

Vol.10 (2020) No. 1

ISSN: 2088-5334

A Tesseract-based Optical Character Recognition for a Text-to-Braille
Code Conversion

Robert G. de Luna

Department of Electronics Engineering, De La Salle Lipa, Lipa City, 4217, Philippines
E-mail: robert.deluna@dlsl.edu.ph

Abstract— This study provided a platform that converts printed text documents into corresponding braille code that will trigger the
palpable output of the braille cells. The system is composed of two main parts: the image scanner and the microcontroller-based
braille platform. The image scanner captures the printed text document and performs a series of pre-processing algorithms where the
processed image will be subjected to character recognition using Tesseract. It is open-source software for character recognition
capable of recognizing text characters in different fonts and sizes. SimpleCV, also an open-source software for computer vision and a
simpler version of an OpenCV, was utilized in pre-processing of images where binarization, filtering, edge detection, and character
segmentation are performed. This will allow the microcontroller-based braille platform to interpret the printed characters from the
generated braille code in ASCII format that will trigger the palpable output of the braille cells. The developed system was subjected
to functionality and accuracy testing to assess its performance. Accuracy was based on the capability of the system to produce the
right braille outputs that match the scanned line of text which are in Arial font. The testing was conducted utilizing the Arial font size
of 12, 14, 16, 18, 20, 22, and 24. Results show that the system is capable of recognizing text with greater than 85 % accuracy starting
at font size 18 with an average accuracy of 88.09 % and increases accordingly as the font size increases.

Keywords— optical character recognition; braille; image processing; tesseract; text-to-braille.

I. INTRODUCTION

An estimated 332,150 people in the country are bilaterally
blind, while the current number of persons with bilateral low
vision has already reached 2,179,733 last 2017 [1]. Effective
literacy can be hindered by blindness, especially for children
as they are beginning their path to learning. According to
Resources for the Blind, Inc., there are more than half a
million blind people and many more who are visually
impaired to a lesser degree in the Philippines. Statistics also
reveal that about 100 children lose their sight every week [2].

Blind children should be given the privilege to learn to
read and write through specific methods like the braille. It is
a tactile reading system specially developed for the blind or
partially sighted persons [3]. This invention by Frenchman
Louise Braille during the 19th century has made a turning
point for blind literacy. Due to this innovation, it has now
been adopted as the standard form of written communication
for blind people.

There are international research works already been made
to address this problem for the blinds. A study created a
system consists of the following three modules: a portable,
low-cost refreshable Body-Braille, an easy Braille writer,
and a remote communication system through SMS [4]. In
the other paper, the implementation of Braille to

Text/Speech Converter on FPGA Spartan 3 kit was produced
[5]. The input is given through braille keypad, which
consists of different combinations of cells. Another study
presented a comprehensive, unified braille Unicode system
providing detailed mapping of 8-dot braille Unicode pattern
to represent the transcribing codes as well as the math,
science, and computer symbols/characters [6].

In 2017, a study produced a prototype of an affordable
Braille display for the blind people to read when input is
given through a computer [7]. An automatic system was
used to convert computer written text to the Braille language
[8]. Another study presented a novel design of a low-cost,
low-power, portable and user-friendly Braille system [9].
The advantage of the system is that the designed system
serves as both Braille writing and reading system, so
visually impaired people can enhance their Braille writing
and reading skills without the assistance of a Braille teacher.
The designed system takes the input through the Braille
keyboard and produces the Braille output in Braille display;
the corresponding English characters are also displayed on
the LCD and also in the laptop if it is connected.

There are also some studies that produced braille system
with specific language application. One study proposed a
method for converting Braille codes to Malayalam voice
message implemented using MATLAB which can be read

128

out too through the computer [10]. In this paper, Braille code
is extracted from the input image and it is mapped to the
Malayalam database and spoken out. Also, in 2017, a study
presented a hardware design and implementation of a
portable Bengali Braille embosser [11]. A simple
microcontroller is used as a controlling unit of the embosser,
an algorithm in the conversion of the text in a braille script
implemented in a raspberry pi was proposed [12]. Specific
for Sri Lanka, a study developed a braille converter with a
text-to-speech translator to empower visually impaired
people [13]. In 2017, Team Tactile, a group of students from
the Massachusetts Institute of Technology, produced from
one competition a tactile device that is inexpensive and
portable that translates text in real-time [14].

