Influences of the Temperature Variations in the Gondola of the Goldwing S50/750 Wind

Yorley Arbella Feliciano, Carlos A. Trinchet, Javier A. Vargas, Leandro L. Lorente-Leyva


The use of wind energy is a decisive factor for human development, associated with the environment and capacity of people exploiting this vital resource. The investigation is part of predicting the behavior of the temperatures inside the nacelle of the Goldwind wind turbines S50 / 750 models installed in the Gibara Wind Farm. It supports its theories and analysis of computer-aided design (CAD), by monitoring the working temperatures, which interact with the forced ventilation system in the studied devices. The values analyzed result from continuous measurements carried out by the SCADA systems (Supervisory Control and Data Acquisition) of the studied machines. Which allows the diagnosis and early visualization of unforeseen incipient failures that currently occur under operating conditions standardized by the manufacturer. When the wind reaches speeds that exceed 11.5 m/s, major aggregates such as the gearbox and the generator fail. The results obtained in the investigation will allow to correct the program in the PLC (Logical Control Program) for the start-up and stop of the cooling system of the wind turbines in order to generate an ideal thermal balance for the working condition activities in Cuba, inside the nacelle, reducing the frequent occurrence of critical temperature values in the maximum limit that put the wind turbines out of service and therefore providing the wind farm with a higher coefficient of technical availability. 


temperatures; goldwind wind turbines; wind farm; technical availability; monitoring; prediction; diagnosis.

Full Text:



A. Torres, “Evaluación de confiabilidad tecnológica del parque aerogenerador de Gibara 2â€, 2016.

J. G. Njiri, N. Beganovic, M. H. Do, and D. Söffker, “Consideration of lifetime and fatigue load in wind turbine controlâ€, Renewable Energy, vol. 131, pp. 818-828, 2019.

E. Gonzalez, B. Stephen, D. Infield, and J. J. Melero, “Using high-frequency SCADA data for wind turbine performance monitoring: A sensitivity studyâ€, Renewable Energy, vol. 131, pp. 841-853, 2019.

G. Oliveira, F. Magalhães, Ã. Cunha, and E. Caetano, “Vibration-based damage detection in a wind turbine using 1 year of dataâ€, Structural Control and Health Monitoring, e2238, 2018.

L. Zhang, and Z.-Q. Lang, “Wavelet Energy Transmissibility Function and its Application to Wind Turbine Bearing Condition Monitoringâ€, IEEE Transactions on Sustainable Energy, vol. 9, no. 4, pp. 1833-1843, 2018.

E. Gonzalez, J. Tautz-Weinert, J. J. Melero, and S. J. Watson, “Statistical Evaluation of SCADA data for Wind Turbine Condition Monitoring and Farm Assessmentâ€, Journal of Physics: Conference Series, vol. 1037, 032038, 2018.

F. Cheng, L. Qu, W. Qiao, and L. Hao, “Enhanced Particle Filtering for Bearing Remaining Useful Life Prediction of Wind Turbine Drivetrain Gearboxesâ€, IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4738 - 4748, 2018.

U. Bhardwaj, A.P. Teixeira, and C. Guedes, “Reliability prediction of an offshore wind turbine gearboxâ€, Renewable Energy, vol. 141, pp. 693-706, 2019.

Z. Wu, and X. Wang, “Maximal wind energy capture fuzzy terminal sliding mode control for DFIG with speed sensorlessâ€, IEEJ Transactions on Electrical and Electronic Engineering, vol 13, no. 7, pp. 953-962, 2018.

S. A. Taher, Z. Dehghani Arani, M. Rahimi, and M. Shahidehpour, “A new approach using combination of sliding mode control and feedback linearization for enhancing fault ride through capability of DFIG-based WTâ€, International Transactions on Electrical Energy Systems, e2613, 2018.

