Genetic Variation Based on RAPD Profiling and Production Loss of Cayenne Pepper due to Periodic Flooding

Muhammad Rizza Pahlevi, Serafinah Indriyani, Retno Mastuti, Estri Laras Arumingtyas


Cayenne pepper is known as a sensitive plant to water stress, either drought or flooding. However, not many studies on the plant's response to the naturally occurring periodic flooding have been reported to date. This study aimed to determine the agronomic and genetic response of cayenne pepper against periodic flooding and find whether RAPD profile reflects periodic flooding endurance. Three cultivars of cayenne pepper: Cakra Hijau (CH); Mhanu XR (M); and Sret (S) were used. Plants were treated with periodic flooding P0 (one day of flooding followed by two days of drainage), P1 (2 x P0), and P2 (3 x P0), and C as control. A completely randomized design was used for the experiment, and the data obtained were analyzed statistically. Plant height and the number of fruits between the control and every flooding treated plant were significantly different, indicating that periodic flooding caused the delay of stem growth and decreased fruit number of all cultivars. The number of branches was influenced significantly by periodic flooding. In contrast, the plant survival rate showed no significant difference among all treatments. The higher the periodic flooding, the higher the risk of plant death and increased risk of production loss. Jaccard’s clustering on RAPD profiling indicated that the group was developed based on cultivar more than periodic flooding. It was concluded that CH differed from others and had better endurance against periodic flooding, made it a right candidate for a breeding program.


Cayenne pepper cultivars; climate change; periodic flooding; production loss; RAPD.

Full Text:



E. L. Arumingtyas, J. Kusnadi, D. R. T. Sari, and N. Ratih, “Genetic variability of Indonesian local chili pepper: The facts,” in AIP Conference Proceedings, 2017, vol. 1908, no. November 2017, pp. 1–10, doi: 10.1063/1.5012726.

A. Pratiwi and S. Sugianto P.R, “The effect of water stress on growth and capsaicin content of cayenne pepper (Capcisum frutences L.),” J. Appl. Environ. Biol. Sci, vol. 7, no. 6, pp. 76–80, 2017, [Online]. Available: Appl. Environ. Biol. Sci., 7(6)76-80, 2017.pdf.

D. Armita, E. L. Arumingtyas, and R. Mastuti, “Tolerance level of three genotypes of cayenne pepper (Capsicum frutescens L.) toward drought stress of vegetative phase based on morphological and physiological responses,” Int. J. ChemTech Res., vol. 10, no. 2, pp. 183–192, 2017, [Online]. Available:

M. R. Pahlevi, S. Indriyani, R. Mastuti, and E. L. Arumingtyas, “Flooding effect to Capsicum frutescens L. in wilting and death perspectives,” AIP Conf. Proc., vol. 2120, no. July, pp. 0300101–0300105, 2019, doi: 10.1063/1.5115614.

A. Hakim, M. Syukur, and Y. Wahyu, “Evaluation of qualitative and quantitative characters 20 genotypes of bird pepper (Capsicum frutescens L.) IPB collection,” Comm. Hortic. J., vol. 2, no. 1, pp. 20–27, 2018, doi: 10.29244/chj.2.1.20-27.

A. Mustroph, “Improving flooding tolerance of crop plants,” Agronomy, vol. 8, no. 9, p. 160, 2018, doi: 10.3390/agronomy8090160.

K. Bhutia L, K. VK, T. Meetei NG, and N. Bhutia D, “Effects of climate change on growth and development of chilli,” Agrotechnology, vol. 07, no. 02, pp. 1–4, 2018, doi: 10.4172/2168-9881.1000180.

T. Fukao, B. E. Barrera-Figueroa, P. Juntawong, and J. M. Peña-Castro, “Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects,” Front. Plant Sci., vol. 10, no. March, pp. 1–24, 2019, doi: 10.3389/fpls.2019.00340.

C. Wongs-Aree and S. Noichinda, “Glycolysis fermentative by-products and secondary metabolites involved in plant adaptation under hypoxia during pre- and postharvest,” in Hypoxia and Anoxia, K. K. Das and M. S. Biradar, Eds. IntechOpen, 2018, pp. 59–71.

H. Huang, F. Ullah, D.-X. Zhou, M. Yi, and Y. Zhao, “Mechanisms of ROS regulation of plant development and stress responses,” Front. Plant Sci., vol. 10, no. June, pp. 1–10, 2019, doi: 10.3389/fpls.2019.00800.

