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Abstract — Stochastic resonance (SR) is a nonlinear phenomenon by which the introduction of noise in a system causes a 
counterintuitive increase in levels of detection performance of a signal. SR has been extensively studied in different physical and 
biological systems, including the human auditory system (HAS), where a positive role for noise has been recognized both at the level 
of peripheral auditory system (PAS) and central nervous system (CNS). This dualism regarding the mechanistic underpinnings of the 
RS phenomenon in the HAS is confirmed by discrepancies among different experimental studies and reflects on a disagreement about 
how this phenomenon can be exploited for the improvement of prosthesis and aids devoted to hypoacusic people. HAS is one of the 
human body’s most complex sensory system. On the other hand, SR involves system nonlinearities. Then, the characterization of SR 
in the HAS is very challenging and many efforts are being made to characterize this mechanism as a whole. Current computational 
modelling tools make possible to investigate the phenomena separately in the CNS and in the PAS, then simplifying the analysis of the 
involved mechanisms. In this work we present a computational model of PAS supporting SR, that shows improved detection of 
sounds when input noise is added. As preparatory step we provided a test signal to the system, at the edge of the hearing threshold. As 
next step we repeated the experiment adding background noise at different intensities. We found an increase of relative spike count in 
the frequency bands of the test signal when input noise is added, confirming that the maximum value is obtained under a specific 
range of added noise, whereas further increase in noise intensity only degrades signal detection or information content. 
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I. INTRODUCTION 

While initially studied as a possible mechanism to explain 
long term climatic variations [1], stochastic resonance (SR) 
has been extended, over the last 30 years, to many contexts 
involving non-linear systems. SR phenomenon is today 
being applied in many fields, from physics to electronics, 
e.g., for the improvement of analog/digital conversion 
equipment [2] and the realization of innovative nanodevices 
able to transform electrical noise in useful energy [3]. There 
are also experimental evidences for a role of SR in the 
functions performed by the nervous system, including the 
detection of weak signals, synchronization and coherence 
between groups of neurons, playing an important role in 
some sense organs including the ear [4],[5]. 

With regards to the HAS (fig.1), it is not entirely clear at 
present whether RS occurs prevalently in the PAS (at the 
level of internal hair cells) [7], or in the CNS [8]. 
Additionally, the widespread multidisciplinary interest of 
this topic gave rise to a number of debates, 
misunderstandings, and controversies [9]. 
 

 
 

Fig. 1  Scheme of the HAS (modified from [6]) 
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In the same way there is a difference of opinions of some 
authors regarding the applicability of RS for people with 
hearing loss. While some authors consider that this 
phenomenon can be exploited for the improvement of the 
performances of hearing devices and prostheses (e.g., [10]), 
other claim that there are serious limitations to the 
applicability of SR in this field. Nevertheless, all these 
considerations underline a positive role for noise in such 
systems, and that SR phenomena can be detected already at 
the neuron level, e.g. during the encoding of sensory 
information [9, 11].  

Current computational modeling tools make possible to 
investigate the sound-detection mechanisms mediated by the 
SR in the PAS and the CNS separately, then simplifying the 
analysis of the mechanisms at the basis of this phenomenon. 
In this work we find evidences of SR in a model of PAS, that 
shows improved detection of sounds when an optimal 
quantity of input noise is added. The model is composed of 
a block which emulates the PAS, based on the Brian Hears 
library (Brian simulator, Python®)[12], and a subsequent 
detector of occurrences. 

Firstly, by varying noise strength, we confirmed the 
presence of a noise level for which the test signal is better 
represented in terms of relative spike count in the frequency 
bands of the test signal. The presented model shows that SR 
is able to ameliorate the representation of the signal in the 
PAS, allowing deeper zones (located in the CNS) to increase 
the recognition performances of the original sound. 

The realized model allows for an understanding model of 
SR mechanism in the PAS, and suggests applications in 
which noise with proper frequency features would be able to 
maximize the intelligibility of the input signal. 

II. MATERIAL AND METHODS 

A. Stochastic resonance in the auditory system 

Nonlinear systems need a threshold, subthreshold 
stimulus and noise for SR phenomenon to occur. These three 
ingredients account for the observation of SR in fields 
ranging from physics and engineering to biology and 
medicine [13]. Focusing on the auditory system, the 
introduction of a small quantity of noise to a periodic signal 
slightly below the threshold, involves reaching the level 
sufficient for the system to detect it. Then, in some contexts 
the optimal signal noise ratio (SNR) does not occur when the 
noise is reduced to the minimum [5, 14, 15].  

