
 

 

 

Vol.9 (2019) No. 4 

ISSN: 2088-5334 

A Comparative Study between Collaborative Filtering Techniques and 
Generate Personalized Story Recommendations for the Vixio 

Application 
Albert Darmawan#1, Ida Bagus Kerthyayana Manuaba*2 

Computer Science Department, School of Computer Science, Bina Nusantara University, Jakarta Selatan, 10270, Indonesia  
#E-mail: #1albert.darmawan@binus.ac.id; *2bagus.manuaba@binus.ac.id 

 
 
Abstract— Interactive fiction (or text-based game) is a game that consists of texts which are used to bring interactivity to a story. 
Interactive fiction shows the potential to improve reading behaviour and engage the player with reading materials. In continuing to 
explore more benefits in reading, creating, and sharing interactive fiction, a web application called Vixio is developed as a platform, 
where users can develop and distribute interactive fiction. To engage and to feed the users with more interactive stories, a 
recommender system is applied to provide recommendations of stories that would be suitable to the reader’s interest. This paper is 
focused on developing a recommender system which can generate personalized story recommendations for the Vixio web application. 
This paper also discusses determining which techniques are better to be implemented inside the recommender system by conducting a 
comparative study between five collaborative filtering techniques, which are: Three Matrix Factorizations (SVD, SVD++, and NMF), 
Slope One, and Co-clustering. To compare each technique with one another, 5-fold cross-validation and response time were 
measured. Based on these two evaluations, it is shown that there is no technique which has a superior accuracy over the others. 
However, Slope One algorithm is eminent in terms of fit time and mean response time. 
 
Keywords— collaborative filtering; matrix factorization; slope one; co-clustering; vixio – interactive fiction platform. 
 
 

I. INTRODUCTION 

In 2017, there was an effort to use interactive fiction to 
improve reading behavior, specifically in Indonesia [1], [2]. 
According to Manuaba [1], interactive fiction shows 
potential to influence Indonesian youth to improve their 
reading behavior and engage with the reading materials. To 
continue this study, a robust and modern interactive fiction 
platform for creating and playing interactive fiction is 
necessary.  

Currently, there are some existing interactive fiction 
platforms. One of them is textadventures.co.uk, a platform 
for the community to create and play interactive fiction [3]. 
The platform contains an open source visual editor to create 
interactive fiction called Quest [4]. However, several 
improvements are required to enhance the existing platforms 
in the development and distribution process of interactive 
fiction stories. To address these issues, the development of a 
robust and modern interactive fiction platform called Vixio 
is proposed. This platform is aimed to advance user 
experience in the development and distribution of interactive 
fiction stories.  

Vixio is a web application where users can develop and 
distribute interactive fiction. Interactive fiction is a video 

game genre that primarily consists of text, which is used to 
bring interactivity to a story [5]. To ensure that users can 
easily access relevant content, a robust recommender system 
which generates personalized story recommendations is 
necessary. A recommender system is a computer system 
which is capable of producing recommendations of items 
that each user prefers [6]. 

There is a lot of research today exploring the usage of a 
recommender system; some of theexamples is from Yun et. 
al.[7] that had developed an algorithm for a hybrid 
collaborative filtering recommendation system using opinion 
mining for purchase review using AWS data. Also there 
were also another research on hybrid recommendation 
system for MovieLens Data[8] and model recommendation 
system for finding similarities literature for publications[9]. 
These research have been successfully showed the art of 
recommender system in providing relevant information that 
important for the user in different real-life scenarios.      

This research aims to implement a recommender system 
with a collaborative filtering technique to generate 
personalized story recommendations that can be used by 
Vixio web services. Throughout the development process, a 
comparative study between some possible algorithms for 
hybrid recommender systems have been conducted. 

