
Vol.12 (2022) No. 2

ISSN: 2088-5334

Secure Communication Protocol for Arduino-based IoT Using

Lightweight Cryptography

Rizki Agus Zandra Kurniawan a, Sri Wahjuni a,*, Shelvie Nidya Neyman a

a Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
Corresponding author: *my_juni04@apps.ipb.ac.id

Abstract—We witness massive implementations of the Internet of Things (IoT) in smart homes, smart buildings, smart vehicles, smart

wearables as well as Industry 4.0 initiatives. Along with the massive adoption, IoT security has become more important and crucial in

this case. Arduino, as IoT hardware platform, also requires enhancements on its security to ensure that data it transmits and receives

is secured and has not been tampered in any way. Transmitting of IoT data and telecommand in plaintext is not secure. Securing

transmission using traditional block cipher is computationally intensive for embedded-systems with low memory and computing power

like Arduino. This research proposes a novel lightweight security communication protocol that is lightweight enough to run on the

Arduino platform. The proposed protocol shall be utilizing a lightweight key agreement scheme, the SPECK lightweight block cipher,

and BLAKE2s hash function. This protocol is designed to support telemetry and telecommand by using publisher-subscriber, which

also is aimed to be extensible but straightforward for future enhancements. This research shows that a secure IoT communication

protocol can be designed and implemented on Arduino devices and another IoT platform running Arduino core such as the ESP32. The

performance evaluation of this protocol in Arduino Mega shows that the INIT phase's average execution time is 26.83 milliseconds. The

key agreement is 13.50 milliseconds, and the encryption-decryption of telemetry and telecommand messages requires 25 milliseconds

execution time. The protocol performance evaluation in ESP32 has an average execution time for INIT phase 44.63 milliseconds. The

key agreement phase, 13.90 milliseconds, and the encryption and decryption of telemetry and telecommand messages requires an

execution time of 17.10 milliseconds.

Keywords— Arduino; blake2s; IoT security; lightweight cryptography; pervasive computing; security protocol for IoT; speck cipher.

Manuscript received 18 Apr. 2019; revised 13 Jun. 2020; accepted 8 Oct. 2020. Date of publication 30 Apr. 2022.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The Internet of Things (IoT) or the Internet of Objects is a

network that connects objects in everyday life. The IoT

extends the Internet as we know today to a more extensive

network with the integration of objects in everyday life

through embedded systems. A network of intelligent objects

will communicate with each other. At present, IoT

applications have reached many aspects of daily life that
include the health sector, transportation, utilities, smart homes,

and smart appliance. Research by Ahmad and Zafar [1] shows

that IoT technology has been applied to healthcare, mostly

remote medical monitoring. In this case, smart sensors

monitor patients' biomechanical and physiological data such

as blood pressure, data heart, body temperature, and blood

sugar. The data would then be transmitted via a wireless body

area network of each patient via a PDA or smartphone,

relaying the data to the central server for analytics.

Arduino is very popular for the development and IoT

applications. Research in the IoT field that uses Arduino is

very ubiquitous, such as [2], which focuses on developing an

Arduino based environmental security system. Wahjuni et al.

[3] developed a fuzzy inference system to monitor the eel

breeding environment and estimate young eels' survival rate.

The system is developed using Arduino Uno, and Intel Galileo

will then send telemetry data to the server. Wahjuni and

Waladi [4] also developed an Arduino-based automatic

irrigation system and REST protocol with several input

parameters such as soil moisture and pH. The Arduino

platform has very limited system resources such as memory
or processing power. Therefore, any resources consumption

shall be carefully managed.

According to ESET [5], many IoT devices send

information in plaintext, use inadequate encryption

technology, or not use any authentication method. Loi et al.

research [6] found that many IoT devices in the consumer

market communicate in plaintext. In contrast, only one device

453

uses a secure socket layer protocol, albeit with low entropy

parameters. Besides, five of twenty IoT devices involved in

the research were susceptible to replay attacks, while only two

were known to resist these attacks.