In this paper, the researcher created an embedded system
that scans printed text documents and converts the text
images into a Braille code. A stand-alone program to
implement image pre-processing algorithms was created
using SimpleCV that runs in a mini-computer called the
Raspberry Pi with Tesseract as an engine for character
recognition. The Braille code is then generated in the
microcontroller-based braille platform as an actuator to
provide a palpable output that corresponds to recognized text
for the blind to read. Thus, this application will be beneficial
for the visually impaired person as it can scan and translates
text-content printed documents into Braille format for them
to read and understand.

II. MATERIALS AND METHODS

A. Materials

The hardware components of the system are composed of
two parts namely, the image scanner and the braille platform.
Tables I and II show the lists of hardware equipment and
software used in the creation of the system.

TABLE I
LIST OF HARDWARE COMPONENTS

Quantity Equipment Specifications

1
Webcam

(Logitech) 8 Megapixel

1
Microcomputer

(Raspberry Pi 2B)
Quadcore CPU

1 GB RAM

1
Micro SD Memory Card

(Apacer) 16 GB Class 10

1
Microcontroller

(Arduino Mega)

16 MHz Oscillator
54 digital IOs

16 analog inputs

1
Braille Cell
(SC11 KGS)

16 cell modules
200 V DC

1
Numeric Keypad

(A4Tech) USB Type

The Raspberry Pi was chosen as the acting computer due
to its capability to handle image processing as well as to
execute stand-alone programs in open-source software [15].
These conditions were found to match the main process and
the needed portability feature of the Text-to-Braille system.
In this study, the image pre-processing was considered as the
basic step for having better outputs in character recognition.
In addition, a lighting component should be implemented in
the scanner in order to compensate for the effect of ambient

light as well as to maintain and ensure the desired outputs of
the image processing.

TABLE II
LIST OF SOFTWARE COMPONENTS

Software Function Manufacturer

Matlab Image Processing
MathWorks Inc.
Massachusetts, USA

Tesseract Character Recognition
Google
California, USA

SimpleCV Computer Vision
Sight Machine Company
California, USA

Logitech C525 was the camera used. It was found to be

more desirable than the Raspberry Pi camera module due to
its higher resolution of 8 megapixels with an autofocus
feature [16]. It is evaluated to be functional because it is
flexible and easy to operate. The images are immediately
saved within the system. However, the camera is not able to
perform multiple capturing. It has to be reset after each use
because of the absence of an automatic function to close its
port after data transmission.

A python script was used in image pre-processing because
it contains all the pre-processing algorithms in SimpleCV. It
is an open-source framework for building computer vision
applications. With it, we get access to several high-powered
computer vision libraries such as OpenCV – without having
to first learn about bit depths, file formats, colour spaces,
buffer management, eigenvalues, or matrix versus bitmap
storage [17]. Although the initial plan was to create the pre-
processing algorithm in OpenCV, it was found out that
before the programming environment can be accessed, some
libraries must first be built with OpenCV. These libraries
should be compatible with the compiler to prevent errors in
the compilation of codes. In this study, SimpleCV was used
which is a simpler version of the OpenCV. It can be
programmed in the same environment with the latter but has
only limited libraries. Matlab with its image processing
toolbox is also a good alternative but the raspberry pi is
incapable of executing the program and can only be used as
a controller for peripheral devices [18]. Tesseract engine was
used in the system for character recognition. Tesseract was
originally developed at Hewlett- Packard Laboratories
Bristol and at Hewlett-Packard Co, Greeley Colorado
between 1985 and 1994, with some more changes made in
1996 to port to Windows, and some C++izing in 1998. In
2005, Tesseract was open-sourced by HP and since 2006 it is
developed by Google. Tesseract is an application software
that can be easily integrated or embedded in the Raspberry
Pi. Tesseract is selected due to its capability of recognizing
characters with different fonts and sizes [19].

The braille used in the study is the SC11 16-cell module
manufactured by the KGS Corporation in Japan. An Arduino
Mega as the controller was also used in the platform. It
features 54 digital input/output pins (of which 15 can be
used as PWM outputs), 16 analog inputs, 4 UARTs
(hardware serial ports), a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button
[20].