F. Collin, “Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases,” Int. J. Mol. Sci., vol. 20, no. 10, pp. 1–17, 2019, doi: 10.3390/ijms20102407.

M. Lal, A. Kumari, Pooja, and S. Sheokand, “Reactive oxygen species, reactive nitrogen species and oxidative metabolism under waterlogging stress,” in Reactive oxygen, nitrogen and sulfur species in plants: production, metabolism, signaling and defense mechanisms, Volume 2., M. Hasanuzzaman, V. Fotopoulos, K. Nahar, and M. Fujita, Eds. Pondicherry: Wiley-Blackwell, 2019, pp. 779–783.

A. Salvatierra, G. Toro, P. Mateluna, I. Opazo, M. Ortiz, and P. Pimentel, “Keep calm and survive: Adaptation strategies to energy crisis in fruit trees under root hypoxia,” Plants, vol. 9, no. 9, pp. 1–25, 2020, doi: 10.3390/plants9091108.

J. C. Begara-Morales, M. Chaki, R. Valderrama, C. Mata-Pérez, M. Padilla, and J. B. Barroso, “Transcriptional regulation of gene expression related to hydrogen peroxide (H2O2) and nitric oxide (NO),” in Nitric Oxide and Hydrogen Peroxide Signaling in Higher Plants, D. K. Gupta, J. M. Palma, and F. J. Corpas, Eds. Cham: Springer Nature Switzerland, 2019, pp. 69–90.

A. L. Villagómez-Aranda, L. F. García-Ortega, I. Torres-Pacheco, and R. G. Guevara-González, “Whole-genome DNA methylation analysis in hydrogen peroxide overproducing transgenic tobacco resistant to biotic and abiotic stresses,” Plants, vol. 10, no. 1, p. 178, 2021, doi: 10.3390/plants10010178.

A. Choudhary, A. Kumar, and N. Kaur, “ROS and oxidative burst: roots in plant development,” Plant Divers., vol. 42, no. 1, pp. 33–43, 2020, doi: 10.1016/j.pld.2019.10.002.

B. Sikora and P. Nowaczyk, “Application of RAPD technique for identification of interspecific hybrids from genus Capsicum,” Acta Sci. Pol. Hortorum Cultus, vol. 13, no. 1, pp. 155–166, May 2014, [Online]. Available:

R. Dolkar, P. Kumar, M. Girigowda, and P. HM, “Assessment of genetic diversity in advance breeding lines of chilli (Capsicum annuum L.) using RAPD and cytochrome P 450 gene based marker system,” Int. J. Chem. Stud., vol. 7, no. 2, pp. 1656–1663, 2019, [Online]. Available:

P. Renganathan, R.-A. C, H.-M. LG, P. Duraisamy, and R.-P. EO, “Evaluation of genetic diversity in germplasm of paprika (Capsicum spp.) using Random Amplified Polymorphic DNA (RAPD) markers,” J. Plant Sci. Phytopathol., vol. 1, no. 2, pp. 080–086, 2017, doi: 10.29328/journal.jpsp.1001010.

A. A. Devi, N. Brajendra, and M. Dinachandra, “Genetic diversity analysis in chilli (Capsicum annuum L.) found in Manipur using RAPD markers,” Int. J. Curr. Microbiol. Appl. Sci., vol. 7, no. 10, pp. 257–262, 2018, doi: 10.20546/ijcmas.2018.710.027.

S. Tiwari, S. Sao, A. Kurrey, and P. Das, “Isolation and identification of molecular markers for fingerprinting of chilli hybrids & its parental lines,” Int. J. Res. Pharm. Sci., vol. 11, no. 1, pp. 713–716, 2020, doi: 10.26452/ijrps.v11i1.1883.

U. U. Pujar, S. Tirakannanavar, R. C. Jagadeesha, and N. Sandhyarani, “Hybrid Purity Testing of Chilli Hybrid (Pusa Jwala × Arka Lohit) through RAPD and ISSR Molecular Markers,” Int. J. Curr. Microbiol. Appl. Sci., vol. 6, no. 11, pp. 2079–2086, 2017, doi: 10.20546/ijcmas.2017.611.245.

Sundari, E. L. Arumingtyas, L. Hakim, R. Azrianingsih, and D. Wahyudi, “Genetic variability of local durian (Durio zibethinus Murr.) in Ternate island based on RAPD markers,” Plant Cell Biotechnol. Mol. Biol., vol. 18, no. 1&2, pp. 68–75, 2017.