One of the most important data communication security

services is confidentiality. This is achieved by encrypting the

data using a cryptographic encryption algorithm with an

encryption key to prevent the data from being read by any

unauthorized parties. Encryption algorithm such as a block

cipher requires both authorized parties -the sender and the

receiver of data- to agree in using the same encryption key in
order to exchange encrypted message successfully. Another

important security feature is data integrity, which is important

to ensure that the transmitted data is not tampered with during

transmission.

Lightweight cryptography algorithms are a new class of

cryptography algorithms specifically designed to provide an

adequate security level and require minimal memory and

computing resources. These algorithms are considered more

suitable for IoT environments that have very limited

computing resources.

Wu and Zhang state [7] that lightweight cryptographic
algorithms, when compared to traditional cryptographic

algorithms, have three distinctive properties: First, the

application of IoT devices generally do not need to encrypt

large amounts of data. Second, the attackers cannot record

enough encrypted IoT data for cryptanalysis. Therefore,

lightweight cryptographic algorithms only need a moderate

level of security. Third, light cryptographic algorithms are

generally applied to hardware such as 8-bit microcontrollers,

so efficiency is critical. Dinu et al. [8] mentioned that

important criteria in the use of lightweight cryptography

algorithms include code size, RAM required, and
computational time needed to encrypt and decrypt data.

Research by Loi et al. [6] also mentions that many IoT

solutions do not use any form of secure communication

protocol in transmitting data from IoT devices to servers or

from the server to user applications.

This research aims to design a communication protocol

that can primarily provide data confidentiality, data integrity,

and authentication services. This protocol should be able to

run on IoT devices that have limited computing resources

such as the Arduino platform.

II. MATERIAL AND METHOD

A. Development Environment

The programming language used for this research is a C++

programming language with the Arduino IDE version 1.8.5

for development on the Arduino IoT device. This research

also utilizes open source libraries such as the ArduinoJSON,

ArduinoCryptLibs, and communication libraries for SIM808

GPRS modules and Wifi modules for ESP32. The protocols

server-side is developed using the Python programming

language version 3.7.1 with Microsoft Visual Studio Code as
IDE. Protocol server-side development also utilizes open

source software such as Redis, which serves the publisher-

subscriber module to support this protocol's functionalities.

Redis is used for tracking the protocol communication status

within the protocol state table and IoT device configuration

databases. Open-source libraries being used are Redisworks

as the Redis client in Python, Gunicorn as the WSGI HTTP

server and Falcon framework, and the implementation of the

Speck algorithm in the Python language. We also use

Wireshark to analyze raw protocol communication.

B. Test Environment

The Arduino Mega 2560 microcontroller platform used the

test equipment, which has an 8-bit processor with a 16MHz

clock speed, 8 KB RAM memory, and 256KB flash storage a
4KB EEPROM. The Arduino Mega is connected to the

SIM808 GSM / GPRS module. We also use the ESP32

microcontroller with Arduino core, where this platform has

160MHz clock speed, 520KB RAM memory, 2MB embedded

flash storage. We also would like to evaluate if the protocol

can work in various IoT microcontroller platforms. Therefore,

in addition to Arduino Mega, ESP32 is also being used as the

test environment.

The research data was taken from the development and

implementation of protocols on the Arduino Mega test device

with GPRS module and Arduino ESP32 with Wifi. We
measure the processing time required at each phase of the

protocol. This data collection was carried out on both test

devices with a total sample of 30 samples.

C. Assumptions

The assumptions used include: 1) The time of the protocol

phase process does not include the time required by network

services such as GPRS / Wifi / Internet given the

unpredictability of reliability and latency. 2) Public Key

Infrastructure and digital certificates are outside the scope of
this protocol. 3) Availability of network services where this

protocol can be run, such as GSM / GPRS, LoRa, Wireless

LAN, Ethernet. is outside this protocol's scope.