1223



This paper includes a review of existing recommender 
systems, the collaborative filtering and evaluation techniques 
employed, the implementation testing and results, and the 
discussion and conclusion of the study. This paper is started 
by discussing the background and the art of the works in the 
Introduction part following by Existing Recommender 
System part and Collaborative Filtering Technique part that 
support this research. The Evaluation Techniques part is 
presented after, followed by Design and Implementation part, 
which leading to Discussion and Conclusion parts. 

II. MATERIAL AND METHODS 

A. Existing Recommender System 

Nowadays, a wide range of technology companies has 
been implementing sophisticated recommender systems to 
their products. Recommendations of music in Spotify and 
Pandora, movie suggestions in Netflix and YouTube, or even 
search recommendations in Google Search are some 
examples of recommender systems that are currently popular 
in the market.  

Recommender systems are computer systems which are 
capable of producing recommendations of items that each 
user might like [6]. It is crucial as it increases the user 
experience and business value of a product. For example, a 
study indicates that Netflix gains more than $1B per year by 
implementing various recommender systems to their product 
[10].  

Netflix is an internet entertainment company founded by 
Reed Hastings and Marc Randolph in 1997 [11]. During the 
first ten years, the company’s main business activity was 
offering online movie rentals [11]. In this time period, 
Netflix’s recommender system was simply predicting rating 
stars of a DVD that a person rented [10]. Nowadays, Netflix 
offers internet streaming worldwide, with approximately 140 
million hours of daily movie viewership [11]. Due to data 
abundance, the recommender system of Netflix has become 
more complex. 

 

 
Fig. 1 Development Workflow of Recommender System [10] 

 
We could simplify the form of recommendation system 

through a problem formalization: Given a two-dimensional 
matrix of user ratings, where cell at uth row and ith column 
indicates a rating of item I for user u, find the missing cell 
values using a predictive model.  

A recommender system generates the recommendation 
using many data sources from explicit data sets such as item 
ratings to implicit data sets such as user behaviors [12]. Due 
to data variety and complexity, there are many algorithms 
and machine learning approaches which can be used to 
produce a robust recommender system as in Figure 2 below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2 User Rating Matrix [6] 
 
Generally, all available solutions are classified into three 

main categories [6], which are:  
• Collaborative filtering. Collaborative filtering is a 

recommender system approach where item 
recommendations are generated by considering a 
certain user’s behavior and comparing it with other 
users’ behaviors that have some similarities.  

• Content-based filtering. This filtering works by 
suggesting items that have similar contents based on 
previous user preferences. To determine the 
similarities value, an array of item features are 
previously defined.  

• Hybrid approach. As the name implies, a hybrid 
approach is a combination of collaborative and 
content-based filtering. By combining these two 
approaches, the system considers both other users’ 
behaviors and item features.  

B. Collaborative Filtering Techniques  

In building a recommender system, we have utilized an 
approach called collaborative filtering techniques, which as 
mentioned previously, works by generating item 
recommendations that consider a certain user’s behavior and 
compares it with other users’ similar behaviors[6]. 

There are several collaborative filtering techniques 
available. To determine the most suitable technique for a 
Vixio recommender system, a comparative study of five 
collaborative filtering techniques was conducted, which are 
Three Matrix Factorizations (SVD, SVD++, and NMF), 
Slope One, and Co-clustering.  

C. Matrix Factorization 

Matrix factorization is an algorithm that decomposes a 
matrix into smaller matrices, making it easier to perform 
complex matrix operations [11]. Even so, it still requires a 
high computational cost, especially in an enormous matrix. 
Several systems have used the matrix factorization concept 
to develop robust collaborative filtering algorithms, mainly 
due to its capabilities to reveal latent features within the 
matrix [13]. There are some algorithms which are derived 
from matrix factorization. Below are the three types of 
matrix factorization techniques that have been implemented 
in this comparative study: 

• Singular Value Decomposition (SVD)  
• Singular Value Decomposition with implicit  ratings 

(SVD++) 
• Non-negative Matrix Factorization (NMF)   