Studies in this field are still not able to explain whether 
there is an interaction between the effect of SR occurring in 
the PAS and that of the CNS, nor if there is an optimal SNR 
varying with the frequency.  
However, there is experimental evidence of SR in the 
auditory system of vertebrates [6] and many models have 
been developed based on the hair cells (which are key 
elements in auditory transduction) and the activity of 
cochlear fibers afferent to them [16], to uncover the 
underpinnings of stochastic resonance (SR).  
Subsequent stages of CNS, which have the task of 
interpreting the information coming from hair cells, are in 
turn at least influenced by the effects of SR from the PAS. 
 

B. The transduction of sounds in the basilar membrane of 
the cochlea 

The vibration of the basilar membrane of the cochlea 
(Fig.2) causes the bending of the stereocilia of the hair cells. 
The vibration of the latter causes the cellular depolarization 
and hyperpolarization, depending on the direction of the 
movement. Depolarization is enabled by a chain of events 
that can be synthesized with the inflow of potassium ions 
into the hair cell. The resulting membrane potential variation, 
results in the release of a neurotransmitter from the base of 
hair cells (i.e., the glutamate) [17]. When this 
neurotransmitter reaches the synaptic junction, it promotes 
an action potential in one or more nerve endings [18]. 

 
Fig. 2  Schematic drawing of the basilar membrane of the human cochlea. 
High frequencies are processed in the basal end of the cochlea, while lower 
frequencies are processed toward the apex. The width of the basilar 
membrane increases from the base of the cochlea to its apex. 

 
Basilar membrane encodes frequency tonotopically, i.e., 

tones which are close to each other in terms of frequency are 
represented in topologically neighbouring regions. Other 
aspects of the stimulus are encoded in the discharge of 
cochlear nerve fibers, as the duration (which is signalled by 
the length of the activity) and the intensity of the stimulus 
(related to the density of the nervous activity and by the 
number of hair cells involved in the discharge) [18]. 
Dedicated hair cells that have higher activation threshold, 
are responsible to signalize intense stimuli with their 
depolarization. 
Tonotopical organization is maintained in the following 
projections to the primary auditory cortex via the auditory 
radiation pathway. Despite the tonotopy is an important 
source of information for the discrimination of sound 
frequencies, the identification of sounds below 4 kHz occurs 
in part also thanks to the coherence in the discharge of 
excited nerve fibers [17,18], through a phenomenon called 
phase locking, by which the discharge of the neuron always 
corresponds to a particular phase of the sound wave.  

C. Absolute threshold of hearing 

The first studies to quantify the perception of sound were 
those carried out by Fletcher and Munson [19,20], who 
conducted experiments in order to relate the loudness (i.e., 
the subjective perception of sound pressure) to varying 
frequency, showing the astonishing sensitivity and dynamic 
range of the human ear. An equal-loudness contour (i.e., 
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isophonic curve) is a measure of sound pressure (measured 
in decibel, ref. 20 μPa) over the frequency spectrum, for 
which a listener perceives a constant loudness (measured in 
phon) when presented with pure steady tones (fig. 3), and is 
determined by structural features of the auditory channel and 
the middle ear. Their studies show that the frequency range 
[1-5] kHz is perceived with a greater intensity for the same 
sound pressure level with respect to higher and lower 
frequencies. The lowest of the curves represents the absolute 
threshold of hearing, or minimum audibility curve, and 
indicates the minimum threshold for a tone to be perceived. 
The original isophonic curves, which consist in a 
standardized graph for an average human, have been 
recently defined by a new standard, the ISO 226: 2003 
(current standard, confirmed in 2014). 

 

 
Fig. 3  Equal loudness contour (red) from ISO 226:2003, and original 
Fletcher-Munson curves (blue).  
 

D. Critical bands 

A critical band is defined as a range of frequencies within 
which two pure tones are not properly discriminated by our 
hearing system. This effect is caused by the proximity of the 
areas in which the two tones are represented on the basilar 
membrane [21].   

The size of the critical band is not constant for all 
frequencies, but it grows with increasing frequency. This 
trend is explained by the fact that each critical band is 
represented on the basilar membrane by a ~1.2 mm long 
band, and that with increasing frequency, more tones coexist 
within this space [17]. 

