Characterization of Fire Severity in the Moroccan Rif Using Landsat-8 and Sentinel-2 Satellite Images

Issam Eddine Zidane, Rachid Lhissou, Maryem Ismaili, Yassine Manyari, Abdelali Bouli, Mustapha Mabrouki


Forest ecosystems are exposed increasingly to a variety of human activities and accentuated by climate change. With its Mediterranean climate, Northern Morocco is very hot, which exposes forests to widespread fires. This work aims at the delineation of wildfires and the spectral characterization of burnt vegetation as well as the characterization of the fire severity in the North of Morocco by using Landsat-8, Sentinel-2 spectral data, and topographic data. The methods used include the derivation of wildfires spectral indices and the computation of topographic parameters (elevation, slope, exposure) from SRTM and PALSAR digital elevation models. Then, the Spectral Angle Mapper (SAM) classification was used to map forest fires' severity. Furthermore, we have compared the severity classes obtained from the SAM method applied to Landsat 8 and Sentinel 2 data, with different spectral indices specialized in detecting wildfires, on the one hand, and topographic data, on the other hand. Results showed that MIRBI and NBR indices allow a better characterization of burned areas than BAI index. For its part, SAM classification provides a fair characterization of the severity classes of burnt forests. It has also been shown that the MIRBI index and sun exposure are strongly correlated with severity classes. The obtained maps show the spatial heterogeneity of burns severity and how they interact with topography. These maps may help land resource managers and fire officials predict areas of potential fire hazards and study vegetation regrowth areas after fires.


Sentinel-2 MSI; Landsat-8 OLI; forest fires mapping; NBR; BAI; spectral indices; Morocco.

Full Text:



F. J. Lozano, S. Suárez-Seoane, M. Kelly, et E. Luis, « A multi-scale approach for modeling fire occurrence probability using satellite data and classification trees: A case study in a mountainous Mediterranean region », Remote Sens. Environ., vol. 112, no 3, p. 708‑719, mars 2008.

N. Koutsias et M. Karteris, « Burned area mapping using logistic regression modeling of a single post-fire Landsat-5 Thematic Mapper image », Int. J. Remote Sens., vol. 21, no 4, p. 673‑687, janv. 2000.

J. M. Sánchez, E. Rubio, F. R. López-Serrano, V. Caselles, et M. M. Bisquert, « Effects of fire on surface energy fluxes in a central Spain Mediterranean forest. Ground measurements and satellite monitoring », in Proceedings of the VII International EARSeL Workshop, 2009, p. 2–5.

M. G. Turner, W. H. Romme, R. H. Gardner, et W. W. Hargrove, « Effects of fire size and pattern on early succession in yellowstone national park », Ecol. Monogr., vol. 67, no 4, p. 411‑433, nov. 1997.

L. B. Lentile* et al., « Remote sensing techniques to assess active fire characteristics and post-fire effects », Int. J. Wildland Fire, vol. 15, no 3, p. 319‑345, sept. 2006.

« Wildfire effects on the soil seed bank of a maritime pine stand — The importance of fire severity - ScienceDirect ». [En ligne]. Disponible sur: [Consulté le: 12-nov-2018].

G. Bárcenas-Moreno, F. García-Orenes, J. Mataix-Solera, J. Mataix-Beneyto, et E. Bååth, « Soil microbial recolonisation after a fire in a Mediterranean forest », Biol. Fertil. Soils, vol. 47, no 3, p. 261‑272, avr. 2011.

F. Maselli, S. Romanelli, L. Bottai, et G. Zipoli, « Use of NOAA-AVHRR NDVI images for the estimation of dynamic fire risk in Mediterranean areas », Remote Sens. Environ., vol. 86, no 2, p. 187‑197, juill. 2003.

