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Abstract – Randomness quality of keys becomes an essential in secure communications, since the security of modern cryptographic 

techniques relies on unpredictable and irreproducible digital keys which are generated by random number generator (RNG). This 

study focuses on the effects of characteristic polynomial in linear feedback shift registers (LFSR) for randomness quality. RNG’s 

output is produced by integrating binary random source based on optic and LFSR. In this observation, randomness of the RNG’s 

output with different characteristic polynomials has been tested using National Institute of Standards & Technology (NIST) test. The 

result shows that RNG with LFSR which is characterized by a feedback being a primitive polynomial of n-1 passes all the NIST-

standard statistical tests.  

 
Keywords - LFSR effects in randomness, randomness quality, RNG. 

 

I. INTRODUCTION 

Key with its randomness quality has become an essential 

in cryptographic systems wherein security level of an 

encryption system relies on unpredictable and irreproducible 

keys generated by RNG [1]. Therefore many attempts have 

been proposed to realize truly random numbers as replacing 

pseudo RNG (PRNG) which produces un-truly random since 

having pattern and repetitive occurrence at a certain time 

period. However, it is difficult to electrically generate high-

quality real random digital sequence that can pass all the 

NIST-standard statistical tests.  

Pseudo RNGs such as linear feedback shift register (LFSR) 

has been used in a number of today’s cryptographic LSI 

systems for mobile applications [1]. Despite PRNGs can 

suffice for most applications but they suffer from potential 

attack [2]. Here, we propose a photonic-based random 

number generator which utilizes an optical component to 

generate analogue pulses. After the pulses are converted to 

digital signals or binary random source, the digital signals 

will be added by LFSR’s output which is characterized by a 

feedback being a primitive polynomial of n-1[3].  

Since output of the RNG is obtained by adding binary 

random source which is produced based on optical 

component into the output of LFSR as shown in Fig 1, the 

randomness of the RNG’s output will be influenced by the  

 

 

LFSR [4]. In this paper, the effects of LFSRs with four 
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the RNG’s output will be observed by using NIST statistical 

suite tests.  

This article is organised as follows; section 2 presents the 

concept of randomness, section 3 describes the LFSRs which 

are used in this observation, section 4 presents the results 

and discussion and section 5 is conclusions. 

  

 

 
 

Fig. 1  A stream cipher with a linear shift register as algorithm  
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II. THE CONCEPT OF RANDOMNESS 

The concept and existence of true randomness has been 

debated for a long time. There has been a debate running 

throughout the ages of randomness. Some have claimed that 

some events cannot be fully modelled without disturbing the 

state (such as observing the spin of photons) and therefore 

can be random, while others claimed at some level all 

influential variables controlling an event can be modelled. 

The debate has pretty much been resolved. Quantum 

mechanics has shown that randomness does in fact in the 

real world, and is a critical part of the rules that govern the 

universe [5]. 

Definition of randomness cannot be given without 

introducing more terminology and defining the statistical 

concept of an autocorrelation function. According to The 

National Institute of Standards and Technology (NIST), a 

random bit sequence could be interpreted as the result of the 

flips of an unbiased fair coin with slides that are labelled 0 

and 1, with each flip has a probability of exactly ½ of 

producing a 0 or 1.   Furthermore, the flips are independent 

of each other; the result of any previous coin flip does not 

affect future coin flips. The unbiased fair coin is thus the 

perfect random bit stream generator, since the 0 and 1 values 

will be randomly distributed. All elements of the sequence 

are generated independently of each other, and the value of 

the next element in the sequence cannot be predicted, 

regardless of how many elements have already been 

produced [6]. 

 

III. LINEAR FEEDBACK SHIFT REGISTERS 

LFSR is a shift register which is frequently used as 

pseudorandom pattern generators [7]. A general shift register 

with feedback as algorithm is illustrated in Fig. 2. Each of 

the squares labelled S0, S1,…, Sn+1, is a binary storage 

element, which might be a bistable flip-flop, position on a 

delay line or some other memory device. These n binary 

storage elements are called states of the register and, at any 

given time, their contents are called its state. A shift register 

with n stages has 2
n
 possible states.  

 

 
 

Fig. 2  A shift register with linear feedback as a finite state machine [4] 

 

At time intervals, the content of Si is transferred into Si-1 for 

all i with 1 ≤ i ≤ n-1 [4]. Since operation of the register 

inside LFSR is deterministic, the sequence of values 

produced by the register is completely determined by its 

current or previous states. 

