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Abstract— Managing traffic in a large city has become a topic of great interest in both politics and science. The costs of poor traffic 
management have been quantified as losses equal to millions of dollars, not counting the unquantifiable value of the time that a 
person loses in traffic jams. Intelligent transport systems (ITS) offer a set of innovative solutions specific to the management of 
different modes of transport. This article focuses on the development of an ITS for the city of Quito that allows smart decision-
making to direct heavy haul transporters that want to enter the city via one of its main access routes. Technologies such as Sensor 
Web Enablement (SWE), in association with the Message Queuing Telemetry Transport (MQTT) communication protocol, facilitate 
the development of a vehicular management platform/system capable of sending notifications in real-time and issuing instructions to 
drivers regarding traffic delays along routes, average speeds, etc. The system supports a network of heterogeneous sensors accessible 
through the web. It can integrate any device that uses HTTP protocol. Time interval and location range testing have been undertaken 
to refine the accuracy of the system and make it adaptable to any geographic situation. The system allows communicate with the 
server through MQTT or through web services, using technologies such as: MongoDB and GeoJSON. One of the most relevant 
results is that the degree of accuracy of the system is within appropriate ranges when compared to commercial applications such as 
Google Maps and Waze. 
 
Keywords— internet of things; sensor web enablement; message queue telemetry transport; intelligent transport system; 
crowdsensing. 

 
 

I.   INTRODUCTION 

We are in the midst of the digital age and are witnesses to 
the exponential growth in the development and use of 
personal devices such as smartphones, tablets, the Rasberry, 
etc. Together, these devices constitute a potential network of 
heterogeneous sensors that enable the expansion of device-
based information exchange, thus improving autonomous 
decision-making. From this digital environment,  the IoT 
(Internet of Things) has emerged as a platform for 
interconnecting sets of autonomous digital systems to 
society, and collecting and providing information between 
end users [1]–[5]. The integration of heterogeneous sensors 
(sources of information) with data management systems has 
created intelligent environments capable of responding to all 

types of imminent risk [6]–[8]. Big cities are host sites of 
this new integration [9], [10]. In order to tackle issues arising 
from the need to manage urban environments, big cities have 
implemented a series of broadcasting technologies that 
transmit relevant notifications that benefit society at large. 
By adopting specified technologies as their preferred tools, 
these cities have entered the ranks of the smart cities. For 
example, using a set of sensors at the main access routes to a 
city allows it to predict the duration of intercity delays. 
These sensor networks are called SmartRoads [11]. Within 
this context, our study focuses on optimizing the flow of 
heavy transport into the city of Quito, a project we have 
identified as ESR–Q (Ecuador Smart Roads - Quito). 
Transportation is a key topic that plays a crucial role in 
commerce and industry. During the past several years, the 
number of vehicles in Ecuador has grown. Currently, 
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301,806 trucks with a minimum load-bearing capacity of 3.5 
metric tons now circulate in Quito [12]. In 2016, traffic flow 
into the city increased by 31,761 vehicles. This amount 
jumped to 70,203 vehicles in 2017, representing a 121% 
growth rate [12]. At the same time, the capacity of the access 
roads to handle traffic flows into the most important cities in 
Ecuador has remained the same. Among the most 
representative effects of excess traffic flow are the inability 
to make deliveries and delays in delivery schedules. On a 
related topic, truck drivers in Ecuador are generally unaware 
of motor vehicle accidents, highway blockages due to 
landslides, and many other problems that complicate the 
traffic flow panorama. 

In the city of Quito, the 2016 statistics [13] show that 
213,932 vehicles entered the city by the various routes 
available. In 2017, there were 227,187 vehicles entered the 
city, representing a 6.19% increase in traffic flow. This 
problem entails a commute of between 1-2.5 hours for 
travelling between work and home [14]. The newspaper El 
Comercio reports that, on average, a person spends 28 hours 
per month stuck in traffic in Quito [15], equal to 336 hours 
or 14 days per year. However, among the alternatives that 
Quito’s public officials have proposed to improve mobility, 
there is no mention of developing an Intelligent 
Transportation System (ITS) that takes advantage of the 
population’s widespread access to smartphones. To address 
this problem, our research project proposes an ITS to 
manage the main access roads into Quito adapted to the 
city’s unique characteristics (such as its challenging 
geography). This system broadcasts real-time notifications 
of traffic-related events on Quito’s main arteries.  It presents 
to the end user the most recent data about conditions on 
selected routes, such as average traffic speed, delay time, 
average traffic congestion (according to IMT, or 
International Mobile Telecommunications), and ETA 
(Estimated Time of Arrival). These parameters are assessed 
in Section III in order to verify their effectiveness. To 
complete this analysis, we used data obtained from 
heterogenous sensors available throughout the community 
(smartphones), along with electronic modules designed 
exclusively to fulfill prototype testing. Based on these data, 
we made improvements that improve drivers’ access to 
information regarding the real-time conditions on favored 
routes, thus enhancing their ability to make better decisions 
regarding travel plans.  

The prototype uses a distributed communications 
architecture that integrates heterogeneous devices and 
handles both data acquisition and results notification for end 
users. The system allows any user, regardless of device, to 
find, link to, and query any sensor in order to expand their 
sources of information. Utilizing a sensor network allows 
our system to cover a large area in which the system can 
then strategically pinpoint sensors in order to take 
measurements of other roadway conditions. In summary, our 
system has been designed to incorporate new sensors, 
regardless of whether they are components of mobile or 
fixed devices, and regardless of their software or hardware 
constraints. Incorporating new sensors increases data volume 
and therefore allows the system to make new estimates that 
help drivers navigate access into the city. According to our 
study, the more information is generated about roadway 

access, the better forecasts mimic actual roadway 
conditions—this trend is examined in Section III. The 
widening of the sensor network optimizes arrival times, and 
minimizes produce loss and travel operating costs.  