D. Research Methodology

This research consists of 5 (five) main parts, namely

protocol design, server protocol development, state table

protocol development, and publisher-subscriber on the server-

side, development of the protocol on the Arduino side as a
client. The overall research methodology is shown in Fig 1.

Fig. 1 Research Methodology

START

(1) Protocol Architecture & Design (2) Protocol Client side development

Protocol Message Format Protocol init & authentication request

Protocol initialization and authentication Key agreement request

Key agreement Secure communication session

Session establishment Secure session teardown

Session Teardown

(3) Protocol Server side development (4) Evaluation

Response to protocol init & authentication request Testing environment

Key agreement Performance Evaluation

Secure communication session management Evaluation of client&server authentication

Protocol state table management Evaluation of data integrity & confidentiality

Management telemetry&telecommand messages

Session invalidation and teardown END

454

E. High-Level Topology

The protocol is designed to run on top of the HTTP

protocol, utilizing any TCP/IP connection, such as using

GPRS or Wifi connection. The high-level topology of this

protocol is shown in Fig.2.

Fig. 2 Protocol High-Level Topology

F. Lightweight Cryptography Algorithms in use

Lightweight cryptography algorithms are designed to run

in devices with very limited computing and memory

resources. This is ideal for Arduino as IoT hardware, which

has such characteristics. There is increasingly more research,

such as assessing several lightweight block ciphers'

performances for IoT [8] and evaluating lightweight cipher in

8-bit microcontroller [9].

Beaulieu et al designed the SPECK cipher algorithm. at the

National Security Agency [10] as a general-purpose

lightweight block cipher that offers good performance while

aiming as the smallest implementation to suit IoT applications.
The SPECK cipher has ten variations: the SPECK-32/64 (32-

bit block size, 64-bit key, 22 encryption rounds) up to the

SPECK-128/256 (128-bit block size, 256-bit key, 34

encryption rounds). The SPECK cipher has since become the

subject of research assessing its security and performance.

Biryukov et al. [11] concluded that among several algorithms

tested. The Speck cipher is one among light cryptographic

algorithms that have resistance to correlation power analysis

attack, in which the attacker exploits the correlation of power

leakage with a specific cryptographic function to try to extract

the key. Dinur [12] uses improved differential cryptanalysis

to attack a scaled-down (reduced round) SPECK
implementation. However, the research concludes that the

enhanced attacks do not threaten any member of SPECK's

security. Dwivedi et al. [13] published an attack using

differential cryptanalysis on 12 rounds of SPECK-32 SPECK.

This attack requires a large amount of plaintext and

encryption operations. Fu et al. [14] also utilized the

differential cryptanalysis to attack 1-round, 3-rounds, and 5-

rounds of SPECK-64, SPECK-96, SPECK-128. No published

research so far claims a successful attack on the full 34-rounds

of SPECK-128 cipher. Therefore, SPECK cipher can still be

considered secure.
In terms of performance, Dinu et al. [8] confirmed that the

SPECK algorithm from the NSA was the smallest and fastest

cryptographic algorithm on all platforms. Beaulieu et al. [9]

conclude that the SPECK cipher is mostly better in term of

system resources usage, including flash usage, RAM, and cost

(cycle/byte) when compared to the cipher algorithms such as

AES, SIMON, HIGHT, IDEA, TWINE, TEA in AVR

ATmega128 8-bit microcontroller.

The hash algorithm used is BLAKE2s, which is, according

to Aumasson et al. [15]. This algorithm is designed to have a

high security level but is quite light, requires little memory
and can be run on an 8-bit processor as is commonly used on

Arduino. BLAKE2s is part of BLAKE2 hash algorithm

family that is targeted on 8-32-bit platform. Jain et al. [16]

conclude that BLAKE2 hash algorithm family is secure and

fast, with the performance 2.01x compared to latest standard

SHA3-256. Luykx et al. [17] conclude that currently, there is

no generic attack on any modes that BLAKE2 uses.