Zwicker and Terhardt [22] characterized the approximate 
behaviour of the critical bandwidth with respect to the center 
frequency f0 with the following expression: 
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Fig. 4  Critical bandwidth as a function of frequency [22]. 

E. Computational model of the PAS 

Our ear model is realized with Brian Hears [23], an 
auditory library that includes sound generation and 
manipulation tools, filter banks (e.g., gammatone, 
gammachirp), detailed cochlear models (e.g., dynamic 
compressive gammachirp, DRNL), HRTF filtering, and easy 
integration with the spiking neural network (SNN) 
simulation package Brian [12], which is written in the 
Python programming language [24]. In order to synthesize a 
realistic computational model that allows realistic 
simulations, we reproduced the scheme evidenced in Fig.1, 
using a band pass filtering stage based on the work of Tan & 
Carney [25], which is inspired on the frequency response of 
the middle ear [26]. A gammatone filterbank allows 
separating the sound spectrum into 3000 bands [27]. A 
rectification block simulates the transduction of internal hair 
cells and finally a block of 3000 Leaky integrate and fire 
neurons with noise and refractoriness (fig. 5) approximates 
the cochlear fibers afferent to the internal hair cells.  

 
 
 
 

 

 
Fig. 5  Leaky integrate and fire neuron: circuital and functional schemes 
(left and right, respectively). In the circuital scheme are indicated the 
leak resistance (Rm), the membrane capacitance (Cm), the resting potential 
(Vr) and finally the stimuli (input current with noise). In the functional 
scheme, a qualitative behaviour of this neuron model is represented. The 
neuron makes a continuous integration of the input contributions (leaky 
summation). The added noise is able to anticipate the spiking of the neuron. 
Once the neuron fires, its membrane potential (Vm) is reset to Vr and 
maintained for a period (refractory period, blue arrow) during which the 
neuron is unable to integrate new inputs.  
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Such model is able to accept sounds as input, including 
pure tones, complex sounds, and different types of noise. 
Moreover it is possible to vary level and duration of the 
sound stimuli. In order to evaluate the model activity, a 
rasterplot (i.e., a diagram with the number of neurons on the 
ordinate and the time relative to the duration of the 
simulation on the abscissa) is printed on the screen at the end 
of each simulation, showing the spikes, or the action 
potentials, produced over time. 

The model reflects the tonotopy of the basilar membrane 
and nerve fibers afferent to the inner ear: spiking activity of 
low-cardinality neurons (closer to the apex) is obtained for 
low frequencies; vice versa, spiking activity of high-
cardinality neurons (closer to the base) is obtained for high 
frequencies (fig.6). In addition, when the basilar membrane 
is set in vibration by a tone, the number of internal hair cells 
involved increases with the amplitude of the stimulus: an 
higher sound pressure level will involve more neurons than 
one of low intensity, in addition to generate more spikes. 

 

 
Fig. 6  Raster plot of the model output of a simulation of 900 ms, with a 
pure tone of 4,5 kHz. 

 

F. Method 

In order to validate the SR phenomenon we performed 
and extracted quantitative measures of neural activity. Since 
the noise causes a variability of such measures we 
considered sets of 5 simulations of the same type (trials) and 
then extract the mean value. In this work we will refer to the 
conventional value of SPL (20 μPa). 

G. Mapping critical bands in the PAS model 

Since the size of the critical band (see fig.7) increases 
with the frequency (eq.1), as first step we characterized the 
correspondence between the frequency of stimulation 
(central frequency) and the band of neurons that is activated 
in the model. We tested the model with 6 different 
frequencies, i.e., test frequencies: 100Hz, 290Hz, 823Hz, 
1.99 kHz, 4.5 kHz, and 9.4 kHz.  

 

 
 

Fig. 7 Central frequency and related critical band. 

Critical bands related to the 6 test frequencies (BWf0) 
were obtained through eq.1. Lower frequencies have not 
been checked because not necessary (similar values of 
bandwidth [18]). In order to have an intuitive evaluation of 
the extreme limits of the critical band for the considered 
frequency f0 (i.e., fA and fB), we considered the band to be 
symmetrical with respect to f0, and computed with the set of 
eq.2:  
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The tonotopic organization of the model is summarized in 

the following table, where each value has been obtained by 
averaging the results of a set of 5 trials of 900 ms for each 
one of the chosen frequencies.   

 

TABLE I 
CHARACTERIZATION OF THE CRITICAL BANDS  OF THE MODEL FOR THE SIX 

TEST FREQUENCIES CONSIDERED.  