Even though there are off-the-shelf applications that fulfill 
similar objectives, our project takes advantage of new ITS 
tools and can be customized to the needs of specific cities. 
Our pilot project produced minimal error percentages in 
regard to predicted times compared to measurements of 
actual highway conditions, and compared to the most 
commonly used WAZE (community-based GPS navigation) 
traffic management applications for commerce [16]. 

This article is divided into four sections. Section I 
(Introduction) focuses on the different angles to ITS 
implementation and synthesizes the general features of our 
research. It also describes the research projects aimed at 
developing proposals for transportation management that are 
most relevant to our project. The second section presents the 
technical architecture of our system (ESR-Q), focusing on 
the information, sensor system, and notification blocks used 
in this prototype. Next, it presents the results of trial run with 
the software developed. Finally, it offers the conclusions and 
follow-up research plans. 

A. State-of-the-Art 

We focused our study on heavy haul transport in Ecuador, 
since heavy haul drivers experience ongoing economic 
losses because they lack knowledge about roadway 
conditions [17]. For example, lack of knowledge about a 
landslide can result in a traffic jam that lasts hours and, 
consequently, leads to loss of merchandise and failure to 
meet the scheduled delivery. Ultimately, lack of situational 
awareness significantly affects the economic development of 
the country. Currently, the driver community uses social 
networks such as WhatsApp, Facebook, and Twitter to stay 
informed about roadway conditions. However, most 
notifications are decontextualized, that is, they are not real-
time alerts, and are sometimes so out-of-date that they are 
misleading. By applying ITS technology, a system tries to 
reduce the impact that urban traffic has on a city [18], [19]. 
Several ITS-based traffic management projects have been 
developed [20]–[22]. In the state of Michigan (USA), 
various projects under the umbrella term, ITS-Michigan, are 
underway. Their goal is to improve urban safety and 
viability in Michigan [23]. One of the most characteristic 
projects uses video cameras and adaptive traffic lights to 
optimize and control intercity traffic. The Russian city of 
Moscow has created a group of related projects, called ITS-
Russia, to address traffic management problems [24]. ITS-
Russia used the latest advances in technology, such as 
outdoor camera detection, to identify and locate vehicles that 
have broken down, vehicles moving in the opposite direction 
to the traffic, etc. In contrast, Ecuador currently has no 
projects that are using traffic management technology, 
except for an isolated project in Ambato, Ecuador [25] that 
measures vehicular traffic by counting passing vehicles by 
means of cameras installed on city streets. The goal in 
Ambato is to determine the number of autos travelling along 
a certain route in order to optimize traffic light signal 
changes. However, for a developing country such as Ecuador, 
acquiring more cameras to cover a wider area is not feasible. 

508



In contrast to the studies mentioned above, our project does 
not require a large budgetary investment, since we are basing 
our technology on a set of devices already deployed in our 
community, i.e. smartphones, that host the on-demand 
mobile application we have designed and developed. 

There are off-the-shelf solutions, such as Waze, that 
address traffic management concerns. These platforms allow 
end user interaction via mobile applications. They can both 
collect end user data and transmit results. For example, 
Waze recompiles traffic data and classifies it into areas of 
interest. Therefore, it can transmit detailed traffic data in 
real-time to a community. Projects such as that of Banner 
and Orda [26] have examined the various algorithms that 
Waze uses in order to make traffic predictions, including the  
Bayesian Nash Equilibrium, Price of Anarchy (PoA [27]), 
and Price of Stability (PoS [26]). These algorithms are key 
to describing traffic behavior and transmitting relevant 
results to the community.  In contrast, our research bases 
itself on concepts in the SWE-SOS heterogeneous standard, 
in combination with IoT MQTT protocol, that take 
advantage of their crowdsensing capabilities. Our research 
suggests that the more sensors there are in the system, the 
lower the percent error in the analyzed data (velocities, times, 
etc.) will be. (See Section III Results.) In short, the results of 
this research are on par with or even exceed results using 
Waze, an application adapted for global use. Another 
advantage that our application delivers is that it adapts to a 
wide variety of sensors; it is not limited to mobile 
applications only. Our project is customized and adjustable 
to conditions in Quito, whereas Waze might include 
outdated routes that are no longer available, especially given 
the high pace of change in developing countries, such as 
Ecuador. 

Within this field of research, we have identified several 
projects that monitor vehicular traffic. One of the most 
prominent is the Collaborative System for Monitoring 
Vehicular Traffic developed by the Instituto Politécnico 
Nacional (IPN, or National Polytechnic Institute) in Mexico 
City [28]. This project addresses three challenging aspects of 
monitoring traffic.  First, data must be collected from mobile 
users. Second, the data are stored in the Postgresql 
repository. Finally, the data are processed to identify the 
intensity of traffic congestion on selected routes in the city. 
Technologies employed in the solution include PostGresSql 
for data storage, Apache Tomcat for web service hosting, 
and Android Studio for mobile applications development. In 
contrast, we use a SWE-SOS standard interface, which 
accepts web messages from a wide variety of sensors, in 
such a way that it broadens the source base beyond just 
smartphones operating with Android [28]. 