129

B. Methodology

1) Description of the System: The system is capable of
allowing the visually impaired to access digital information
in Braille; through which pins rise and retract to represent
Braille dots based on the scanned words of a particular
printed text. The system is composed of two necessary parts,
the scanner, and the braille platform. In the scanner part,
there will be an operator in charge of placing a single sheet
of printed text on the capturing surface. The desired line of
text needed to be captured will be set through the help of a
fixed paper cover on the scanning platform. The camera is
fixed at the height of 6 inches from the capturing platform
and thus, the printed sheet will be the one to be adjusted in
order for it to fit within the coverage area. By pressing the
capture button, the camera will begin to take the image of
the specific area of text depending on what is desired to be
read. When the user already pressed the capture button, there
will be a voice prompt saying “Capturing, please wait”
through the speaker. The captured image will then be saved
in JPEG (.jpg) format and is ready for image processing.

After acquiring an image, it will be automatically sent to
the Raspberry Pi board which contains the stand-alone
program coded in SimpleCV where the image will undergo
image pre-processing before being fed into the Tesseract
engine for character recognition. When the pre-processing is
completed, there will be another voice prompt, “Done
capturing,” signaling that the Tesseract already recognized
the character from the pre-processed image. The recognized
characters in the form of ASCII equivalent codes are sent
serially to the microcontroller for controlling the braille
platform which is informed by the “Sending to braille.
Please wait” voice output. The braille platform will be the
tangible output for the blind which is composed of braille
cells similar to a tactile display.

The controls will be dictated by the press of a button on
the numeric keypad integrated on the braille platform. It
must first be toggled off to load the program and then
toggled on to proceed with the actual control of the system.
It has a green LED indicator that when lit, signifies that it is
already toggled on. However, this feature is only for the
operator and not for the blind. The sequence of the output of
the braille cells will be determined by the ‘Back’ and ‘Next’
buttons assigned to the modified numeric keypad. These
buttons provide navigational options for the reader and
should be followed by ‘Send’ and ‘Enter’ to execute. For
every output in the braille, there will always be a voice
prompt of “Please read the file.”

The system as a whole was subjected to accuracy testing.
This depends on producing the right braille outputs that
match the scanned line of text in Arial font. During the
testing, the proponent found out that the system gets more
accurate for increasing size in the font. The testing was
conducted utilizing Arial fonts 12, 14, 16, 18, 20, 22, and 24
and based on the results obtained; the system functions
poorly with font size 12 as it has 0% average accuracy. The
system was then found to reach the target accuracy of 85%
starting at font size 18 and above. There is higher accuracy
for a larger font size since the character features are more
detailed on those larger fonts.

2) Process and Procedures: Figure 1 shows the block
diagram of the system. After capturing an image of the
printed text document, the system will employ different
image pre-processing techniques that will extract the needed
text out from the captured image. At the Raspberry Pi, it will
undergo the processes of acquisition, binarization, noise
filtering, edge detection, character segmentation, and text
recognition as part of the image pre-processing stage
(Pradeep, KM, & Jacob, 2014).

Fig. 1 The system’s block diagram of the process flow

Image acquisition serves as the first step in order to obtain

the image for pre-processing. Image binarization afterward
converts the colored levels of the image through (Red-
Green-Blue) RGB to grayscale conversion. The thresholding
process will convert the gray image into a black and white
image in order to have a definite differentiation between the
letter pixels and background pixels.

The binary image is then utilized for noise filtering in
order to remove unwanted pixels in the image. The next
stage is the edge detection where it is used to find
boundaries between lines of objects and determines
discontinuities in the image. The resulting image will have
bounding boxes on the area covered by the text. This area
will contain the individual lines of text which will be
extracted. For character segmentation, it is used to analyze
and provide a clear definition between letter spaces and
word spaces. Each character within a word will be
segmented and blank spaces in between words will be the
basis for separating the words.

The segmented characters will then undergo character
recognition through the Tesseract engine. The recognized
character will then be subjected to the microcontroller for
the conversion into a corresponding braille code in the form
of ASCII. This code will be used by the controller to actuate
the cells of the braille platform.