 

 

1)  Linear Shift Register 

The feedback function can be written in the form f(s0, s1, …, 

sn-1) = c0s0 + c1s1 + … + cn-1sn-1, wherein the constants c0, 

c1, …, cn-1 are called the feedback coefficient with value 1 

will represented by a closed switch while open switch means 

the corresponding feedback coefficient is 0, and then is 

called register with linear feedback as shown in Fig. 2 [4]. If 

Si(t) denote the content of storage Si after t
th

 time pulse, for 

any t, Si(t+1) = Sn-1(t) for i = 0, 1, 2, …, n-2, while  
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2)  Polynomials and Periodicity  

For any n-stage register with feedback constants c0, c1, …, cn-

1, the characteristic polynomial f(x) is defined by f(x) = c0 + 

c1 + … + cn-1x 
n-1

 + x
n
. For a given characteristic polynomial 

there are 2
n
 different possible initial settings of the register 

and, consequently, the polynomial can be used to generate 2
n 

different sequences of which one will be null. For most 

choices of f(x) it is possible for two-null sequences to have 

different periods. If f(x) has the special property of being 

primitive then every one of its non-null sequences has period 

2
n
-1, i.e. it is an m-sequence. Furthermore any polynomial 

which can generate an m-sequence must be primitive [4].  

  An n-stage linear shift register is determined by the 

feedback constant c0, c1, …, cn-1. If St is the output sequence 

generated from an initial state of s0, s1, …, sn-1, then the 

following recurrence relation of order n is satisfied: 
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Table I gives the number of primitive polynomial of degree 

n for 1 ≤ n ≤ 24 which is important to be used to arrange a 

shift register to generate an m-sequence. As can be seen in 

the table that if n becomes reasonably large there will a wide 

choice of polynomials which can be used to generate 

sequences of maximum period, and that λ(n) does not 

necessarily increase as n increases [4]. 

 

 

TABLE I 
THE NUMBER OF PRIMITIVE POLYNOMIALS WITH DEGREE AT MOST 24 

n λ(n) n λ(n) n λ(n) 

1 1 9 48 17 7710 

2 1 10 60 18 7776 

3 2 11 176 19 27594 

4 2 12 144 20 24000 

5 6 13 630 21 84672 

6 6 14 756 22 120032 

7 18 15 1800 23 356960 

8 16 16 2048 24 276480 
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IV. DISCUSSION 

Testing of the randomness quality is very important issue 

in cryptography since any practical RNG implementation 

behaves as a key generator and sometimes generates un-

random bits which might be caused by such as circuit 

saturation, gain errors, temperature and supply voltage 

variations. There are several test packages and 

recommendations which are ready to use [8], and the 

observation and testing used NIST statistical test suite that 

has sixteen statistical criteria of randomness.  

Fig. 3 illustrates proportion values of sixteen statistical 

criteria of NIST i.e. frequency, frequency within a block, 

cumulative sum, runs, longest run of ones in a block, random 

binary matrix rank, discrete Fourier transform (spectral), 

non-overlapping (a-periodic) template matching, overlapping 

(periodic) template matching, Maurer’s  universal statistical, 

approximate entropy, random excursions, random excursions 

variant, serial, Lempel-Ziv complexity and linear complexity, 

wherein the alphabets A to P represent the sixteen statistical 

criteria that can be referred to TABLE II.  

Implementation of LFSR with four varies of characteristic 

polynomial i.e. 1+x
7
, 1+x

5
+x

7
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4
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, and 
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4
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7
 in RNG and its randomness testing are shown in 

Table II. In this testing has used setting of frequency and 

block frequency is 100, serial and entropy is 5, number bit 

stream is 643, and length of bit stream is 1000000 [9]. 
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Fig. 3  RNG outputs with LFSR using four different polynomials with their 

proportion values versus sixteen statistical criteria of NIST. 

 

As can be seen in Fig. 3 that RNG using LFSR which is 

characterized by a feedback being a primitive polynomial of 

n-1 degree i.e. 1+x
4
+x

5
+x

6
+x

7 herein n is the size of register 

has continuously values close to one without zero values, 

and different to other LFSRs with different polynomials that 

have unstable values. LFSR with primitive polynomial 

1+x
4
+x

5
+x

6
+x

7 passes all sixteen statistical criteria of NIST, 

and gives truly random results.  Proportion value that used 

here was about 3% that it describes a possibility to find un-

correct values for all of the sixteen statistical criteria. 

Hereinafter a graph that illustrates P-values of four different 

polynomials at sixteen statistical tests of NIST is shown in 

Fig. 4. 
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Fig. 4  QRNG outputs with LFSR using four different polynomials with 

their P-values versus sixteen statistical criteria of NIST. 

 

As shown in Fig. 4, flatness of RNG with LFSR that uses 

a primitive polynomial of 1+x
4
+x

5
+x

6
+x

7 
does not have null 

of P-values. Its minimum P-value is around 0.000001 at 

Lempel-Ziv complexity. Otherwise, LFSRs that use other 

polynomials have null of its minimum P-values. NIST 

requires a minimum data of 200 Mbyte for randomness 

testing and the testing of LFSR with a primitive polynomial 

of 1+x
4
+x

5
+x

6
+x

7
 that is mentioned above has used data size 

334 Mbyte and a baud rate of 57 K character per second 

(cps). The following figure shows a randomness testing of 

RNG with LFSR’s primitive polynomial of 1+x
4
+x

5
+x

6
+x

7 

using data size of 604 Mbyte that is collected with a data rate 

of 80 K cps. 
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Fig. 5  RNG outputs with LFSR using a primitive polynomial 

1+x4+x5+x6+x7, data rate 80 K cps and 604 Mbyte data size with its 

proportion and P values versus sixteen statistical criteria of NIST. 