Another project aimed at improving urban mobility 
through traffic monitoring is McGill University’s “Towards 
a WIFI-Bluetooth system for traffic monitoring in different 
transportation facilities” [29]. This project measures traffic 
parameters such as travel time, average speed of travel, and 
traffic volume. It employs wireless technology, due to its 
low cost, and can collect large amounts of data in a short 
period of time.  The system uses at least two Bluetooth 
sensors on major routes separated by a specified minimal 
distance to measure variable shifts in vehicle times. 
However, the project is limited by Bluetooth’s maximum 

coverage—for Bluetooth 5.0,  approximately 240 meters 
[30]—and by the number of sensors that can be connected to 
a single network. Regardless, the results closely approach 
real-time conditions. For example, for a designated section 
of the route, where the real speed was 27.34 km/h, the 
calculated speed was 28.33km/h. This calculation represents 
a low 3.49% margin of error. The limits of the system such 
as its range, however, make the project unscalable to larger 
cities such as Quito. Our current research project uses a 
standard web interface that gives users more flexibility, 
since sensors are not limited to certain geographical 
distances, as in the Lesani et al project [29]. Our system can 
have nearly ubiquitous reach, allowing it to send and receive 
data independent of the geographic location of sensors. 
Another research project known as “VANET based Real-
Time Intelligent Transportation System” [31] takes 
advantage of the rapid growth of ad-hoc networks in vehicle 
network technology (VANET). These systems use RFID 
(Radio-Frequency Identification) and ARM (Advanced 
RISC machine) technology to display the least congested 
routes to drivers. But as is the case with the Lesain et al 
project [29], we must analyze the technological limits of this 
system. RFID, for example, has a restricted range that makes 
it unsuitable for use in remote locations such as 
interprovincial highways. Moreover, any improvements in 
measuring devices directly affect the cost of implementing a 
system. In contrast, in our project, display costs are nearly 
zero for users equipped with smartphones. 

II.  MATERIAL AND METHODS 

ESR–Q is built on a client-server architecture in which the 
server uses a SWE-SOS interoperable web interface to 
manage the remote queries of heterogeneous clients. It also 
incorporates a REST software architecture style that uses 
HTTP (Hypertext Transfer Protocol) and JSON data type 
format for client-server messaging. We decided to use the 
latest version (2.0) of the SWE (Sensor Web Enablement) 
standard to implement the web interface, since it defines 
specifications in XML and JSON for Given our desire for a 
real-time system, we used the Message Queue Telemetry 
Transport (MQTT) as our main communications protocol for 
sending notifications to system users. MQTT manages both 
the sending and receiving of notification messages. To 
implement messaging, we installed a client MQTT on each 
device to give it notification capabilities. As an alternative, 
Arduino and Raspberry devices can be installed in certain 
vehicles in which drivers do not have smartphones, or where 
drivers are unable or unwilling to use mobile applications 
due to confidentiality concerns. (See Figure 1.)   

ESR-Q is adapted for use on the major routes into Quito. 
Figure 2 identifies the routes targeted in our research. We 
have taken into consideration differences in flow on round-
trip routes, e.g., traffic flow from Santo Domingo to Quito is 
not the same as flow from Quito to Santo Domingo.  
Otherwise, we would have client-server messaging that 
maintain compatibility with the REST architecture. To 
implement the messaging service, we used the SWE-O&M 
(SWE Observations and Measurements) standard. SWE-
O&M uses a JSON schema to provide document data that 
allows objects and locations stored in the database to be 
georeferenced using spatial and temporal filters.  

509



 
Fig. 1 System Architecture 

 
Figure 1 shows the role that the web interface plays in the 

ESR-Q system. The system collects data from the sensors 
(smartphones, the Raspberry, and the Arduino), which 
represent system users that are travelling on the main access 
routes into Quito. These sensors automatically send their 
observations of average transit speed and location 
coordinates (in latitude and longitude) to the server.   

Given our desire for a real-time system, we used the 
Message Queue Telemetry Transport (MQTT) as our main 
communications protocol for sending notifications to system 
users. MQTT manages both the sending and receiving of 
notification messages. To implement messaging, we 
installed a client MQTT on each device to give it notification 
capabilities. As an alternative, Arduino and Raspberry 
devices can be installed in certain vehicles in which drivers 

do not have smartphones, or where drivers are unable or 
unwilling to use mobile applications due to confidentiality 
concerns. (See Figure 1.)   

ESR-Q is adapted for use on the major routes into Quito. 
Figure 2 identifies the routes targeted in our research.  We 
have taken into consideration differences in flow on round-
trip routes, e.g., traffic flow from Santo Domingo to Quito is 
not the same as flow from Quito to Santo Domingo.  
Otherwise, we would have seen inconsistencies in the traffic 
data returned by the sensors along the same route. The 
MQTT application uses the host to store the traffic 
parameters that are captured, such as average speeds and 
transit times. Thus, each driver becomes an information 
source for the system at zero cost.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 2  Sensorization Block 
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The system architecture is composed of three main blocks: 
The Information Block, the Sensorization Block, and the 
Notification Block. The combination of these three blocks 
gives the system the ability to be heterogeneous, 
opportunistic, and to operate in real-time. The following 
sections explain in detail how each of these blocks’ 
functions. 

A. The Information Block 

This research project included both mobile and fixed 
devices as sources of information: smartphones, the Arduino 
Uno [32] and the Raspberry Pi 3 [33]. All these devices 
made onboard measurements of transit speeds and then sent 
these data to the main server.  To transmit these data, we 
integrated a GPS (GY-GPS6MV2) [34] module into the 
Arduino and Raspberry devices in order to boost their 
georeferencing capabilities and thus enable them to 
determine transiting speeds. We also added a GSM 900 
module [35], [36] for sending data to the remote server via 
the web.  Both the Raspberry and the Arduino devices were 
installed in vehicles whose drivers did not have access to 
smartphones, or those who were reluctant to use a mobile 
application on their smartphone due to concerns about 
security and/or confidentiality. We should mention that we 
recaptured the energy needed to operate these devices from 
lost vehicle power.  

