément, “Antibacterial Properties of Polyphenols : Characterization and QSAR ( Quantitative Structure – Activity Relationship ) Models,” Front. Microbiol., vol. 10, no. April, pp. 1–23, 2019, doi: 10.3389/fmicb.2019.00829.




DOI: http://dx.doi.org/10.18517/ijaseit.11.2.11742

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development