1224



D. Slope One 

Slope One is one of the collaborative filtering techniques 
which utilizes user ratings to make a prediction [14][15]. 
The implementation is relatively simple since the developer 
only needs to use the formula below to generate rating 
predictions: 

�̂�� �  �� � 	
|��
��| ∑ ���
�, ���∈��
��  (1) 

where r̂ ui is the rating prediction of item i given by user u, 
μu is the mean of ratings given by user u, Ri(u) is a set of 
item which is rated by user u and has one other common user 
with item i, and | Ri(u) | is the cardinality of Ri(u) set. Below 
is the definition of dev(i,j): 

 ���
�, �� �  	
|���| ∑ ��� � ����∈���  (2) 

In this case, dev(i,j) is the average difference between the 
ratings of item I and item j. 

E. Co-Clustering 

Co-Clustering is a real-time collaborative filtering 
algorithm which utilizes ratings to make a rating prediction 
[16]. The computational cost to run co-clustering is lower 
than other collaborative filtering techniques such as matrix 
factorization [16]. This algorithm assigns users and items 
into user cluster, item cluster, and bicluster [17]. The rating 
prediction can be determined using the formula as  found 
below: 

 ���� �  �� !!!! � 
"� � ��!!!!� � 
"� � � # � (3) 

where u is user index, i is the item index, $%� is the average 
rating of bi-cluster, $� is the average rating of i’s cluster, $% 
is the average rating of u’s cluster, μi is the mean of item i’s 
ratings, and μu is the mean of ratings given by user u. 

F. Evaluation Techniques 

Because there is no real user that can access the web 
application, online evaluation such as A/B Testing cannot be 
conducted. With this limitation, we performed two offline 
evaluation techniques as follows: 

G. K-Fold Cross Validation 

K-fold Cross Validation is a statistical method which is 
usually used to measure the performance of machine 
learning models [18]. The general idea of this methodology 
is to split all available data sets into K smaller sets (where K 
is a positive integer), also known as “folds” [19][20]. In 
performing every K experiment, one fold is used as test data, 
while the remaining K-1 folds are used as training data. The 
most important consideration when performing K-fold Cross 
Validation is that every fold must be used as a test data in 
exactly one experiment. The figure below shows how a 5-
fold cross validation works: 

 
Fig. 3 Example of 5-FoldCross-Validation 

During the testing phase in each experiment, a 
comparison between the prediction generated by the model 
and the actual result in test data is conducted. By comparing 
these two values, the accuracy of the model’s predictions can 
be measured. There are many mathematical formulas to 
calculate the accuracy, some of which are the following: 

 
• Root Mean Squared Error (RMSE) 

 

RMAE �  *	
+ ∑ 
,� � ,���-+�.	 (4) 

 
• Mean Absolute Error (MAE) 

 

MAE �  	
+ ∑ |,� � ,��|+�.	   (5) 

 
In both formulas, n is the number of data points, j is the 

iterator, ,� is the actual value, and ,�� is the predicted value. 
These formulas produce negatively-oriented values [21]. In 
other words, a lower value indicates a higher model accuracy, 
with the ideal value equal to zero. 

The value of k in a k-fold cross-validation procedure can 
vary depending on each situation. Essentially, there is no 
fixed rule on how to determine the right k value [18]. 
However, many data scientists assign k=5 or k=10 [18]. 

Implementing k-fold Cross Validation in a machine 
learning model can avoid overfitting, which is a condition 
where a model is only fit for a limited set of data points [19]. 
That is because, in every experiment, the model does not 
train using all available data. 

H. Response Time 

Response time is the total amount of time required for a 
system to produce a response from a certain request [22]. In 
this project, since we measured response time in the 
recommender system API, response time could be defined as 
the total time between the HTTP request and HTTP response. 
Response time is usually measured in seconds. In this 
context, a smaller value means a better system performance. 