The system captures two types of data/information. The 
first is the variation in average speed of the final user (∆v ⃗), 
and the second is an informative message about traffic 
incidents along the route, for example, accidents, damaged 
vehicles, etc. The system calculates the speed in conjunction 
with the user’s geographic location (latitude and longitude). 
First, the application determines the variation in distance 
travelled (∆d ⃗), which are two coordinates taken over a 
defined change in time (∆t ⃗), and is used as a configuration 
parameter for sensors such as smartphones, the Raspberry, or 
the Arduino. Combining these two data gives the transit 
speed, which is then sent to the server to be stored in a 
standard specified by SWE-SOS. The speed is calculated 
and automatically sent to the server with a period (T) of 1 
minute in order to avoid draining the device’s battery, as 
well as to capture data that better approximate real time. In 
contrast, the event notification message is sent manually by 
end user when she or he runs into a traffic problem on the 
roadway.   

B. The Sensor Block 

This block captures data from all kinds of devices in the 
system, not just from the mobile application. It uses an 
SWE-SOS web interface to mediate between the 
heterogeneous clients and the MongoDb data repository. The 
SWE-SOS standard allows the system to query registered 
sensors, roadway measurements, etc. It includes a database 
that, together with the SWE-SOS interface, registers the 
sensors along with their metadata. This register facilitates 
sensor identification and allows the system to simplify data 
search and filtering operations. The standardized SWE-SOS 
interface is described in Figure 3.  

 
Fig 3. Sensorization Block 

 
Figure 3 illustrates the standardized SWE-SOS interface, 

which is the main gateway to server resources. It manages 
remote sensor queries. Using PHP, we designed the SWE-
SOS interface so that it could accept and process JSON 
messages according to the guidelines documented in OGC 
Observations and Measurement – JSON Implementation. 
This standard note that data should include metadata, such as 
geographic location. The web interface is stored on a 
physical server at EPN (Escuela Politècnica Nacional in 
Quito) that has been assigned a public IP address so that it 
can be accessed via the web, thus making the system nearly 
ubiquitous. 

1) Sensor Web Enablement: The design for the 
standardized SWE-SO interface uses a series of client-server 
messages for data transfer.  

 
Fig 4. SOS Message Flow 

 
Figure 4 outlines the implementation procedure for a new 

device (including hardware and software characteristics), i.e., 
how to register it in the system so that it can begin to send 
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observations to the server. SWE-SOS manages the 
observation format (observation), which is a property 
measured within the object under investigation, for example, 
transit velocity. This observation is a numeric value (int, 
double, float) that measures a specified property, for 
example, a vehicle’s average speed. At the client end, 
sensors include any device that can carry out these 
measurements and send the results to the remote server.  

Figure 4 illustrates the message relay. The first message 
sent is GetCapabilitiesRequest(), which is used to find the 
operations that the  SWE-SOS implementation supports. 
These operations include insertSensor(), updateSensor(), 
deleteSensor(), insertObservation(), getObservation() and 
getCapabilities(). After identifying the SOS operations that 
are available, if the insertSensor() is available, the sensor is 
registered in the system using insertSensorRequest()—see 
Figure 4. If the operation is structured according to 
specifications, the data from that sensor is stored and its 
identification is transmitted. At this point, the sensor is 
enabled and can generate its own observations and send 
them to the communications server.  

The operation GetCapabilities() displays the operations 
available to the sensor. If the InsertObservation() is available, 
a sensor can send data to the server. For this project, a device 
periodically calculates its average speed (∆v⃗). These speed 
data are then sent to the server in observation format. This 
set of observations is used to determine the average speed 
for the whole route (V⃗) and the average time of any delay. 
If needed, the users can manually send incident type 
observations to the server. An incident is any unfavorable 
happening that drivers experience such as vehicular 
accidents, landslides, road construction, or other problems.   

The insertObservation() message registers the speed 
measured at a defined geographic location along the route. 
There are several main parameters needed to assemble a 
message of type observation. For example, the   
featureOfInterest property identifies the target object and, in 
this case, is assigned the value “SDaQ”, representing the 
Santo- Domingo-to-Quito route. Likewise, procedure and 
offering procedures represent the physical identity of a 
device (MAC address). The OM_Observation property is a 
JSON object that contains the most important metadata of 
the main observation, including phenomenonTime, which 
registers the instant when the observation is made. We 
should note that date and time formats conform to the ISO 
8601 standard [37], specifically year, month, day, and hour. 

insertObservation() also includes a procedure that is used 
to identify the device that  makes the measurement.  The 
observation datum (speed or incident) is stored in result, 
which stores the final result of the roadway measurement. 
For example, if the measurement is 25km/h, the data type 
will be double with a value of 25 and units of measurement 
km/h. Or if the value has an incident type of “accident,” the 
data type will be string with a value of “accident” without 
units of measurement. Result is a JSON object that contains 
the name of the observation, its data type, the units of 
measurement, and its value. Finally, the geographic location 
is stored in location for georeferencing purposes. Location 
identifies the exact site where the measurement is taken.  
These metadata allow users to understand the context of the 
observation, that is, the system can identify the place, the 

route number, sensor details, the exact time when the 
observation is made, etc. 

2) Heterogeneous Communications: As Figure 5 
illustrates, all devices have two ways to communicate with 
the server.  