F. Gonzalez-Alonso, J. M. Cuevas, J. L. Casanova, A. Calle, et P. Illera, « A forest fire risk assessment using NOAA AVHRR images in the Valencia area, eastern Spain », Int. J. Remote Sens., vol. 18, no 10, p. 2201‑2207, juill. 1997.

F. J. Lozano, S. Suárez-Seoane, et E. de Luis, « Assessment of several spectral indices derived from multi-temporal Landsat data for fire occurrence probability modelling », Remote Sens. Environ., vol. 107, no 4, p. 533‑544, avr. 2007.

Chuvieco et al, « Remote sensing information for fire management and fire effects assessment », Journal of Geophysical Research: Biogeosciences, 2007.

J. San-Miguel-Ayanz et al., « Forest fires in Europe, Middle East and North Africa 2016 », 2017.

B. Rabus, M. Eineder, A. Roth, et R. Bamler, « The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar », ISPRS J. Photogramm. Remote Sens., vol. 57, no 4, p. 241‑262, févr. 2003.

T. G. Farr et al., « The shuttle radar topography mission », Rev. Geophys., vol. 45, no 2, 2007.

J. W. Rouse, « Monitoring vegetation systems in the Great Plains with ERTS », 1974.

E. Chuvieco, M. P. Martin, et A. Palacios, « Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination », Int. J. Remote Sens., vol. 23, no 23, p. 5103–5110, 2002.

S. Trigg et S. Flasse, « An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah », Int. J. Remote Sens., vol. 22, no 13, p. 2641‑2647, janv. 2001.

C. H. Key et N. C. Benson, « Landscape assessment: remote sensing of severity, the normalised burn ratio and ground measure of severity, the composite burn index », FIREMON Fire Eff. Monit. Inventory Syst. Ogden Utah USDA For. Serv. Rocky Mt. Res Stn., 2005.

G. P. Petropoulos, K. P. Vadrevu, G. Xanthopoulos, G. Karantounias, et M. Scholze, « A Comparison of Spectral Angle Mapper and Artificial Neural Network Classifiers Combined with Landsat TM Imagery Analysis for Obtaining Burnt Area Mapping », Sensors, vol. 10, no 3, p. 1967‑1985, mars 2010.

A. Anggraeni et C. Lin, « Application of SAM and SVM Techniques to Burned Area Detection for Landsat TM Images in Forests of South Sumatra », in International Conference on Environmental Science and Technology, 2011, p. V2160–V2164.

F. A. Kruse et al., « The spectral image processing system (SIPS)—interactive visualisation and analysis of imaging spectrometer data », Remote Sens. Environ., vol. 44, no 2, p. 145‑163, mai 1993.

J. D. White, K. C. Ryan, C. C. Key, et S. W. Running, « Remote sensing of forest fire severity and vegetation recovery », Int. J. Wildland Fire, vol. 6, no 3, p. 125–136, 1996.

J. M. C. Pereira, A. C. L. Sá, A. M. O. Sousa, J. M. N. Silva, T. N. Santos, et J. M. B. Carreiras, « Spectral characterisation and discrimination of burnt areas », in Remote Sensing of Large Wildfires: in the European Mediterranean Basin, E. Chuvieco, Éd. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, p. 123‑138.

Cindy Schmidt, « Introduction to Remote Sensing for Wildfire Applications ». 2015.

C. Quintano, A. Fernández-Manso, et O. Fernández-Manso, « Combination of Landsat and Sentinel-2 MSI data for initial assessing of burn severity », Int. J. Appl. Earth Obs. Geoinformation, vol. 64, p. 221‑225, févr. 2018.

M. C. Stambaugh, L. D. Hammer, et R. Godfrey, « Performance of Burn-Severity Metrics and Classification in Oak Woodlands and Grasslands », Remote Sens., vol. 7, no 8, p. 10501‑10522, août 2015.

S. O. Sunderman et P. J. Weisberg, « Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems », Remote Sens. Environ., vol. 115, no 9, p. 2384‑2389, sept. 2011.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development