G. Protocol Design

This protocol is designed as a data communication protocol
that provides an authentication mechanism for both the server

and the client by using a nonce-based challenge-response

authentication method at the initiation phases. This protocol

will perform a key agreement function by agreeing to an

ephemeral session key, a secret key that is only used during

this session. An ephemeral session key is derived based on

parameters communicated by the server and client. After the

communication session is securely established (session

established state), the client and server can communicate with

the traffic encrypted with SPECK lightweight block cipher

being used. In this secure communication session, the client
can send telemetry data and receive telecommand commands

to a Publisher-Subscriber module of the protocol at the server-

side, which the Publisher-Subscriber module is based on

Redis server. The server will manage the session securely

until the session is terminated (session teardown).

The protocol flow design can be described as follows:

1) INIT phase: In the protocol initiation phase, as shown

in Fig.3, Arduino-based IoT devices that act as clients will

send INIT messages to the server. The client-side protocol

sends INIT messages containing the protocol version and

supported SPECK key length parameters, as well as random

client (client nonce) and key hash values from the nonce client
with keys stored permanently on Arduino.

The IoT client will use the ephemeral client ID for the

initialization message. Ephemeral client ID is a temporary ID

that helps to conceal the true client ID of this device during

each protocol initialization handshake. This temporary ID is
calculated based on a BLAKE2 hash of the real client ID and

a saved initialization vector. Both are stored in EEPROM. The

real ClientID itself is never transmitted.

The saved initialization vector is always changed upon

every successful protocol handshake. This results in the next

protocol handshake will use different ephemeral ClientID.

Fig. 3 Protocol Initialization & Client Auth Phase

Client send:

Ephemeral ClientID=hash(clientID + saved Init vector),
 parameter SPECK, versi protocol, Cnonce
 HashedCnonce=hash(password){CNonce}

Server response:

IF (Ephemeral ClientID di DB) &

(Hash(DB.clientID.password){Cnonce}==
HashedNonce) then:

/* CLIENT AUTHENTICATED */

initACK()

ELSE:

Server send: (session timeout = 10s)
assign SessionID, HashedServerID=
Hash(passwd){cnonce+serverID+Snonce},
SNonce,parameter SPECK, versi protocol

/* CLIENT FAIL AUTHENTICATION */

InitNACK & RST()

A
rd

u
in

o
 I

O
T

 D
E
V

IC
E

S
E

R
V

E
R

455

Client ID acts as the primary key to differentiate the

identity of entities such as one of the IoT devices that the

server manages. Bin-Rabiah et al. [18] seem to transmit the

Client ID in plaintext so that when the server receives it, the

server will be easier to find data related to the ClientID in the

database. By transmitting ClientID in plaintext, it is more

likely for potential attackers to selectively record

communication activities. It is easy to find out the specific

ClientID that their communication activities will follow. This

protocol proposes to improve the approach by having the

ClientID is further disguised by using an ephemeral ClientID
that is derived from the real ClientID and a saved initialization

vector obtained from the previous successful, secure session

as shown in Fig.3. Therefore, ephemeral ClientID of one

session to another will appear to be different despite it comes

from the same real ClientID.

2) Server Authentication and Key Agreement phase: In

this phase, the protocol on the server-side has successfully

verified the client's identity. The server will send a response

to the client by assigning a session ID that will be used as a

reference for further communication, as shown in Fig.4. This

session ID is temporary and only used until both sides to
complete the handshaking process. Therefore, it is given a

short expiry time. At this phase, the protocol state table still

in the INIT phase. The temporary sessionID with short expiry

is meant to prevent a potential INIT flood Denial of Service

attack. INIT flood is possible if too many INIT requests are

not completed and stay coming, which shall fill up the

server’s protocol state table until the system fails. By this

mechanism, those INIT requests which fail to complete

protocol handshaking before timeout shall be flushed out

from the IoTSec protocol state table as a strategy to prevent

the INIT flood.