 
Fig 5. Communication pathways to the server 

 
The first use MQTT server to receive messages in real-

time. The second uses web services to store data in 
MongoDb; these data are stored on the same server. 
MongoDb provides massive data storage capability for 
mobile device observations, since it uses a flexible, NoSQL 
database manager for storage. To query observations, we 
used GeoJSON [38] format. GeoJSON is an open standard 
that allows systems to code geographic identifications with 
special features derived from JavaScript (JSON) notation. 
GeoJSON allows developers to differentiate between 
documents by geographic dimensions (circle, rectangle, or 
any polygon) circumscribed by the user. For example, with 
JSON the system can derive observations that are distant 
from a certain point-of-interest. We implemented time filters 
in order to request observations within time ranges specified 
by the user. By integrating GeoJSON with the time filters, 
we can create queries that represent observations about a 
certain section of a route over a given interval of time. The 
query results are processed by the mobile application and 
displayed to the user, along with average speed (∆v⃗). 

 

 
Fig 6. Implementation of GeoJSON of MongoDB 

512



Figure 6 illustrates the GeoJSON MongoDb 
implementation using spatial (rectangle) and a time filter of 
type combo Box, with options to select the times of the last 
observations.  Inclusion of these features gives the ESR-Q 
system the real-time capabilities of intelligent transportation 
operations. By combining the SWE-SOS and MongoDb 
technology, we can create a sensorization block that can 
capture relevant roadway data and broadcast predictions 
during trips. 

C. The Notification Block 

The notification block sends real-time messages to 
devices linked into the ESR-Q system. One of its main 
components is the messaging system used to communicate 
with end user devices. The messaging function was 
implemented using the Message Queue Telemetry Transport 
(MQTT) communications protocol on the client side and the 
Mosquito Broker [39] server on the server side. 

The real-time notification system is based on publish-
subscribe architecture. This relationship is client-dependent; 
once an object’s status is known, the object must register 
itself with a publisher in order to pass on the latest updates 
on events. The client receives notifications and messages 
from all objects to which it is subscribed, and thus “learns” 
the object’s status. The MQTT communications protocol 
allows our system to split the communications channels into 
various subchannels that can be used according to a project’s 
needs. In our case study, each communications channel was 
assigned to each of the available routes, that is, there are as 
many communications subchannels as there are routes into 
the city. For example, for the Santo-Domingo-to-Quito route, 
the subchannel is assigned the code “SDaQ”. (For more 
details, see Table 1 in Section II.). 

TABLE I 
ACCESS ROUTES INTO QUITO 

Route Identification Point of Origin (city) Destination Point 
(city) 

SDaQ Santo Domingo Quito 
QaSD Quito Santo Domingo 
IaQ Ibarra Quito 
QaI Quito Ibarra 

LBaQ Los Bancos Quito 
QaLB Quito Los Bancos 

 
The subchannels referred to above are mapped to the 

Topics filter of MQTT. Topics identifies a communications 
channel   from its alphanumeric string. (By the way, the 
string is hierarchical, that is, it divides communications 
media in a granular way.) Thus, the hierarchical string can 
be used to generate different notification systems for the 
same route. For example, we can create an emergency 
communications channel for the Santo-Domingo-to-Quito 
route and call it “SDaQ/Emergency.” On this channel, we 
can classify emergencies according to type, e.g.,  
“SDaQ/Emergency/ Accident.” Using this schema, we can 
subdivide channels according to the system’s design.  

Figure 7 shows how a message circulates from a message 
publisher to subscribers. In order for a device to receive a 
message using the MQTT protocol, the device must enable 
an MQTT client that has the capability to establish a network 
connection with the Mosquito Broker [39]. The connection 
parameters must specify the listening port number, the 

username and password for the server, the service quality 
(QoS), a level for MQTT message delivery, and an SSL 
security certificate for channel encryption (if the server 
requests it).  In addition, the connection must specify the 
message sending (PING) frequency—known as “Keep 
Alive”—for the server. MQTT uses this message to maintain 
a permanent network connection with Mosquito.  

 

 
Fig 7. Real-time notification system. 

 
As shown in Figure 7, there is no limit to the number of 

devices that can connect to the server, since the protocol 
accepts connects from all types of sensors (such as 
smartphones, the Raspberry, or the Arduino) that have the 
capability to implement an MQTT client and use a web 
connection to access the Mosquito server. We should point 
out that, in the future, we will be able to incorporate new 
sensors of types yet to be developed into this flexible system.  

The main parameters to implement an MQTT client on a 
smartphone include the IP address of the MQTT server 
(broker) and the access credentials (username and password). 
The message service quality is 2 (QoS=2), which indicates 
that, for all messages sent, the protocol guarantees that the 
message will arrive exactly one time at the target. Once 
configured, the smartphone is enabled for publishing and 
receiving messages. 

III.    RESULTS AND DISCUSSION 

The test scenario follows the steps outlined in Figure 2 of 
the Technical Architecture Section II. Figure 8 illustrate the 
Santo-Domingo-to-Quito route (SDaQ). This route is traced 
onto an interactive Google Map that the end user can 
navigate. 

 

  
Fig 8. Details of the Route of entrance to Quito. 

 

513



The map identifies any ongoing traffic incidents and 
corresponding relevant data, such as the average transit 
speed on the route (km/h), delay time (in hours: minutes), 
and the (approximate) Average Traffic Density (IMT, or 
Intensidad Media de Tráfico in Spanish)—that is, the 
average number of vehicles on the route.  There are three 
routes registered in the ESR-Q system. Details can be found 
in Table 1 of the System Architecture section. 