Rosmaina, D. Mulyadi, R. Elfianis, and Zulfahmi, “Genetic diversity of chili pepper (Capsicum annuum L.) mutants (M-2) revealed by RAPD markers,” J. Agroteknologi, vol. 10, no. 2, pp. 92–101, 2020, [Online]. Available:

E. Sujitno and M. Dianawati, “Harvest production of many new varieties of Capsicum frutescens in dry land on Garut District, West Java,” PROS SEM NAS MASY BIODIV INDON, vol. 1, no. 4, pp. 874–877, 2015, doi: 10.13057/psnmbi/m010438.

Susilawati, R. A. Suwignyo, Munandar, and M. Hasmeda, “Agronomic and physiological characteristics of red chilli varieties under waterlogging stress,” J. Agron. Indones. (Indonesian J. Agron., vol. 40, no. 3, pp. 196–203, 2012, doi: 10.24831/jai.v40i3.6826.

Susilawati, R. A. Suwignyo, Munandar, and M. Hasmeda, “Agronomic Characteristics and Tolerance of Red Chili Varieties under Water Logging Stress during Generative Phases,” J. Lahan Suboptimal, vol. 1, no. 1, pp. 22–30, 2012, [Online]. Available:

B. G. Tamang and T. Fukao, “Plant adaptation to multiple stresses during submergence and following desubmergence,” Int. J. Mol. Sci., vol. 16, no. 12, pp. 30164–30180, 2015, doi: 10.3390/ijms161226226.

E. Yeung, J. Bailey-Serres, and R. Sasidharan, “After The Deluge: Plant Revival Post-Flooding,” Trends Plant Sci., vol. 24, no. 5, pp. 443–454, 2019, doi: 10.1016/j.tplants.2019.02.007.

K. K. Bashar, “Hormone dependent survival mechanisms of plants during post-waterlogging stress,” Plant Signal. Behav., vol. 13, no. 10, pp. 1–5, 2018, doi: 10.1080/15592324.2018.1529522.

X.-S. Chen et al., “Differential strategies to tolerate flooding in Polygonum hydropiper plants originating from low-and high-elevation habitats,” Front. Plant Sci., vol. 9, no. 1970, pp. 1–7, 2019, doi: 10.3389/fpls.2018.01970.

V. Ezin, R. De La Pena, and A. Ahanchede, “Flooding tolerance of tomato genotypes during vegetative and reproductive stages,” Brazilian J. Plant Physiol., vol. 22, no. 1, pp. 131–142, 2010, doi: 10.1590/S1677-04202010000200007.

A. A. Erhenhi, E. E. Lemy, D. E. Vwioko, and O. Imene, “Growth of Tomato (Solanum lycopersicum L.) under Waterlogging Condition,” Eur. J. Sci. Res., vol. 152, no. 4, pp. 509–515, 2019, [Online]. Available:

T. Nurhidayati, S. P. Wardhani, H. Purnobasuki, S. Hariyanto, N. Jadid, and D. D. Nurcahyani, “Response morphology and anatomy of tobacco (Nicotiana tabacum L.) plant on waterlogging,” AIP Conf. Proc., vol. 1908, no. November, 2017, doi: 10.1063/1.5012723.

M. Ghulamahdi, S. R. Chaerunisa, I. Lubis, and P. Taylor, “Response of five soybean varieties under saturated soil culture and temporary flooding on tidal swamp,” Procedia Environ. Sci., vol. 33, pp. 87–93, 2016, doi: 10.1016/j.proenv.2016.03.060.

Q. Zhang, E. J. W. Visser, H. De Kroon, and H. Huber, “Life cycle stage and water depth affect flooding-induced adventitious root formation in the terrestrial species Solanum dulcamara,” Ann. Bot., vol. 116, no. 2, pp. 279–290, 2015, doi: 10.1093/aob/mcv095.

T. C. Barickman, C. R. Simpson, and C. E. Sams, “Waterlogging causes early modification in the physiological performance, carotenoids, chlorophylls, proline, and soluble sugars of cucumber plants,” Plants, vol. 8, no. 160, pp. 1–15, 2019, doi:

M. Sauter, “Root responses to flooding,” Curr. Opin. Plant Biol., vol. 16, no. 3, pp. 282–286, 2013, doi: 10.1016/j.pbi.2013.03.013.