Many factors affect response time, including hardware 
specifications, speed of internet connection, database query 
time, and algorithms used. In this project, since all testing 
was conducted using the same hardware, internet connection, 
and database, algorithms were the sole factor which could be 
used to measure different response times between 
recommender system models. 

We chose this metric because it was crucial for the overall 
user experience. A study conducted by DoubleClick (a 
Google subsidiary) indicates that to keep people engaged 
with a mobile site, it must be fast [23]. Otherwise, users will 
leave the site, resulting in decreased revenues. 

I. Design  and Implementation   

1)  Recommender System Architecture 

The following is the system architecture for the 
recommender system in theVivio application: 

1225



 
Fig. 4 System Recommender Architecture 

 
This layer consists of three major components, as follows: 

a) API: This RESTful API is developed using a Flask 
micro-framework. In the production server, the API receives 
an HTTP request from Back End Layer, then passes all 
available payloads to the recommendation engine. After the 
recommendation engine generates the appropriate 
recommendations, the API gives all recommendations 
through the HTTP response body. 

b) Recommendation Engine: This component is the core 
component of Recommender System Layer. As the name 
suggests, the recommendation engine provides robust 
recommendations based on an available data set. 

c) MySQL Cursor: MySQL Cursor acts as a connector 
between the recommendation engine and the MySQL 
Database, providing a relevant data set for the 
recommendation engine. 

To deliver the best user experience to the Vixio user, the 
Vixio recommendation engine has four main features. Each 
of these features is associated with one API endpoint. The 
table below shows all of these features: 

TABLE I 
LIST OF FEATURES IN THE VIXIO RECOMMENDER SYSTEM 

No Feature Name API Endpoint Associated 
Web Page 

1 Generate a list of 
most popular stories 

/most popular Home page 

2 Generate a list of 
newly available 
stories 

/new releases Home page 

3 Generate list of 
personalized story 
recommendations 

/personalized/ 
{user_id} 

Home page 

4 Generate list of 
similar stories 

/similar stories/ 
{story_id} 

Story detail 
page 

 
However, in this paper, we only focused on Collaborative 

Filtering Techniques to generate a list of personalized story 
recommendations for the user. 

2)  Use Case Diagram 

Based on the system architecture above, we created the 
use case diagram to further depict the interaction between 

the elements inside the system. The figure below shows the 
use case diagram of theVixio Recommender System:  
 

 
Fig. 5 Use Case Diagram of Vixio Recommender System 

 
Based on the Use Case diagram, there are two main actors 

in the system. They are (1) the Vixio Web Services, which 
represents the Back End Layer of Vixio and acts as a 
receiver of generated recommendations and (2) the 
Recommendation Engine, which represents the 
Recommender System Layer of Vixio that generates various 
recommendations. Both actors are connected with all four 
use cases. These four use cases represent the four features 
which have been discussed previously. 

3)  Activity Diagram 

Based on the use case, there will be four activity diagrams 
based on each feature to depict the flow within the system. 
However, in addressing the main objective of this paper, we 
only focused on the activity diagrams for personalized story 
recommendations: 

To generate a list of personalized story recommendations, 
the process starts when the Vixio Web Service sends an 
HTTP request to API routing at the Recommender System 
Layer. The API routing will check whether the endpoint is 
available. In this case, the endpoint is 
“/personalized/{user_id}”. If the endpoint is not available, 
then the API routing will return an HTTP response with the 
Status Code 404 (Not Found). Otherwise, the API routing 
will start the recommendation engine.  

The recommendation engine establishes an SQL 
connection. If it fails, then the system will return an HTTP 
response of Status Code 500 (Internal Server Error). 
Otherwise, the recommendation engine will send an SQL 
query to retrieve a story reviews table. The recommendation 
engine will convert the query results into a data set format, 
instantiate a recommendation model, and train this model 
using the data set. After the model is trained, it can be used 
to generate a list of 10 personalized story recommendations. 
The list will be passed to the API routing, and the API 
routing will return an HTTP response with the list of 
personalized story recommendations. The details are 
described in Figure 6. 