The ESR-Q system is based on requirements specified by 
the heavy transportation companies associated with 
FENATRAPE (Federación Nacional de Transporte Pesado 
del Ecuador, or The National Federation of Heavy 
Transportation of Ecuador) [40]. For the test phase, we 
contacted two Ecuadorian heavy haul enterprises through 
this federation. We wanted each truck in their fleet to 
become a separate data source using the modules we 
developed for the Raspberry and Arduino, or through an 
application installed on the mobile device (smartphone) of 
each driver. Our sample included 50 vehicles tested over a 
period of 30 days. Our goal was first, to determine if the 
predictive values generated by the system were within 
acceptable ranges of true values and, second, to verify 
whether the instantaneous messaging system enhanced 
driver awareness about roadway conditions so that they 
could make better decisions in time. We tested our system 
progressively, that is, we started with a sample of five 
drivers in order to validate errors and improve the ITS 
application   After that, we expanded the test to 10 drivers, 
then continued expanding until we included all 50 truckers. 
The data were then tabulated for analysis. We calculated the 
percent error deviation from real conditions.  Then the data 
obtained from the ESR-R system were compared to data 
from the commercial applications, Waze and Google Maps, 
in order to verify whether the ESR-Q system’s degree of 
accuracy fell within expected ranges. 

We also evaluated the performance of the database 
server’s hardware and the mobile application. We needed to 
verify that host resources could handle operations, e.g., that 
there was enough RAM memory, processing power, and 
bandwidth for operability. The results are presents in the 
next section (4.1) 

A. System Performance 

In this section, we analyze the feasibility of the ESR-Q 
system. That is, we discuss our results in terms of our 
predictions for average speed and delay times in comparison 
with real conditions. Table 2 shows the results for the tests 
undertaken on the entry routes into Quito.  

 
TABLE II 

 % ERROR FOR PREDICTED TIME VS ACTUAL TIME 

 SDaQ IaQ LBaQ 
Predicted time (min) 174,96 125,46 151,44 
Actual time (min) 182,25 123 157,74 
% Error 4% 2% 4% 

 
As one can see, predicted delay times are congruent with 

real delay times. Also, the percent error between the 
predicted measurement and the actual one is minimal, which 
indicates that the system under development fulfills drivers’ 
expectations. We can also say that the test results match 

times predicted by the commercial applications that are 
widely available. Once can even say they are better, since 
Waze, for example, is a non-flexible application, in the sense 
that its route catalogue is not up-to-date, nor can it offer 
customized services.   

We have been able to validate, as seen in Table 2, that 
predicted times closely match actual times, since the percent 
error is low. Undoubtable, the percent error depends on 
crowdsensing scale. That is, the more observations are 
available as input to the calculations, the closer the projected 
times will approach actual times. It is quite different to base 
predictions on dozens of user observations versus thousands 
of observations. The more that data accurately reflect true 
roadway conditions from different perspectives, the more we 
can will significantly reduce possible sampling errors. We 
should emphasize that that the ESR-Q system can link to any 
roadway incident, such as accidents or landslides, since it 
captures the average speed of every device under any 
circumstance in real time. For example, when traffic is 
intense, the inserted observations will record a low average 
speed (<10 Km/h), which is reflected in the delay time on 
the route.  
 

 
Fig 9. Resources consumed by the mobile application 

 
As Figure 9 shows, the application uses a minimal level of 

resources; bandwidth use does not exceed 2 megabytes for a 
two-and-a-half-hour trip, indicating that the application 
consumes a minimal amount of resources. Resource 
consumption is an important consideration for this 
application, since excessive use of the system’s energy or 
storage resources can cause the mobile application to 
deinstall, and the Rasberry and Adruino platforms to be 
disconnected.  We should emphasize that both the Raspberry 
and the Arduino devices are permanently connected to a 
vehicle’s power outlets, which eliminates any risk to the 
device’s autonomy. 

Battery longevity, on the other hand, is directly related to 
the amount of data sent to the server. If the rate of data 
transmission increases, battery consumption also increases. 
Before data is sent from the server, the mobile application 
uses a device’s sensors to determine the average speed of 
host transmission.  The most frequently tapped sensor is the 
global Geo Positioning System (GPS), since the GPS is 
periodically measuring geographic location in order to 
determine average speed.  Our project, therefore, proposes 
that drivers use either the Raspberry o Arduino devices as an 
alternative to the mobile application, since we noticed some 
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reluctance in some end users to use the mobile application 
because of its resource consumption and/or lack of privacy 
or confidentiality. 

Both battery consumption and storage space are 
determinant factors for end users. A real-time application 
will consume host resources in order to keep the client 
informed of system events.   Smartphones need to establish 
permanent connections with the Mosquito server in order to 
receive real-time notifications. Figure 9 shows the minimal 
levels of resource consumption on a mobile application. The 
results show that resource consumption does not have a 
significant impact on devices.  Our anonymous questionnaire 
to drivers revealed that they did not experience any type of 
technical problem with the mobile application, nor did they 
experience excessive loss of storage space. They noted, on 
the contrary, that the mobile application was intuitive and 
easy to use. 

B. Server Performance 

We conducted performance tests on the data server in 
order to determine the number of transactions that it could 
handle. We used JMeter [41] software to simulate a large 
flow of queries to the server. These tests were conducted 
progressively, that is, the number of connections was 
increased gradually by 1,000 queries per pass. We began 
with 1,000 simultaneous requests, and reached a maximum 
of 20,000 requests. Results are given in Figure 10. The 
server performed according to expectations.  

 

 
Fig 10. Data server performance  

 
For the initial tests, the percent error was small, and when 

the number of queries was increased, server performance 
declined gradually. Since the error rate was not exponential, 
we were able to adjust server hardware resources to the 
number of clients that needed to be managed on the system.  

 

 
Fig 11. Maximum and minimum times for server request 

Figure 11 illustrates how much time a server request may 
be delayed. Results are given in milliseconds; the maximum 
wait time for a server response falls within normal tolerances 
for an end user. Slow system response could cause users to 
stop using the ESR-Q system, which would affect the 
system’s crowdsensing scale. Delays in information 
processing can also diminish the system’s ability to mimic 
real time performance. During the test execution, the system 
maintained optimal conditions for end users. These test show 
that the server is capable of handling massive amounts of 
simultaneous queries through the SOS web interface. The 
number of requests is given in increments of ten thousand, 
which offer an advantage to deployment in the general 
community. 