P. K. Patel, A. K. Singh, N. Tripathi, D. Yadav, and A. Hemantaranjan, “Flooding: abiotic constraint limiting vegetable productivity,” Adv. Plants Agric. Res., vol. 1, no. 3, pp. 96–103, 2014, doi: 10.15406/apar.2014.01.00016.

A. P. Devi, M. S. Singh, S. P. Das, and J. Kabiraj, “Effect of climate change on vegetable production- a review,” Int. J. Curr. Microbiol. Appl. Sci., vol. 6, no. 10, pp. 477–483, 2017, doi: 10.20546/ijcmas.2017.610.058.

F. Aldana, P. N. García, and G. Fischer, “Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants,” Rev. la Acad. Colomb. Ciencias Exactas, Físicas y Nat., vol. 38, no. 149, pp. 393–400, 2014, doi: 10.18257/raccefyn.114.

Y. Zhang, L. Ou, J. Zhao, Z. Liu, and X. Li, “Transcriptome analysis of hot pepper plants identifies waterlogging resistance related genes,” Chil. J. Agric. Res., vol. 79, no. 2, pp. 296–306, 2019, doi: 10.4067/S0718-58392019000200296.

D. Wahyudi, L. Hapsari, and S. Sundari, “RAPD Analysis for Genetic Variability Detection of Mutant Soybean (Glycine max (L.) Merr),” J. Trop. Biodivers. Biotechnol., vol. 5, no. 1, p. 68, 2020, doi: 10.22146/jtbb.53653.

D. Olszewska, A. Niklas-Nowak, and L. Nowaczyk, “Estimation of genetic divergence within androgenic regenerants of Capsicum annuum L. ATZ1 × C. frutescens L. F1 plants using Random Amplified Polymorphic DNA markers,” Biotechnologia, vol. 98, no. 3, pp. 175–182, 2017, doi: 10.5114/bta.2017.70795.

M. F. Lima, S. I. C. Carvalho, C. F. Ragassi, L. B. Bianchetti, F. G. Faleiro, and F. J. B. Reifschneider, “Characterization of a pepper collection (Capsicum frutescens L.) from Brazil,” Genet. Mol. Res., vol. 16, no. 3, pp. 1–18, 2017, doi: 10.4238/gmr16039704.

E. N. Khasna et al., “Polymorphism of Pun1 gene for pungency in Capsicum frutescens ‘Cakra Hijau’ Indonesian local pepper,” AIP Conf. Proc., vol. 2002, no. August, 2018, doi: 10.1063/1.5050115.

S. K. Dhungana et al., “Quantitative trait loci mapping for flooding tolerance at an early growth stage of soybean recombinant inbred line population,” Plant Breed., vol. 139, no. 3, pp. 626–638, 2020, doi: 10.1111/pbr.12790.

A. Borrego-Benjumea, A. Carter, J. R. Tucker, Z. Yao, W. Xu, and A. Badea, “Genome-wide analysis of gene expression provides new insights into waterlogging responses in Barley (Hordeum vulgare L.),” Plants, vol. 9, no. 2, pp. 1–23, 2020, doi: 10.3390/plants9020240.

H. E. Cuevas and L. K. Prom, “Evaluation of genetic diversity, agronomic traits, and anthracnose resistance in the NPGS Sudan sorghum core collection,” BMC Genomics, vol. 21, no. 88, pp. 1–15, 2020, doi: 10.1186/s12864-020-6489-0.

Z. Migicovsky, E. Warschefsky, L. L. Klein, and A. J. Miller, “Using living germplasm collections to characterize, improve, and conserve woody perennials,” Crop Sci., vol. 59, pp. 2365–2380, 2019, doi: 10.2135/cropsci2019.05.0353.

N. F. F. Do Nascimento, E. R. Do Rêgo, M. F. Nascimento, C. H. Bruckner, F. L. Finger, and M. M. Do Rêgo, “Evaluation of production and quality traits in interspecific hybrids of ornamental pepper,” Hortic. Bras., vol. 37, no. 3, pp. 315–323, 2019, doi: 10.1590/s0102-053620190310.

J. Wei et al., “Production and identification of interspecific hybrids between pepper (Capsicum annuum L.) and the wild relative (Capsicum frutescens L.),” J. Agric. Sci. Technol., vol. 21, no. 3, pp. 761–769, 2019, [Online]. Available:



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development