 

1226



 
Fig. 6 Activity Diagram of Personalized Story Recommendations 

4)  Algorithms for the Recommender System 

As mentioned previously, there are many algorithms 
which can be used in each feature. In this paper we focused 
on Collaborative Filtering algorithms that are suitable for 
generating personalized story recommendations. 

The idea of this feature is to generate a list of stories 
based on users’ reading behavior. In this project, reading 
behavior manifests itself in a story_reviews table. This SQL 
table represents two things, which are the relationship 
between each user to each story and a story’s likeability as 
indicated by an integer rating between 1 to 5 (inclusive). 

This problem can be solved using collaborative filtering. 
Since this feature generates personalized story 
recommendations for each user, we implemented a user-
based collaborative filtering. In this project, five algorithms 
could be implemented as an attempt to solve this problem: 

• Matrix Factorization – SVD 
• Matrix Factorization – SVD++ 
• Matrix Factorization – NMF 
• Slope One 
• Co-Clustering 

We decided to use matrix factorization since it is capable 
of detecting latent features in the relationship between the 
user and the story [13]. Since there are many matrix 
factorization techniques, we implemented three relatively 
popular techniques, which are SVD (Singular Value 
Decomposition), SVD++ (Singular Value Decomposition 
with implicit ratings), and NMF (Non-negative Matrix 
Factorization).  

For comparison purposes, we also decided to implement 
techniques other than matrix factorization, which are Slope 
One and Co-Clustering. Slope One is a simple yet relatively 

accurate technique [14], and so we observed its performance 
against matrix factorization techniques as listed above. Co-
Clustering is a robust technique that has a lower 
computational cost than that of the typical matrix 
factorization technique, and is capable to handle dynamic 
data [16], which means it is effective for real-time 
collaborative filtering. 

III.  RESULT AND DISCUSSION 

To conduct the comparative study, we implemented all 
five collaborative filtering techniques using the Python 
programming environment. Here are the list of Python 
packages/frameworks which were used: 

TABLE II 
LIST OF PYTHON PACKAGES 

No Package Name Version 
1 Numpy 1.14.2 
2 SciPy 1.0.0 
3 Pandas 0.22.0 
4 Flask 1.0.2 
5 Flask-mysql 1.4.0 
6 Flask-restful 0.3.6 
7 Pytest 3.5.1 
8 Scikit-surprise 1.0.5 
9 Scikit-learn 0.19.1 

 
All of these techniques are accessible through REST API 

endpoints, which enable them to connect with the Vixio web 
application through an HTTP request. 

Since the Vixio web application was still in the initial 
stage  of deployment, we did not possess any real user data 
yet. Consequently, for this paper we generated random users 
data automatically for development and testing purposes. In 
the end, three SQL tables were generated: 

TABLE III 
LIST OF SQL TABLES 

No Table Name Description 
1 users All user-related information 
2 stories All story-related information 
3 story reviews Ratings that users assigned to stories 
 
To fill the users and story review table, we simply wrote a 

script to generate some random values for each row, with 
some constraints predefined. In order to fill the stories table, 
we manually curated a list of Indonesian folklore titles with 
their metadata. 

To run this entire project, we used a computer with the 
following specifications:  

TABLE IV 
COMPUTER SPECIFICATION 

Specification Detail 
Processor 2.9 GHz Intel Core i7 
RAM 16 GB 2133 MHz LPDDR3 
Disk Space 500 GB Flash Storage 
Graphics Intel HD Graphics 630 1536 MB 
OS macOS High Sierra Version 10.13.3 

A. 5-Fold Cross Validation 

In this evaluation, 250 stories were curated and a 
simulation was done for these stories to be accessed by 100, 

1227



200, 300, 400, and 500 users. During the 5-fold cross 
validation process, four main parameters were measured: 