In addition, server performance does not degrade 
significantly when the number of queries increases. This 
indicates that the server maintains its capacity to handle real-
time responses for many users. We also monitored the 
Mosquito server, focusing on the service implemented on the 
server at EPN (Escuela Politécnica Nacional), in order to 
determine how much RAM, the server uses to handle one 
client-server connection. We found that Mosquito needs 
about 5KB to manage a network connection, as shown in 
Figure 12.  

 

 
Fig 12. Memory required for MQTT connections 

 
These data imply that, for a server with approximately 

2GB of RAM memory, Mosquito has the capacity to handle 
430,000 simultaneous network connections. These data 
indicate that a Mosquito-based implementation would have a 
light footprint, and the system would not need lots of 
hardware resources to handle thousands of network 
connections. Ultimately, the physical characteristics of the 
server will define the limits of the application solution. 

C. Mobile Application Performance 

The performance of the mobile client was evaluated, 
comparing it to other mobile applications with global 
distribution such as Waze and Google Maps. Our objective 
was to validate our proposal against two heavyweight 
commercial transportation applications networked for 
smartphones.  We should point out that all types of sensor-
based devices, not just smartphones, can use the ESR-Q 
system, which gives it an advantage over these other mobile 
systems. This adaptability implies that it is theoretically 
possible to add any type of sensor to the system and capture 
all types of measurements, e.g., asphalt temperature, 
humidity, wind speed, precipitation levels, etc. Adaptability 
allow the ESR-Q system to scale modularly with time. ESR-
Q also avoids being limited to only one type of data.  
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Fig 13. Predicted time vs. real-time on Route SDaQ 

 
Figure 13 shows a comparison between times predicted 

by the ESR-Q systems and the actual time needed to 
complete one route.  The graph makes clear the fact that the 
times coincide closely, proving that our prototype simulates 
real conditions and can be reliably used by end users. As 
shown in Figure 14, the ESR-Q system produces results that 
are comparable to those produced by Waze and Google 
Maps. Our tests were undertaken with a sample of 50 users 
who completed 90 trips in 30 days.  

 

 
Fig 14. % Error between predicted time and actual time on the SDaQ route 
 

The times forecasted by ESR-Q closely approximate the 
actual time taken to complete one trip into Quito. The 
percent error between real and forecasted time is less than 
4% for a trip that takes 150 minutes. Clearly, these results 
will improve with denser crowdsensing. Increasing the 
number of users will increase the amount of data sent to the 
server. These data, in turn, feed back into the calculations of 
delay times on each of the routes.  

 

 
Fig 15. % Error vs Number of sensors 

Figure 15 shows the effect of crowdsensing on the system. 
Basically, the greater the number of sensors in the system, 
the more the percent error between forecasted time vs. actual 
time decreases. Nevertheless, towards the end of the test 
cycle, the percent error no longer decreased, indicating that 
there remains a minimal percent error associated with the 
forecasting system. But we can expect that when the number 
of users is significantly high (in the tens of thousands), the 
percent error for minimal tolerance will also decrease. 

To measure the performance of the mobile application, we 
used the application App tune-up kit (or similar) [42], which 
monitors an application’s performance in terms of power 
consumed, percent CPU used, and percent GPU used. 
Mobile application performance was measured in two modes: 
first, when the application was used in the foreground 
(intensive use), and second, with the application running in 
the background, i.e., with only MQTT and the sensorization 
block actively waiting for MQTT protocol messages. In the 
second mode, the end user is not interacting with the system. 
Testing was conducted on the drivers’ smartphones, meaning 
that the efficiency and performance of these devices 
depended on how long they were used, as well as their 
maintenance and care.  

 

 
Fig 16. Use of hardware resources when application is foregrounded 
 

Figure 16 depicts performance when the mobile 
application is used in the foreground, with energy 
consumption measured in Watts (W). ESR-Q did not exceed 
2W of energy use, implying that our application will not 
significantly drain a smartphone’s battery.  In terms of 
consuming CPU and GPU resources, energy use is around 
4% and 6%, respectively. These latter figures show that 
hardware resource consumption is minimal in comparison 
with the other applications. We should underscore the fact 
that this consumption relates to patterns of foregrounded use, 
i.e., times when the user is interacting intensively with the 
application.   

Figure 17 show hardware resource consumption while the 
application is running in background mode. This is a 
measurement of background processes that remain active, 
specifically, real-time reception of messages and delivery of 
observations to the data server. These modules were 
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programmed as services (service) on the Android platform, 
so they operate independently of the mobile application’s 
main thread. In short, these background processes keep the 
server informed of the relevant data used to describe the 
route, and they maintain a permanent host connection for 
receiving MQTT messages.  

 

 
Fig 17. Use of hardware resources when application is backgrounded 

Comparing Figure 17 (foreground use) to Figure 16 
(background use), we see that ESR-Q uses far fewer 
resources when running in background mode. For example, 
energy consumption falls below 1 W, and CPU and CPU 
resource consumption remain below 1. In both modes, 
consumption is below that of the social networking 
applications. The results indicate that our application will 
not significantly or negatively impact either the end user’s 
economic resources or his or her hardware resources.       

Overall, the results show that our platform, developed to 
manage traffic in the city of Quito, can be successfully 
integrated into its heavy transportation system. Drivers in 
Quito have remarked that they do not have any other 
software package with these characteristics that alerts them 
about the status of the main access routes into the city. 
Survey participants also noted that the data that are available 
via social networking applications is mostly 
decontextualized, thus engendering distrust in users and 
doubts about receiving true information based on real 
circumstances.    