Fig. 4 Server Authentication and Key Agreement phase

The server will send a keyed hash value of the serverID so
that the client can validate the server's validity. The client will

then verify the identity of the server, as shown in Fig4. Upon

successful verification, the client will initiate a key agreement

process by sending a random client initialization vector (CIV)

encrypted using the SPECK algorithm with a temporary key

derived from the ClientID and password. The server also

sends a server initialization vector (SIV) with a similar

method. After that, the server and client can proceed to the

key-agreement process by deriving the session key from the

keyed-hash of ClientID, ServerID, CIV, SIV, which at this

stage both the IoT client and the server have them all. The

keyed-hash process will use the BLAKE2s algorithm that

uses the password for that IoT device as the key parameter for

the keyed-hash process.

The security design of this process lies that the password,
ClientID, and ServerID are never transmitted, while CIV and

SIV are transmitted in encrypted form with SPECK.

3) Protocol Session Established and Encrypted

Communication phase: In this phase, the protocol reaches a

state where a secure communication session can happen using

the previously agreed session key as described in Fig. 5. The

client can send encrypted telemetry data, and simultaneously

receive telecommand commands on the same transmission.

The encryption algorithm used is the SPECK lightweight

block cipher. The secure communication session can continue

to use the same session key until the protocol timed-out state
is reached in the server’s protocol state table. The flow is

shown in Fig.5.

Fig. 5 Protocol Session Established & Encrypted Communication

Fig. 6 Protocol Session Teardown

initACK()

Server send: (session timeout = 10s)
assign SessionID, HashedServerID=
Hash(passwd){cnonce+serverID+Snonce},
SNonce,parameter SPECK, versi protocol

Client response:

IF HashedServerID==hash(passwd){cnonce+serverID+Snonce}
then: /* SERVER AUTH SUCCESS */

Key Agreement()

tmpkey=Turunkankunci(clientID,passwd)

client_initvector CIV = random(),

Client send:

SessionID, enc_CIV = enkripSPECK(temporarykey){CIV}

Server response:

tmpkey=Turunkankunci(clientID,passwd)
testCIV = dekripSPECK(tmpkey){enc_CIV}
IF CIV==testCIV then:

SIV = generate_server_initvector()
sessionkey= Turunkankunci(clientID,

 passwd, SIV,CIV)

set sessionID timeout (3600s)

Established()

Server send:

enc_SIV=enkripSPECK(tmpkey){SIV}
new_IV = enkripSPEC(sessionkey){new_

 saved_initvector_for next_session()}

A
rd

u
in

o
 IO

T

D
E

V
IC

E

S
ER

V
E

R

Established()

Server send:

enc_SIV=enkripSPECK(tmpkey){SIV}
new_IV = enkripSPEC(sessionkey){new_

 saved_initvector_for next_session()}

Client response:

SIV=decryptSPECK(tmpkey){enc_SIV}

sessionkey= Turunkankunci(clientID, passwd, SIV,CIV)

newIV_fornextsession = decryptSPECK(sessionkey){new_IV}
savetoEEPROM(newIV_fornextsession)

Secured Request()

Client send:

ed= encryptSPECK(sessionkey){telemetry data},

SessionID

Server response:

telemetry= decryptSPEC(sessionkey, ed)
publish(telemetry) to pchannel
subscribe (telecommand) from schannel

Secured Response()

SessionID,

ec = encryptSPECK(sessionkey)_

 {telecommand}

Secure communication session begins

A
rd

u
in

o
 I

O
T

 D

E
V

IC
E

S
E

R
V

E
R

Secured Request()

Client send:

ed= encryptSPECK(sessionkey){telemetry data},

SessionID

Server response:
IF (sessionID is timedout)
OR:

Client send:

Client RST request()

Then:

Session Teardown()

S
ER

V
E

R

Secure communication session begins

Secure communication session ends

A
rd

u
in

o
 IO

T

D
EV

IC
E

456

4) Session teardown phase: When the session timed-out

state is reached, then the server will send a connection

termination message when it receives a transmission from the

corresponding IoT client. The same thing happens if the client

intentionally sends a connection termination request (Fig.6).