G. Rinaldi, J. C. C. Portillo, F. Khalid, J. C. C. Henriques, P. R. Thies, L. M. C. Gato, and L. Johanning, “Multivariate analysis of the reliability, availability, and maintainability characterizations of a Spar–Buoy wave energy converter farmâ€, Journal of Ocean Engineering and Marine Energy, vol. 4, no. 3, pp. 199-215, 2018.

B. Niu, H. Hwangbo, L. Zeng, and Y. Ding, “Evaluation of alternative power production efficiency metrics for offshore wind turbines and farmsâ€, Renewable Energy, vol. 128, part A, pp. 81-90, 2018.

Y. Liu, W. Xu, J. Zhu, and F. Blaabjerg, “Sensorless Control of Standalone Brushless Doubly-Fed Induction Generator Feeding Unbalanced Loads in Ship Shaft Power Generation Systemâ€, IEEE Transactions on Industrial Electronics, vol. 66, no. 1, pp. 739-749, 2018.

W. Hu, “Emerging Technologies for Next-Generation Wind Turbinesâ€, In Advanced Wind Turbine Technology, pp. 317-339, 2018.

A. R. Nejad, P. F. Odgaard, and T. Moan, “Conceptual study of a gearbox fault detection method applied on a 5-MW spar-type floating wind turbineâ€, Wind Energy, vol. 21, no. 11, 2018.

E. Artigao, A. Honrubia-Escribano, and E. Gomez-Lazaro, “Current signature analysis to monitor DFIG wind turbine generators: A case studyâ€, Renewable Energy, vol. 116, part B, pp. 5-14, 2018.

IEC 61400-25-1: 2017-07 Wind turbines energy generation systems - Part 25-1: Communications for monitoring and control of wind power plants - Overall description of principles and models, pp. 31, 2017.

G. C. Tecnológica, Operación y mantenimiento, España.

A. M. Larrosa, and C. M. Figueredo, “Huracanes y parques eólico en Cubaâ€, Cubasolar, 2015.

I. D. Moreno, “Programa Eólico en Cubaâ€, Programa Eólico en Cuba 2014-2030, Palacio de Convenciones de La Habana, Cuba, 2015.

CUBAENERGÃA, Informe final Observatorio de Energía Renovable en América Latina y el Caribe OLADE, ONUDI, 2010.

G. Leiva, “Valoraciones sobre riesgos de interferencias de un futuro parque eólico con migraciones de aves en Gibara, Holguínâ€, In VII Conferencia Internacional CIER-2011, La Habana, Cuba, 2011.

G. Science&Technology, “Goldwind S50/750 Wind Turbine Technical parameters and Product description (60Hz) sección de titulo (Vol. Q/JF 2CP50/750.2-2007). China: LTD Industry Standard, 2007.

N. Cubana, “NC 220-3: 2009 Edificaciones-Requisitos de Diseño para la Eficiencia Energética-Parte 3: Sistemas y Equipamiento de Calefacción, Ventilación y Aire acondicionadoâ€, pp. 35, Oficina Nacional de Normalización, 2009

J. M. Bernal, A. Prieto, O. LLanes, and A. J. Silvia, “Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systemsâ€, Computers and Industrial Engineering, vol. 87, pp. 140-149, 2015.

A. Prieto, O. Llanes, J.M. Bernal, and E. García, “Comparative evaluation of classification methods used in fault diagnosis of industrial processesâ€, IEEE Latin America Transactions, vol. 11, no. 2, pp. 682-689, 2013.

D. J. Kenezevic, Mantenimiento, Madrid, 1996.

B. N. M. Blanco, “Estimación de Estado en Parques Eólicosâ€, Tesis Doctoral, Universidad de Vigo, 2014.

X. Sun, D. Xue, R. Li, X. Li, L. Cui, X. Zhang, and W. Wu, “Research on Condition Monitoring of Key Components in wind Turbine based on Cointegration Analysisâ€, IOP Conference Series: Materials Science and Engineering, vol 575, no. 1, 012015, 2019.

Group, M.-T. A. S. A. S. (Ed.), Goldwind 750 kW Project number: P04529, 2006.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development