Stimulus 
frequency 

Position 
(cochlea) 

Neuron 
ID 

BW of 
critical 
band 

BW of 
critical 
band 

[kHz] [mm]  [Hz] [n°involved 
neurons] 

9.4 5 2500 2120 156 
4.5 11 2000 797 101 
1.99 16 1500 299 85 
0.823 22 1000 143 87 
0.29 27 500 106 157 
0.1 32 191 100 205 

 

H. Identification of the minimum audibility curve of the 
model 

In order to verify whether the model adheres to the real 
auditory threshold described in literature, we checked the 
model for 7 different frequencies (20 Hz, 100 Hz, 290 Hz , 
823 Hz, 1.99kHz, 4.5 kHz and 9.4 kHz) considering 
simulations of the same input duration. Note that here we 
tested also frequencies lower that 100 Hz, in order to have a 
complete characterization of the human hearing range.  
For each one of the 7 frequencies chosen for the check, we 
made different sets of 5 simulations of 10 second, 
considering the pure tone as input, each one at different 
input levels, and calculated for each combination 
(frequency-input level) the mean number of spikes evoked in 
neurons pertaining to the critical band (NBWC). Finally, we 
compared the obtained value with the NBWC obtained by 5 
simulations of 10-second each in absence of input. 
In order to have a measure of the spiking activity evoked by 
the test tone, we calculated the average number of spikes in 
the critical band of the test tone (NBWC), i.e., the average 
spike count (ASC), with the following formula: 
 

5
=

5

1n = CNBW
ASC   (3) 
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We traced the absolute threshold for each frequency 
considering the SPL value that produced an ASC of almost 
50% the ASC obtained in absence of input. 
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Fig. 8 Absolute auditory threshold of the model, obtained through repeated 
simulations based on pure-tones 

 

I. Stochastic resonance validation tests 

The protocol followed in this work is aimed to detect 
whether the addition of white noise to a subthreshold tone is 
able to increase neuronal activity along the basilar 
membrane of the cochlea preferentially in the neurons 
corresponding to the frequency of the test tone. 
In order to understand how the injection of noise is able to 
modify the spiking activity, we performed the following 
simulations: 

• a set of trials with spontaneous activity of the model 
(i.e., without stimulus); 

• a set of trials with a pure tone in the neighbourhood 
of the audibility threshold as input; 

• a set of trials containing the same signal with added 
noise. 

The duration of each simulation was 10 seconds; each 
simulation was repeated 5 times for each check. We firstly 
computed and compared the ASC from the 3 sets of 
simulations.  

In addition, a coefficient called relative spike count (RSC) 
was conceived to understand if the introduced noise would 
produce a relative increase of NBWC considered, with 
respect to the neurons of adjacent areas. 
The RSC is defined as the ratio between the number of 
spikes NBWC and the half-sum of the spikes produced in the 
adjacent critical bands (i.e., the mean number of spikes 
evoked in neurons pertaining to the upper and lower critical 
bands, NBWU and NBWL respectively): 
 

LU

C

NBWNBW

NBW
RSC

+
⋅2

=           (4) 

 
For each simulation the RSC value was calculated. The 

average RSC (ARSC) of each check was obtained with the 
following formula: 
 

 
5

=

5

1n =
RSC

ARSC          (5) 

 
Conversely to ASC, ARSC gives us not just a measure of 

activity in the band of interest, but a measure of the relative 
activity with respect to adjacent areas. Then, such metric 
gives us a measure of the detection performance of the PAS 
model. In the next section, we will focus on the results 
obtained on a single frequency, i.e., 4.5 kHz, where 
significant results have been obtained. 
 

 
Fig. 9  500 ms of raster plot for a test tone of  f0 = 4,5 kHz: activity centered 
on the neuron 2000 and its adjacent areas. 

III.  RESULTS AND DISCUSSION 

In this section we report and discuss the results obtained 
with a battery of simulations related to a test tone of 4.5 kHz 
which level is in the range [-5,-4] dB and noise in the range 
[-12, -4] dB, checked with steps of 1 dB for both tone and 
noise. 

TABLE II 
CHARACTERIZATION OF THE SR FOR THE TEST FREQUENCIES CONSIDERED 

(A=ABSENCE OF INPUT, T=TONE, N=NOISE).  