3) Testing the Functionality and Accuracy of the System:
The functionality test requires the whole system to meet
certain conditions to be operationally reliable. It will serve
as a measure of whether the study met the set of parameters
that were considered. The braille must actuate in such a way
that the pins rise and retract depending on the input state.
The microcontroller controls the pins of the refreshable
braille to rise and retract. For the functionality, the pins of
each cell were tested by applying high and low voltages in
the form of different number systems programmed in the
microcontroller. The system must convert ASCII codes to
the Braille Code as an output. The corresponding ASCII
code must have its corresponding Braille code output

130

displayed by the refreshable braille cell controlled by the
microcontroller.

For the test, the accuracy of the system, the actual outputs
are compared to the expected outputs. The OCR must
recognize different fonts. All 26 letters of the alphabet for
both uppercase and lowercase, numbers 0-9, and basic
punctuation marks were tested under a series of trials.
Braille output should correctly represent the expected
equivalent ASCII character input. ASCII code equivalent to
a particular letter or number will be the input to the braille
platform and the Braille output should represent the
expected equivalent character.

The overall system accuracy represents an acceptable
accuracy rate of 85 % above in every trial. Sample
simulation was performed, which involves an actual
document with different font and font size to which the
braille output of the whole system will be compared. Each
word output of the refreshable braille will be compared to its
corresponding word printed on the document. The number of
correct output words will determine the accuracy of the
whole system. The font size that will give 85 % and above
accuracy will be established and will be suggested to be used
with the system.

III. RESULTS AND DISCUSSION

A microcontroller-based braille platform has been
successfully developed that outputs the corresponding braille
character of the scanned text in a tactile display through a
serial connection with the raspberry pi. Through hardware
and software integration, a system was created which
response to every successful serial transfer of recognized
characters in ASCII format by accepting them, matches them
to the equivalent braille codes stored in the microcontroller,
and finally actuates the equivalent braille outputs. The
braille display was first found out to have no standard
preprogrammed codes for the braille characters. Thus, a
binary pattern was established for actuating each dot of the
braille cell with the corresponding English character in a
grade1, 8-dot braille format. The binary code for the high
and low pattern was then represented in hexadecimal for
data compression. Consequently, the hexadecimal equivalent
will be assigned to every serial ASCII input received. This
process was used for the ASCII-to-Braille conversion in the
microcontroller.

Fig. 2 The system set-up used in the study showing the braille platform and
the image capturing device.

Figure 2 shows the set-up of the system. For the

acquisition and pre-processing of the image of the printed
text document, a programming environment suitable and

compatible with the Raspberry Pi was established. In this
case, SimpleCV in Python language was utilized in coding
the image pre-processing steps of image acquisition,
binarization, noise filtering, edge detection, and character
recognition.

An 8 megapixels webcam with autofocus feature was
used in the study which provided clear capture of the sample
document. Once captured, the image will be automatically
loaded by the program and will undergo a series of
transformations. The image results were previewed through
the remote desktop connection of the Raspberry Pi with a
Laptop. In testing the functionality of the image
preprocessing algorithms, five different sample images each
containing portions of text captured by the camera, were
used as in Table III.

TABLE III
SAMPLE RESULTS OF IMAGE PROCESSING USING SIMPLECV AND MATLAB

Algorithm SimpleCV Matlab

Image
Acquisition

Binarization

Filtering

Edge
Detection

Character
Segmentation
(first word)

The tested images are all uniform in Arial font with a font

size of varying font sizes like 12, 14, 16, 18, and 20. These
images were called individually in the program and the
results were displayed after the execution in order to track
the changes for every algorithm applied. In addition, a

131

comparison of outputs was made between SimpleCV and
Matlab. This is done for verification if both software
produces the same or close outputs with each other. Shown
in Table III is the sample results of the image preprocessing
technique.

Based on the results, it can be observed that both
SimpleCV and Matlab software produced the same outputs
with minimal variations. In the outputs of binarization, it can
be observed that SimpleCV selects a threshold value closer
to white. Thus, it has a cleaner output. For the other
algorithms, there were almost no considerable variations
with their respective outputs.