III. RESULTS AND DISCUSSION

In the test environment, we take 30 test samples of protocol
execution time measurement on both test environment: the

Arduino Mega and ESP32 microcontroller. The test results

obtained are as follows:

A. Protocol Performance Evaluation

The results of the protocol performance measurements as

shown in Fig.7, the INIT phase averaged 44.63 milliseconds

at ESP32 and 26.83 milliseconds on Arduino Mega for the

protocol initialization phase as described in Figure 3, which
in this phase the Arduino client sends access requests while

sending credential to the server for the verification process.

Fig. 7 Protocol Performance Evaluation on each phase

The performance evaluation of the INIT-ACK phase, the

Arduino ESP32 client on average, takes 16.17 milliseconds to

verify the validity of the server. In comparison, Arduino Mega

requires an average of 8.27 milliseconds for the same process.

The Key Agreement phase (as described in Figure 4) on

average, takes 13.90 milliseconds for ESP32 and 13.50
milliseconds for Arduino Mega. The Protocol-Established

phase (as illustrated in Figure 5) on average, takes 15.30

milliseconds for ESP32 and 9.50 milliseconds for Arduino

Mega.

After all the handshaking processes are completed, now the

protocol reaches a Protocol-established state. The client and

server can communicate securely in a process as depicted in

Figure 8, using a session key that is valid only for this

encrypted communication session. The average processing of

each encrypted message is 17.10 milliseconds on ESP32 and

25 milliseconds on Arduino Mega for each telemetry
encrypted message. The Arduino Mega or ESP32 as IoT client

can communicate securely with the server using the same

session key until the session is marked as expired on the server

protocol state table. As the session expires, the protocol will

enter the session teardown phase, as described in Figure 6.

The client will verify whether the information to terminate the

session is valid from the server by checking the results of the

hash locking the session key against the current session ID.

This is a strategy to mitigate a potential false reset attack. The

false reset attack referred to here is a potential attempt to fool

an IoT client to think the server has sent a protocol session

termination message by sending a bogus message.

INIT & client identity verification phases, server identity

verification, key agreement, and establish protocol are

referred to as the overhead phase of this protocol. The phases

are the preparation phases of the protocol before actual secure

communication begins. After the overhead phases are

completed, the next phase is the encrypted communication

phase, where the secured data transmission happens.

Performance measurements are shown in Fig.8.

Fig. 8 Protocol communication phase on Arduino Mega and ESP32

It shall be noted that the overhead time for INIT is the

largest among the other overhead phases. In this case, the

INIT process is carried out the first time and only once when

the Arduino IoT client connects to the network. After that, the

protocol phases will gradually proceed until the protocol is

established to complete all the overhead phases. After all

overhead phases are completed, now the protocol state is

established, in which the client and server can communicate

data securely protected using SPECK encryption that uses the

ephemeral session key as the encryption key. The secure data
communication transmissions -both telemetry and

telecommand- may happen many times during the protocol

established state until the protocol timed-out state is reached.

The research data reveal that ESP32 outperforms Arduino

Mega for secure data communication in the protocol-

established phase, the most repetitive phase in this protocol

lifecycle. This is consistent with the fact that ESP32 has better

processing and memory resources. However, in the overhead

phases, Arduino Mega outperforms the ESP32 despite having

smaller computing resources. This may be an anomaly that

may become a potential subject-of-interest for future research.

Suppose a communication network disruption during the
session protocol state is still valid (not timed-out). In that case,

the protocol shall only need to continue from the last protocol

phase when the communication is disrupted. However, in the

event of a power failure that causes the IoT device as this

client to reboot, then the process will start from INIT again

because the current protocol state is reset.