TABLE V 
MEASURED PARAMETERS DURING 5-FOLD CROSS VALIDATION  

No Parameter Description 
1 Root Square 

Meter 
Evaluates the difference between real 
values and predicted values using the 
Root Mean Squared Error formula 

2 Mean 
Absolute 
Error 

Evaluates the difference between real 
values and predicted values using the 
Mean Absolute Error formula 

3 Fit Time Total time to train the model using the 
training data set. Measured in seconds 

4 Test Time Total time to test the model using the test 
data set. Measured in seconds 

 
Here are the results for each parameter: 

TABLE VI 
ROOT MEAN SQUARED ERROR COMPARISON 

Users Matrix Factorization Slope 
One 

Co-
Clustering SVD SVD++ NMF 

100 1.4709 1.4709 1.5707 1.4430 1.4797 
200 1.4772 1.5012 1.5135 1.4326 1.4517 
300 1.4906 1.5202 1.4856 1.4304 1.4485 
400 1.5026 1.5264 1.4761 1.4275 1.4429 
500 1.5074 1.5287 1.4652 1.4262 1.4415 

 
The table above shows the root mean squared error of  

Three Matrix Factorization techniques, Slope One, and Co-
clustering, corresponding to 100, 200, 300, 400, and 500 
users. Since the value in each cell represents error value, a 
lower value indicates better performance. To observe the 
correlation between the number of users and the error value 
of each algorithm, the table above is represented as a line 
chart below: 

 

 
Fig. 7 Graph of RMSE of Personalized Story Recommendations Algorithms 
 

TABLE VII 
MEAN ABSOLUTE ERROR COMPARISON 

Users Matrix Factorization Slope One Co-
Clustering SVD SVD++ NMF 

100 1.2659 1.2792 1.3275 1.2450 1.2720 
200 1.2689 1.2829 1.2930 1.2363 1.2543 
300 1.2784 1.2982 1.2739 1.2336 1.2528 
400 1.2857 1.2989 1.2693 1.2303 1.2479 
500 1.2872 1.3012 1.2623 1.2294 1.2460 
 
The table above shows the mean absolute error of  Three 

Matrix Factorization techniques, Slope One, and Co-

clustering, with the corresponding number of users. Since 
the value in each cell represents an error value, a lower value 
indicates a better performance. To observe the correlation 
between the number of users and the error value of each 
algorithm, the table above is represented as a line chart 
below: 
 

 
Fig. 8 Graph of MAE of Personalized Story Recommendations Algorithms 

TABLE VIII 
FIT TIME COMPARISON (IN SECONDS) 

Users Matrix Factorization Slope 
One 

Co-
Clustering SVD SVD++ NMF 

100 0.63 13.63 0.58 0.03 0.12 
200 1.14 27.56 1.17 0.06 0.24 
300 1.69 77.49 1.75 0.10 0.35 
400 2.00 48.34 2.03 0.12 0.43 
500 2.47 60.44 2.54 0.14 0.54 

 
The table above shows the fit time of three matrix 

factorization techniques, Slope One, and Co-clustering, with 
the corresponding 100, 200, 300, 400, and 500 users. To 
clearly observe the correlation between the number of users 
and the fit time of each algorithm, the table above can be 
represented as the line chart below: 
 

 
Fig. 9 Graph of Fit Time in Personalized Story Recommendation 
Algorithms 

 

TABLE IX 
TEST TIME COMPARISON (IN SECONDS) 

Users Matrix Factorization Slope 
One 

Co-
Clustering SVD SVD++ NMF 

100 0.03 0.22 0.01 0.14 0.01 
200 0.03 0.48 0.03 0.28 0.03 
300 0.06 0.73 0.05 0.43 0.05 
400 0.07 0.87 0.05 0.52 0.06 
500 0.07 1.16 0.07 0.64 0.07 
 