The braille platform is part of the system hardware that is
responsible for providing the palpable reading output for the
blind. For the development of the hardware part, the
proponent first made use of the schematic diagram as well as
the datasheet of the SC11 braille cells manufactured by KGS
Corporation (Japan) in order to accomplish the appropriate
wirings with the Arduino microcontroller. The braille
platform was also integrated with a numeric keypad which
was modified to have specific buttons that facilitate the main
controls for the whole system such as the program execution,
image capturing and braille display navigation. The braille
platform is then subjected to both functionality and accuracy
tests. Shown in Figure 3 is the actual set-up of the braille
platform used for the testing.

Fig. 3 Microcontroller-based braille platform

The braille platform is first evaluated in terms of its

functionality in order to ensure a working output. For the
testing proper, the braille cells must rise and retract
depending on the input state of high and low. This is done
through the Arduino serial monitor. Table IV shows the
actual response of the braille cells for the two input states. It
can be observed from the table that assigning a value of ‘1’
for each bit actuates all braille cells to rise. On the other
hand, assigning ‘0’ for each bit causes the entire braille cells
to retract. Based on the results, each braille dot for every cell
is considered functional.

The functionality test for the braille characters is carried
out to determine the response of the braille cells to serial
signals which include data representation in binary, decimal,
hexadecimal and ASCII. During the initial phases of testing,
it was found out that there were no standard pre-
programmed commands for actuating every braille character
in the tactile display. Thus, the proponent first derived the

specific order of each braille dot starting from the most
significant bit up to the least significant bit which results in
an 8-bit binary pattern. This binary pattern reflects the high
and low input states to the braille cells and the pattern varies
for every character. The proponent was able to accomplish
this through the help of the datasheet of the SC11 braille
cells. The binary values can then be compressed into
decimal and hexadecimal signals to be easily carried out at
the Arduino serial monitor for actuating the corresponding
braille character. On the other hand, the ASCII equivalent of
each character is being sent by the Raspberry Pi and will be
handed to the Arduino microcontroller. Using a specialized
code for ASCII-to-Braille script conversion, the response of
the braille cells for every ASCII signal can be determined.

TABLE IV
FUNCTIONALITY TEST OF THE REFRESHABLE BRAILLE CELLS RESPONSE TO

THE BINARY , DECIMAL, AND HEXADECIMAL CODE

State Braille Output

All pins
are high

BIN: 11111111 DEC: 255 HEX: FF

All pins
low

BIN: 00000000 DEC: 0 HEX: 0

For multiple character braille cells, the 8-bit pattern is

simply being sent serially. Thus, in the case of the 16-cell
braille display used in the system, the user must send a total
of 128 bits (16 cell x 8 bits/cell) to the Arduino
microcontroller. Figure 4 presents how an 8-bit binary
pattern is derived from a sample 8-dot braille character.

Fig. 4. An 8-bit binary pattern of a sample braille character “a” showing
the MSB, LSB, binary code, and the dot configuration

One crucial finding in this test is that the serial port of the

Arduino Mega automatically resets right after each data
transmission. The disadvantage of this is that when the next
sets of data arrive exactly at the same time during which the
Arduino is reset, the incoming data will not register into the
Arduino and will simply be discarded. Consequently, the
system will not respond and will cause an error in the
program. To resolve this issue, the proponent put a three-
second delay at the start and end of each transmission
process to ensure that the Arduino is not reset and already
initializes when the next set of data is received. Tables V
and VI show some sample results of braille actuation based
on what character to display. It is divided into two parts due
to some differences in the response of the braille cells on the
ASCII signals of some characters.

132

TABLE V
RESULT OF THE ACCURACY TEST FOR ALPHANUMERIC CHARACTERS AND

OTHER SPECIAL CHARACTERS

Braille
Character Braille Output

 BIN: 00001000 DEC: 08

 HEX: 0 ASCII: 61

 BIN: 00001100 DEC: 12

 HEX: 0C ASCII: 62

BIN: 10001000 DEC: 136

HEX: 88 ASCII: 63

BIN: 00001001 DEC: 09

HEX: 09 ASCII: 41

BIN: 00001101 DEC: 13

 HEX: 0D ASCII: 42

BIN: 10001001 DEC: 137

 HEX: 89 ASCII: 43

Based on the results, it can be seen that the braille cells

accurately respond to either binary, decimal, hexadecimal,
and ASCII representation of the following characters. Thus, it
can represent the alphanumeric characters and special
characters (! (), - * .) at 100% accuracy based on the code, it
will receive.