 

Randomness testing of the RNG using a primitive 

polynomial 1+x
4
+x

5
+x

6
+x

7 
with bigger data sizes 604 

Mbyte and 829 Mbyte and baud rate 80 K cps shows that its 

outputs are still random without null values appear in the P-

values and its proportion values close to one. This output is 

equivalent to 640 K bps. As shown in Fig. 5 and Fig. 6, that 

for 604 Mbyte and 829 Mbyte at a baud rate 80 K cps have 

better minimum P-values of 0.002691 and 0.033231 than 

using a baud rate 57 K cps that gave a P-value 0.000001.  
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Fig. 6  RNG outputs with LFSR using a primitive polynomial 

1+x4+x5+x6+x7, data rate 80 K cps and 829 Mbyte data size with its 

proportion and P values versus sixteen statistical criteria of NIST. 

 

The RNG which uses the same primitive polynomial of 

LFSR has no zero output values as shown in Fig. 6. However 

without LFSR it produces a lot of zero values as shown in 

Fig. 7 and passes only three statistical tests of NIST i.e. 

random binary matrix rank (rank), discrete Fourier transform 

(fft), and linear complexity. It becomes clearly known that 

LFSR is an important component in the RNG which gives 

affects of randomness quality. 
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Fig. 7  RNG outputs without LFSR using a primitive polynomial 

1+x4+x5+x6+x7, data rate 80 K cps and 1.33 Gbyte data size with its 

proportion and P values versus sixteen statistical criteria of NIST. 

 

V. CONCLUSIONS 

In this paper we have proved that a primitive polynomial 

of LFSR gives effects to randomness quality of the RNG and 

maintains a high speed output. The LFSR which is 

characterized by a feedback being a primitive polynomial of 

n-1 degree i.e. 1+x
4
+x

5
+x

6
+x

7 
has flatness values never 

reach null and passes all the NIST-standard suite tests, 

whereas the other LFSR’s primitive polynomials have 

minimum flatness values reach null and cannot pass the test.  

 

 

 

Primitive Polynomial         

(1 + x7) 

Primitive Polynomial         

(1 + x5 + x7) 

Primitive Polynomial         

(1 + x4 + x5 + x6 + x7) 
Primitive Polynomial         

(1 + x3 + x4 + x7) 
                                                   

Statistical Tests 

 
P-Value Proportion P-Value Proportion P-Value Proportion P-Value Proportion 

[A]  Frequency 0.000000 0.0264 0.000000 0.9129 0.945201 0.9938 0.000000 0.9285 

[B]  Block-frequency 0.000000 0.0000 0.000000 0.0715 0.225004 0.9891 0.000000 0.6096 

[C]  Cumulative-sums  0.000000 0.0233 0.000000 0.9160 0.586822 0.9938 0.000000 0.9300 

[D]  Runs 0.000000 0.0000 0.000000 0.1695 0.535722 0.9860 0.000000 0.0778 

[E]  Longest-runs of Ones 0.000000 0.0000 0.000000 0.9689 0.453289 0.9922 0.000000 0.9005 

[F]  Rank 0.000000 0.8616 0.933436 0.9907 0.542038 0.9891 0.000000 0.0000 

[G]  FFT 0.000000 0.0000 0.090508 0.9984 0.700275 0.9922 0.564319 0.9984 

[H]  Non-periodic-templates 0.000000 0.0000 0.000000 0.9362 0.856822 0.9860 0.000000 0.0000 

[ I ]  Overlapping-templates 0.000000 0.0000 0.000000 0.916 0.324580 0.9876 0.000000 0.0218 

[ J ]  Universal 0.000000 0.0000 0.000000 0.8927 0.520039 0.9876 0.028428 0.9813 

[K]  Approximate entropy 0.000000 0.0000 0.000000 0.0000 0.483131 0.9829 0.000000 0.0000 

[L]  Random-excursions 1.000000 -1.#IND  0.162606 0.9794 0.974208 0.9878 0.369073 0.9841 

[M] Random-excursion Variant 0.000648 1.0000 0.911413 0.9912 0.902994 1.0000 0.002634 0.9905 

[N]  Serial 0.000000 0.0000 0.000000 0.0000 0.969610 0.9891 0.000000 0.0000 

[O]  Lempel-Ziv Complexity 0.000000 0.0000 0.000000 0.0000 0.000001 0.9782 0.000000 0.0000 

[P]  Linear Complexity 0.871887 0.9891 0.583596 0.9907 0.590052 0.9907 0.709877 0.9876 

 

TABLE II 

RESULTS OF NIST TESTS APPLIED ON FOUR SETS OF 250 M-BIT KEY STREAMS WITH DIFFERENT PRIMITIVE POLYNOMIALS 
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