1228



The table above shows the test time of 3 matrix 
factorization techniques, Slope One, and Co-clustering, with 
100, 200, 300, 400, and 500 users. To clearly observe the 
correlation between the number of users and the test time of 
each algorithm, the table above is represented as a line chart 
as follows: 

 

 
Fig. 10 Graph of Test Time in Personalized Story Recommendation 
Algorithms 

 
For every technique, we performed 5 response time 

testings using Postman, with 250 stories and 500 users in the 
database. Here are the response time results for each 
algorithm (all response times written in ms): 

TABLE X 
RESPONSE TIME COMPARISON (IN MILLISECONDS) 

Test 
Number 

Matrix Factorization Slope 
One 

Co-
Clustering SVD SVD++ NMF 

1 4378 94563 4438 1586 2002 
2 4252 92130 4325 1482 1936 
3 4467 90778 4341 1525 1901 
4 4372 91271 4508 1480 1907 
5 4391 90576 4470 1481 1861 

Mean 4372 91863.6 4416.4 1510.8 1921.4 
 
As mentioned previously, the idea of this feature is to 

provide personalized story recommendations to each user, 
resulting in specificity and relevance. To implement this idea, 
we used collaborative filtering, which provides 
recommendations based on user preferences, in comparison 
with other users’ preferences. Using this approach, the 
generated recommendation list utilized user data, hence 
providing non-assumptive results. Due to the requirement of 
accessing the user history, the user needs to log on to the 
system in order for the system to provide personalized story 
recommendations. 

In this project, we implemented and tested five different 
collaborative filtering techniques using a 5-fold cross-
validation procedure. Based on the 5-fold cross-validation 
results, there are some important insights which can be 
gathered: 

• Generally, the value of Root Mean Squared Error is 
larger than the value of the Mean Absolute Error. This 
is an expected behavior, since the Root Mean Squared 
Error formula penalizes large errors significantly with 
its squaring calculation. 

• Overall, all algorithms have Root Mean Squared Error 
values between 1.4 and 1.6 and Mean Absolute Error 
values between 1.2 and 1.4. It showed that none of 

algorithms perform significantly better compare to the 
others. 

• For all algorithms, as the numbers of users increase, the 
fit time and test time also increase. This is of course an 
expected behavior. 

• Compared to other algorithms, the Slope One algorithm 
has the fastest fit time at all variations in the number of 
users. One major reason is that Slope One has a simple 
and straightforward implementation. 

• Compared to other algorithms, SVD++ algorithm has 
the slowest fit time and test time at all variations in the 
number of users. One major reason is because SVD++ 
is a complex algorithm, which combines SVD with 
additional calculations for implicit ratings. 

• NMF and Co-clustering are two algorithms with the 
fastest test time. NMF test time, however, is faster than 
Co-clustering test time by 0.01 when the number of 
users reaches up to 400. 

We also performed response time measurements for all 
the five techniques. Based on the results, Slope One has the 
fastest mean response time while SVD++ has the slowest 
mean response time. 

IV.  CONCLUSION 

Based on the results, the accuracy of all the five 
techniques evaluated in this comparative study is relatively 
similar. Slope One algorithm, however, is eminent in terms 
of fit time and mean response time. In the end, we decided to 
use Slope One as a collaborative filtering technique 
implemented for the Vixio web application. We realized that 
there are numerous actions which can be done to produce a 
better recommender system. Analyzing real data from real 
users after the web application has been launched, exploring 
more collaborative filtering techniques, and scaling the 
infrastructure to support big data are some of the future 
actions which can be done. 

Based on this research, there are still a lot of improvement 
for future works which can be done to enhance Vixio’s 
recommendation system layer, such as: (1) use more real 
data from users to improve the accuracy and minimalize the 
error rate for the recommendation process, (2) explore more 
recommendation techniques for other alternatives, and (3) 
scalable data architecture and bid data supports for further 
implementation.   

REFERENCES 
[1] I. B. K. Manuaba, “Text-Based Games as Potential Media for 

Improving Reading Behaviour in Indonesia,” in Procedia Computer 
Science, 2017, vol. 116, pp. 214–221. 