Shown in Table VI are the special characters which
accurately respond to binary, decimal, and hexadecimal
signals but not to ASCII. Based on the results, it can be
observed that when the Raspberry Pi sends characters such
as a colon (‘ : ’), question mark (‘ ? ‘), and semicolon (‘ ; ’),
the braille platform displays the representation of a period (.
‘’) instead. This is due to the limitation of the Arduino
platform to represent the following characters in a data type
called ‘char.’

In the ASCII-to-Braille script conversion code, all
signals received are stored in a data type called ‘char’.
Since those characters cannot be stored under ‘char’ data
type, there is no way for these characters to be given their
equivalent binary, decimal, or hexadecimal representation.
The best that the system can do is to assign these characters
to another character which is recognizable as ‘char.’ Since
period (‘.’) is the most common character that can be seen
in a document, the proponent prefers to assign these three

characters with a ‘period’ equivalent, which therefore gives
the results presented.

TABLE VI
RESULTS OF THE ACCURACY TEST FOR SPECIAL BRAILLE CHARACTERS

WITH ERROR IN ASCII

Braille
Character

Braille Output

BIN: 01000100 DEC: 68 HEX: 44

ASCII: 3A

BIN: 00100100 DEC: 36 HEX: 24

ASCII: 3F

 BIN: 00000110 DEC: 06 HEX: 06

ASCII: 3B

Aside from the braille cells, the numeric keypad is also

tested in terms of the functionality of the modified keys,
which serve a specific purpose. The Numlock button is used
to toggle the numeric keypad on/off. The Load or ‘8’ button
is used to execute the stand-alone program. The enter button
is the key to be pressed to execute other commands. The
Send or ‘0’ button signals the serial transfer to the
microcontroller. Back and Next is for display navigation
while the Capture button serves as the camera trigger.

After each of the important components of the system has
been tested and evaluated, the functionality and accuracy of
the overall project will be evaluated as a whole. To be able to
do so, the system is tested under different sets of conditions
and parameters designed to represent the conditions that it
will come across during actual operations. The results of each
test are tabulated and analyzed to be able to assess if the
objectives have been met. The following legend was used:

Legend: Correct Match Incorrect Match

Figure 5 shows the sample test image used to determine

the accuracy of the system in determining the standard Arial
font.

133

Fig. 5 Test image results for different testing conditions

The contents of the image are selected to contain all the

characters which are expected to be recognized by the
system. The overall accuracy of the system for each trial is
determined using the formula:

% Accuracy = (Number of Times Character is Correctly
Recognized / Total Number of Characters) x 100

where the total number of characters under each trial is fixed
at 108 characters.

In the table of results, the corresponding box for a
character is checked when the character is being recognized
correctly while it is left as it is when not correctly
recognized. This is to facilitate better visualization as to the
accuracy of the system for each trial. The system is tested
under the standard Arial font containing all the programmed
recognizable characters using different font sizes ranging
from 12 to 24 with an increment of 2 for every increase in
font size with each testing for every font size done 30 times
starting from the actual placing of the document at the image
scanner. This is done to determine the font size to which the
system will function accurately, in this case, to determine the
font size to which the system will start to have an accuracy
of 85% and above. Table VII show sample tabulation of the
result.

TABLE VII
OUTPUT SAMPLE OF THE PLOTTING FROM BRAILLE TESTED USING ARIAL 14

Trials

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trials

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trials

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trials

1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Trials

134

The target accuracy of 85 % is used because no OCR
program has ever been able to read 100% correctly. As an
industry-standard, 85% is regarded as good performance.
Actually, there is no perfect optical character recognition
engine. Modern OCR systems handled only about 85%
accurate data. During the testing, the proponent found out
that the system gets more accurate for increasing size in the
font. The testing was conducted utilizing Arial fonts 12, 14,
16, 18, 20, 22, and 24 and based on the results obtained, the

system functions poorly with font size 12 as it has 0%
average accuracy. The system was then found to reach the
target accuracy of 85% starting at font size 18 and above.
There is higher accuracy for a larger font size since the
character features are more detailed on those larger fonts.