The results obtained from our integration testing parallel 
those derived from actual conditions that drivers experience 
when trying to enter Quito. The ESR–Q system 
competitively in communications server. In comparison with 
the other applications mentioned, like the state-of-the-art 
systems ITS-Michigan or ITS-Rusia, our solution costs very 
little to implement, thus making it an attractive option for 
traffic managers in other cities. In contrast to the research 
projects undertaken by Olvera [28], Lesani et al [29], and 
Pallavi and Satone [31], our project uses a standard web 
interface based on SWE-SOS for data capture, thus making 
it much easier to simultaneously collect data and metadata. 
Under test conditions, our pilot project registered low 
percentages of error [29], even for a roadway that is 

hundreds of kilometers long, compared to the roadway 
studied by Lesani et al [29], which only incorporated a few 
hundred feet. Furthermore, our solution offers a notification 
system in real-time that keeps users informed of changing 
conditions along the route. Real-time capability improves the 
situational awareness of drivers, thus also improving the 
decisions that drivers make. 

IV.   CONCLUSION 

Cities whose populations and vehicular traffic flows are 
increasing should implement ITS (Intelligent Transportation 
Systems) that allow them to balance traffic flows and 
improve mobility throughout these cities. Quito, for example, 
has experienced a disproportionate growth in parking lots, 
which has encouraged even more traffic and subsequently 
increased travel times within the city. Our research offers an 
ITS solution for Quito called ESR–Q. ESR-Q issues real-
time notifications to drivers about traffic problems occurring 
on roadways. It also broadcasts data on roadway conditions 
such as average vehicular speed, approximate delay times, 
and Average Traffic Density (ATD). With these data, drivers 
can develop and enhance a reality-based, situational 
awareness that lets them make timely decisions and optimize 
their operating costs for trips to and from Quito. The ESR-Q 
system meets the needs of the heavy haul drivers who are 
likely enter Quito along its major routes.    

The technology employed for our pilot project allows 
developers to integrate all types of heterogeneous sensors 
into the system, since the application is based on an SWE-
SOS standard that includes a web interface for handling data 
interoperability between all types of devices. A real-time 
platform for traffic notifications that uses MQTT messaging 
services was implemented. This configuration allowed us to 
send notification messages to everyone in the driver 
community. Clearly, enhanced community awareness 
increases overall situational awareness. Now end users can 
always be informed of roadway conditions and in all places.     

Our use of a non-relational database such as MongoDb 
increases the communications system’s flexibility, since it is 
possible to store observations in SOS format directly into the 
database. The database’s GeoJSON capability allows users 
to query the database using geospatial and time-based filters. 
This means that the system can obtain observations for s 
specific place over a specific interval of time.  

Our systems testing was performed on a sample of 50 
users who completed 90 trips on major access routes into 
Quito. Tests were carried out over a 30-day period, a enough 
time to make improvements to the system based on the 
truckers’ expressed needs. We used the data generated by the 
system to successfully optimize the budgets assigned to 
operating costs for travel to Quito. The trucker community 
(test base) affirmed that, during the test phase, our 
application met their expectations and successfully gave 
them useful information about roadway conditions and 
alerted them to traffic problems on the route before they 
were directly encountered, thus fulfilling the goal of raising 
situational awareness on the road. Ecuador does not have an 
ITS system for vehicular management; this software really 
represents a pioneering effort to solve traffic management in 
this country.  
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The test results confirm that we have developed an 
intelligent transportation system for Quito, Ecuador that is 
capable of broadcasting relevant data that assists drivers to 
optimize their decision-making and thus reduce operating 
costs related to long haul transportation. 
It should be noted that the forecasts delivered by the system 
have an error rate of 3.21% compared to actual roadway 
times. We have noted that when the number of sensors 
incorporated into the system increases, the closer the 
forecasting approaches real-time conditions, which affirms 
that crowdsensing density plays a fundamental role in 
system deployment. In addition, we have presented evidence 
that shows that results from our system are comparable to 
results obtained from commercial applications such as 
Google Maps and Waze. To summarize, this system fulfills 
driver expectations for predicting arrival times and for 
sending real-time notifications that alert drivers about any 
type of incident that affects traffic flow, thus aiding drivers 
in planning their trips. This application has proven to be a 
viable and useful tool to meet logistical challenges.  

The performance of our ESR-Q application was optimal. 
Test results show that demand on device resources, 
including the battery, CPU, and GPU, is less than that for 
commonly used mobile applications such as Google Maps 
and Waze. Regarding Google Maps, ESR-Q makes 0.8% 
less demand on device CPU and 2.1% less on the GPU. In 
comparison to Waze, ESR-Q makes 1% less demand on 
CPU and 2.5% less on GPU.  In terms of energy 
consumption (battery), the ESR-Q application uses less than 
2W for a 1 hour 45-minute trip (approximately). We can 
thus conclude that our system does not make intense 
demands on the hardware resources of the host device. These 
are useful conclusions for developers, who know that 
straining hardware resources can cause N application to 
deinstall itself, and thus bring down the whole 
communications system.   

In the future, we plan to incorporate new technology into 
our system related to data visualization. For example, we 
want to research an implementation that uses Lambda 
Architecture [40], in which data processing operations run in 
parallel with data production. In our case, notification alerts 
on roadway changes would be transmitted while data was 
being generated. In addition, we want to implement other 
features offered by the MQTT protocol, such as hierarchies 
for communications media and connectivity to remote 
MQTT servers, in order to eliminate any potential single 
points of failure in the system. 
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