[2] A. Darmawan, S. Valdo, I. Ignatius, and I. B. K. Manuaba, “A 
Comparative Study Between Narrative Fiction and Interactive Fiction 
to Enhance Youth Literacy in Indonesia,” in 11th Annual 
International Conference on Computer Games Multimedia and Allied 
Technologies (CGAT 2018), 2018, pp. 15–21. 

[3] Textadventures, “textadventures.co.uk - Create and play text 
adventure games,” textadventures, 2018. 

[4] textadventures.co.uk, “Quest - Write text adventure games and 
interactive stories.” . 

[5] Inform, “About Interactive Fiction: Inform,” Inform, 2018. . 
[6] P. Melville and V. Sindhwani, “Recommender Systems,” Encycl. 

Mach. Learn., no. 338, pp. 829–838, 2011. 
[7] Y. Yun, D. Hooshyar, J. Jo, and H. Lim, “Developing a hybrid 

collaborative filtering recommendation system with opinion mining 

1229



on purchase review,” J. Inf. Sci., vol. 44, no. 3, pp. 331–344, Jun. 
2018. 

[8] U. Kuzelewska, “Clustering Algorithms in Hybrid Recommender 
System on MovieLens Data,” Stud. Logic, Gramm. Rhetor., vol. 37, 
no. 1, pp. 125–139, Aug. 2014. 

[9] K. Haruna, M. Akmar Ismail, D. Damiasih, J. Sutopo, and T. 
Herawan, “A collaborative approach for research paper recommender 
system,” PLoS One, vol. 12, no. 10, p. e0184516, Oct. 2017. 

[10] C. A. Gomez-Uribe and N. Hunt, “The Netflix Recommender 
System,” ACM Trans. Manag. Inf. Syst., vol. 6, no. 4, pp. 1–19, Dec. 
2015. 

[11] J. Brownlee, “A Gentle Introduction to Matrix Factorization for 
Machine Learning,” Linear Algebra, 2018. . 

[12] G. Li and Q. Chen, “Exploiting Explicit and Implicit Feedback for 
Personalized Ranking,” Math. Probl. Eng., vol. 2016, pp. 1–11, Jan. 
2016. 

[13] D. Bokde, S. Girase, and D. Mukhopadhyay, “Matrix Factorization 
Model in Collaborative Filtering Algorithms: A Survey,” Procedia 
Comput. Sci., vol. 49, pp. 136–146, Jan. 2015. 

[14] D. Lemire and A. Maclachlan, “Slope One Predictors for Online 
Rating-Based Collaborative Filtering,” in Proceedings of the 2005 
SIAM International Conference on Data Mining, Philadelphia, PA: 
Society for Industrial and Applied Mathematics, 2005, pp. 471–475. 

[15] N. Hug, “Slope One,” Surprise, 2015. . 
[16] T. George and S. Merugu, “A Scalable Collaborative Filtering 

Framework Based on Co-Clustering,” in Fifth IEEE International 
Conference on Data Mining (ICDM’05), 2005, pp. 625–628. 

[17] N. Hug, “Co-clustering,” Surprise, 2015. . 
[18] J. Brownlee, “A Gentle Introduction to k-fold Cross-Validation,” 

Statistical Methods, 2018. . 
[19] Scikit-learn developers, “Cross-validation: evaluating estimator 

performance,” scikit learn, 2017. . 
[20] D. Becker, “Cross-Validation | Kaggle,” Kaggle, 2018. . 
[21] J. Wesner, “MAE and RMSE — Which Metric is Better?,” Medium - 

Human in a Machine World, 2016. . 
[22] Techopedia, “Response Time,” Techopedia, 2018. . 
[23] A. Shellhammer, “The need for mobile speed: How mobile latency 

impacts publisher revenue,” DoubleClck by Google, 2016. 
 

1230