The system was initially tested starting with font size 12.
However, there were no outputs from the braille due to its
incapability of recognizing characters at Arial font size 12.
Shown in Table VIII is the summary of the accuracy results.

TABLE VIII
SUMMARY OF ACCURACY RESULTS IN PERCENTAGES VIS-A-VIS FONT SIZES.

Fig. 6 Accuracy of the system in different Arial font sizes.

Table VIII and Fig. 6 shows that the system has greater
capability in recognizing Arial characters being tested
starting at a font size of 18 where it registered 88.09 %. As
expected, a further increase in the font size of the samples
will provide a significant increase in the system’s accuracy
of detection.

IV. CONCLUSIONS

The general objective of this study is to develop a braille
system that provides the blind alternative access to reading
materials through optical character recognition that converts
printed text into their equivalent braille script. This study

Trial
Font Size

12 14 16 18 20 22 24
1 0 63.89 86.11 88.89 90.74 97.22 94.44
2 0 40.74 61.11 88.89 95.37 97.22 97.22
3 0 45.37 68.52 90.74 92.59 96.30 97.22
4 0 37.04 69.44 85.19 89.81 97.22 96.30
5 0 48.15 72.22 85.19 87.96 94.44 92.60

6 0 33.33 48.15 87.04 91.67 95.37 97.22
7 0 49.07 59.26 87.04 96.30 96.30 97.22
8 0 42.59 64.81 91.67 88.89 97.22 94.44
9 0 30.56 49.07 88.89 86.11 96.30 95.37
10 0 53.70 81.48 82.41 96.30 96.30 93.52
11 0 30.56 56.48 87.96 91.67 95.37 96.30
12 0 61.11 51.85 85.19 93.52 96.30 96.30
13 0 40.74 50.00 92.59 88.89 96.30 97.22
14 0 43.52 51.85 86.11 95.37 95.37 94.44
15 0 49.07 77.78 82.40 90.74 94.44 96.30
16 0 39.81 46.11 81.48 92.59 95.37 96.30

17 0 34.26 59.26 89.81 90.74 96.30 96.30
18 0 44.44 57.41 87.04 93.52 97.22 96.30
19 0 47.22 54.63 85.19 90.74 95.37 97.22
20 0 47.22 74.07 89.81 92.59 95.37 93.52
21 0 35.19 34.26 85.19 88.89 94.44 96.30
22 0 37.96 57.41 88.89 90.74 93.52 97.22
23 0 35.19 55.56 89.81 93.52 95.37 97.22
24 0 35.19 52.78 88.89 88.89 95.37 96.30
25 0 51.85 76.85 91.67 85.19 95.37 93.52
26 0 34.26 54.63 86.11 91.67 95.37 97.22
27 0 48.15 63.89 92.59 93.52 96.30 96.30
28 0 47.22 67.59 89.81 91.67 96.30 95.37
29 0 50.93 69.44 92.59 94.44 95.37 97.22
30 0 66.11 78.70 93.52 94.44 97.22 97.22

AVE 0 44.15 61.69 88.09 91.64 95.86 96.00

135

found that a microcontroller-based braille platform has been
successfully developed generating outputs that correspond to
the braille character of the scanned text in a tactile display
through a serial connection with the Raspberry Pi. The
whole system displays 0% average accuracy when tested
with Arial font of font size 12 but exhibits higher than the
target 85% accuracy when used with Arial font of font size
18 and above. Tesseract engine an effective tool for
character recognition of different fonts and sizes. It is open-
source application software that can be easily integrated or
embedded in the Raspberry Pi.

ACKNOWLEDGMENT

The author would like to acknowledge the Office of
Research and Publication (ORP) of De La Salle Lipa
(DLSL) for the funding assistance in this research. The
author also recognized the help of the members from the
Electronics Engineering Department under the College of
Information technology and Engineering.

REFERENCES
[1] M. Jaymalin, “Over 2 million Pinoys blind, sight-impaired,” The

Philippine Star, 6 August 2017. [Online]. Available:
https://www.philstar.com/headlines/2017/08/06/1726085/over-2-
million-pinoys-blind-sight-impaired. [Accessed 2018].