B. Protocol Security Services Evaluation

This section focuses on evaluating the proposed protocol's
security services: client and server authentication services,

data integrity services, and data communication

457

confidentiality services. The test scenario simulates a man-in-

the-middle-attack attack, as illustrated in Figure 9.

Fig. 9 Man-in-the-middle attack illustration

1) Evaluation of Client-Server Authentication: Client and

server authentication process are carried out before the key

agreement process is completed, as mentioned in the INIT and

INIT-ACK phases, as illustrated in Figures 3 and 4.

In this test, a simulated attacker tries to take over the

connection and pretend as if the attacker were the server. The

simulated attacker will intercept the normal authentication

process and send the parameters required for client-server

authentication, such as the server-nonce and keyed hash of

server-nonce required by the client to validate the identity of

the server. The results of testing this protocol on the server

authentication process, as previously illustrated in Figure 4,

the client was able to detect this and display the Server
identity verification failed message, as shown in Figure 10.

Fig. 10 Evaluation of Protocol Client-Server Authentication

2) Evaluation of Protocol Data Integrity: The data
transmission process of telemetry and telecommand is

secured by SPECK encryption, which uses the session key, as

shown in Figure 4. The integrity of the encrypted telemetry

message is protected by using the BLAKE2s hash algorithm.

The process of testing data integrity, as described in Figure

11, is performed by simulating an attacker that captures the
data communication by an IoT client with the server. The

simulated attack tries to tamper with the encrypted message

before sending it to the server to simulate man-in-the-middle-

attack. The result shows that the protocol can detect that a

change has occurred so that its integrity cannot be guaranteed.

Fig. 11 Evaluation of Protocol Data Integrity

3) Evaluation of Protocol Data Confidentiality: The data
confidentiality testing process is carried out by using the

Wireshark tool to record and open encrypted communication

transmissions in the established communication protocol

phase. When carried out packet analysis using the Wireshark

tool, the test results indicate that the data transmission is in an

encrypted state, as illustrated in Figure 12.

Fig. 12 Evaluation of Protocol Data Confidentiality

IV. CONCLUSIONS

This research shows that a secure IoT communication

protocol can be designed and implemented in resource-

constrained IoT devices such as the Arduino. Performance

evaluation of this IOTSec protocol in Arduino Mega

concludes that the INIT phase's average execution time is

26.83 milliseconds, the key-agreement phase is 13.50

milliseconds and encrypted message processing during the

protocol established phase requires 25 milliseconds.

Performance evaluation of this IOTSec protocol performance
in ESP32 for INIT phase is 44.63 milliseconds, the key-

agreement phase is 13.90 milliseconds, and encrypted

message processing during protocol established phase

requires 17.10 milliseconds.

This research also proves that the protocol can provide

client authentication service to the server and vice versa. This

is accomplished securely that the server-ID, Client-ID, and

password is never transmitted in any way because all the

verification processes are carried out by a challenge-response

mechanism utilizing a keyed-hash function. This protocol

currently utilizes the BLAKE2s keyed-hash algorithm, as

well as the lightweight block cipher SPECK algorithm with
256-bits key size and 128-bit block size of data. This protocol

currently supports 128-bit (16 bytes) per message telemetry

and telecommand messages.

The research shows that ESP32 outperforms Arduino

Mega for the secure data communication phase, which is

consistent with the fact that ESP32 has better processing and

memory resources. However, for the overhead phases,

Arduino Mega outperforms the ESP32 despite having smaller

resources. This might be an anomaly, which may be an

interesting subject for future research.

This protocol can be further developed to add new security
services. The addition of this new security service is adapted

to the challenges of developing new security threats that

458

continue to emerge from time to time, so the IoT security

protocol shall evolve to deal with the new threats.

REFERENCES

[1] Ahmad J, Zafar F, “Review of body area network technology &

wireless medical monitoring.” International Journal of Information

and Communication Technology. 2(2)., 2012.

[2] Yadav G, Devi HMS., “Arduino based Security System – An

Application of IOT”, International Journal of Engineering Trends and

Technology (IJETT) – Special Issue. pp. 209–212. 2017.