Input 
signal 

Signal level 
[dB] 

 @ 4.5 kHz 

Noise 
level [dB] 

ASC ARSC 

A -- -- 1 0.95 
T -5 -- 2.8 1.58 

T + N -5 -12 3 1.6 
T + N -5 -11 2.8 1.74 
T + N -5 -10 3.2 2.26 
T + N -5 -9 1.6 1.16 
T + N -5 -8 3.4 1.99 
T + N -5 -7 2.6 1.69 
T + N -5 -6 1.8 0.82 
T + N -5 -5 4.8 2.46 
T + N -5 -4 2.8 1.58 

T -4 -- 3.8 1.51 
T + N -4 -12 3.0 0.89 
T + N -4 -11 2.6 1.77 
T + N -4 -10 3 1.05 
T + N -4 -9 3 1.43 
T + N -4 -8 3.6 2.22 
T + N -4 -7 3.2 1.44 
T + N -4 -6 1.8 1.55 
T + N -4 -5 3.2 1.5 
T + N -4 -4 2.8 1.93 
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Table II shows the analysis of the absolute and relative 
activity with regards to the critical band of interest. The 
response of the system in absence of stimulus is highlighted 
in grey, whereas response to pure tones is highlighted in 
green. In yellow we highlighted the cases where the relative 
activity reported in the critical band increases in presence of 
noise. In fig. 10 we show the trends of ARC and ARSC with 
the two tone levels. 

The simulations carried out in this work show that the 
variation in the intensity of the noise added to an 
underthreshold signal is able to activate the effect of SR, 
resulting in an increase or decrease in the detection 
performances. Taken together, the results show that the 
detection performances are not deterministically correlated 
to the noise level. In figures 10 and 11, we report as 
emblematic case the graphical representation of data from 
Table II, concerning neural activity evoked in the model 
with regards to a pure tone of 4.5 kHz at the levels of -5 and 
-4 dB, with varying noise level. 

The computational model of the PAS is able to support 
the SR phenomenon, showing an improvement of detection 
performances near the threshold, for a particular range of 
SNR. In addition to serving as a model of understanding, 
such kind of models can be of help in the design of 
prostheses and acoustic aids able to compensate for the 
typical problems encountered by people with hearing loss, in 
which the absolute threshold of audibility is perturbed. In 
facts, a decrease of the minimum threshold of audibility has 
been found for some combinations of SR, corresponding to 
an improvement in the detection of weak signals.  
Another improvement could be that of using neuron models 
able to exhibit the neurocomputational feature spike latency 
[28, 29] and modelling the backward connections shown in 
fig.1. The delayed feedback introduced by these two 
elements could give rise to further resonance phenomena, 
facilitating neural synchronization. 
 

 
Fig. 10  Noise level versus ARSC values, for a tone level of -5 dB SPL, 
when the model is stimulated with tone + noise (red solid curve). Reference 
values:  tone only (dashed line), and absence of input (dash-dot line).  

 

 
Fig. 11  Noise level versus ARSC values, for a tone level of -4 dB SPL, 
when the model is stimulated with tone + noise (red solid curve). Reference 
values:  tone only (dashed line), and absence of input (dash-dot line). 

IV.  CONCLUSIONS 

Finally, given the complexity of the system, it will be 
necessary to investigate the impact of the choice of model 
parameters to the system behaviour in order to avoid 
artefacts and misinterpretations. An extension of this work 
could be that of applying the present system for recognition 
applications. While here we have used a simple measure of 
the relative activity with respect to adjacent areas (ARSC) in 
order to evaluate the detection performance, it is known that 
in the real HAS dedicated neuronal microcircuits exploit 
different features of the evoked spike patterns for the 
detection and recognition of stimuli. In this regards, the use 
of machine learning techniques, which are increasingly 
being developed in a wide variety of areas [30-34] including 
the field of hearing [35], would allow us the extraction of 
additional information with respect to the mere count of 
occurrences from the spike patterns, leading us to an 
improvement of the detection performances. Hereof, since 
today’s machine learning systems are frequently based on 
neural networks [36-40] (among which the SNNs [41]) a 
direction could be that of using nature-inspired recognition 
systems, which would allow us to better mimic the 
subsequent stages of PAS (i.e., SNC part of fig. 1) and to 
expand the system to model the complete HAS. The 
tendency of adopting neuro-inspired solutions in the field of 
machine learning [36, 42-43] is the emblem of the 
continuously growing similarities between biological 
systems and computer science that are characterizing the last 
few years (computing techniques  (e.g., [44]), 
communication networks (e.g., [45-46]) and so on). 
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