[2] S. S. d. Guzman, “The 'blind' side,” The Philippine Star, 4 July 2011.
[Online]. Available:
https://www.philstar.com/opinion/2011/07/04/702093/blind-side.
[Accessed 2018].

[3] C. Simpson, “Rules of Unified English Braille,” 2013. [Online].
Available: http://iceb.org/ueb.html. [Accessed 2018].

[4] R. Sarkar, S. Das and D. Rudrapal, “A low cost
microelectromechanical Braille for blind people to communicate with
blind or deaf-blind people through SMS subsystem,” in 3rd IEEE
International Advance Computing Conference (IACC)., Ghaziabad,
2013.

[5] P. Rajarapollu, S. Kodolikar, D. Laghate and A. Khavale, “FPGA
Based Braille to Text & Speech for Blind Persons,” International
Journal of Scientific & Engineering Research, vol. 4, no. 4, pp. 348-
353, 2013.

[6] A. K. Garg, “The unified braille Unicode system: Presenting an ideal
unified system around 8-dot Braille Unicode for the braille users
world-over,” in 2016 IEEE International Conference on Advanced
Networks and Telecommunications Systems (ANTS), Bangalore,
2016.

[7] M. E. Adnan, N. M. Dastagir, J. Jabin, A. M. Chowdhury and M. R.
Islam, “A cost effective electronic braille for visually impaired
individuals,” in 2017 IEEE Region 10 Humanitarian Technology
Conference, 2017, Dhaka.

[8] A. Moise, G. Bucur and C. Popescu, “Automatic System for Text to
Braille Conversion,” in 2017 9th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI),
Targoviste, 2017.

[9] S. Sultana, A. Rahman, F. H. Chowdhury and H. U. Zaman, “A novel
Braille pad with dual text-to-Braille and Braille-to-text capabilities
with an integrated LCD display,” in 2017 International Conference
on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), Kannur, 2017.

[10] B. K. Rajan and V. Anjitha, “Braille code conversion to voice in
malayalam,” in 2017 International Conference on Communication
and Signal Processing (ICCSP), Chennai, 2017.

[11] M. A. Rahman, K. Dhar and M. A. Ullah, “Hardware design and
implementation of Bengali Braille embosser,” in 2017 4th
International Conference on Advances in Electrical Engineering
(ICAEE), Dhaka, 2017.

[12] A. Raghunandan and A. MR, “The Methods Used in Text to Braille
Conversion and Vice Versa,” International Journal of Innovative
Research in Computer and Communication Engineering, vol. 5, no. 3,
2017.

[13] P. De Silva and N. Wedasinghe, “Braille Converter and Text-To-
Speech Translator for Visually Impaired People in Sri Lanka,”
American Journal of Mobile Systems, Applications and Services, vol.
3, no. 1, pp. 1-9, 2017.

[14] M. W. Haas, “This Device Translates Text to Braille in Real Time,”
Smithsonian, 2017. [Online]. Available:
https://www.smithsonianmag.com/innovation/device-translates-text-
braille-real-time-180963171/.

[15] J. Marot and S. Bourennane, “Raspberry Pi for image processing
education,” in 25th European Signal Processing Conference
(EUSIPCO), Greece, 2017.

[16] “Logitech,” 2018. [Online]. Available: https://www.logitech.com/en-
us/video/webcams. [Accessed 2018].

[17] “Computer Vision platform using Python,” SimpleCV, 2018.
[Online]. Available: http://www.simplecv.org.

[18] “Getting Started with MATLAB Support Package for Raspberry Pi
Hardware,” Mathworks, 2018. [Online]. Available:
https://au.mathworks.com/help/supportpkg/raspberrypiio/examples/g
etting-started-with-matlab-support-package-for-raspberry-pi-
hardware.html.

[19] “Tesseract OCR,” Tesseract, 2018. [Online]. Available:
https://github.com/tesseract-ocr/tesseract.

[20] “Mega 2560 R3 Board based on Arduino,” MakerLab Electronics,
2018. [Online]. Available: https://www.makerlab-
electronics.com/product/arduino-mega-2560-r3/.

136