[3] Wahjuni S, Maarik A, Budiardi T. “The Fuzzy Inference System for

Intelligent Water Quality Monitoring System to Optimize Eel Fish

Farming”, Proceeding of The International Symposium on Electronics

and Smart Devices. Bandung (ID), 2016.

[4] Wahjuni S, Waladi A. “Komiot: Exploring Rest Protocol for IoT

Server of The Automatic Control System for Production Land

Irrigation.”, Proceedings of The 4th International Seminar on Sciences

“Sciences for Green Development” pp.71-81., 2017

[5] (2018) ESET We Live Security Website [Online]. Available:

https://www.welivesecurity.com/2018/03/02/start-analyzing-security-

iot-devices/

[6] Loi F, Sivanathan A, Gharakheili HH, Radford A, Sivaraman, V.

“Systematically evaluating security and privacy for consumer IoT

devices”, In Proceedings of the 2017 Workshop on Internet of Things

Security and Privacy (pp. 1-6), 2017.

[7] Wu W, Zhang L. “LBlock: a lightweight block cipher”. International

Conference on Applied Cryptography and Network Security (pp. 327-

344). Berlin(DE): Springer, 2011.

[8] Dinu D, Le Corre Y, Khovratovich D, Perrin L, Großschädl J,

Biryukov A, “Triathlon of lightweight block ciphers for the internet

of things”, Journal of Cryptographic Engineering. pp.1-20., 2015.

[9] Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B. and

Wingers, L. “The SIMON and SPECK block ciphers on AVR 8-bit

microcontrollers”. In International Workshop on Lightweight

Cryptography for Security and Privacy (pp. 3-20). Springer, Cham.,

2014

[10] Beaulieu R., Treatman-Clark S, Shors D, Weeks B, Smith J, Wingers

L., “The SIMON and SPECK lightweight block ciphers”. 52nd

ACM/EDAC/IEEE Design Automation Conference (DAC) (pp. 1-6).,

2015.

[11] Biryukov A, Dinu D, Großschädl J., “Correlation power analysis of

lightweight block ciphers: from theory to practice”., In International

Conference on Applied Cryptography and Network Security. (pp. 537-

557), 2016.

[12] Dinur, I. “Improved differential cryptanalysis of round-reduced

speck”. In International Conference on Selected Areas in

Cryptography (pp. 147-164). Springer, Cham. 2014

[13] Dwivedi, A.D., Morawiecki, P. and Srivastava, G. “Differential

cryptanalysis of round-reduced SPECK suitable for internet of things

devices”. IEEE Access, 7, pp.16476-16486., 2019

[14] Fu, K., Wang, M., Guo, Y., Sun, S. and Hu, L. “MILP-based automatic

search algorithms for differential and linear trails for SPECK”. In

International Conference on Fast Software Encryption (pp. 268-288).

Springer, Berlin, Heidelberg. 2016, March.

[15] Aumasson, J.P., Neves, S., Wilcox-O’Hearn, Z. and Winnerlein, C.,

“BLAKE2: simpler, smaller, fast as MD5”. In International

Conference on Applied Cryptography and Network Security (pp. 119-

135). Springer, Berlin, Heidelberg. 2013, June

[16] Jain, A.K., Jones, R. and Joshi, P.. “Survey of Cryptographic Hashing

Algorithms for Message Signing”. Int. J. Comput. Sci. Technol, 8,

pp.18-22. , 2017

[17] Luykx, A., Mennink, B. and Neves, S. “Security analysis of

BLAKE2’s modes of operation.” IACR Transactions on Symmetric

Cryptology, pp.158-176.`, 2016

[18] Bin-Rabiah A, Ramakrishnan KK, Liri E, Kar K. “A Lightweight

Authentication and Key Exchange Protocol for IoT”. Workshop on

Decentralized IoT Security and Standards (DISS). San Diego(US),

2018.

459

