

Vol.10 (2020) No. 5

ISSN: 2088-5334

CallDetect: Detection of Call Log Exploitation Inspired by Apoptosis
Madihah Mohd Saudia,1, Amirul Adli Che Ismailb,1, Azuan Ahmada,2, Muhammad ‘Afif Husainiamerb,2

a Cybersecurity and System Research Unit, Islamic Science Institute, Universiti Sains Islam Malaysia (USIM), Nilai, 71800, Malaysia
 E-mail: 1madihah@usim.edu.my, 2azuan@usim.edu.my

b Faculty of Science & Technology (FST), Universiti Sains Islam Malaysia (USIM), Nilai, 71800, Malaysia

E-mail: 1maddymms@gmail.com, 2afif@raudah.usim.edu.my

Abstract— Currently, we saw the increment trend of mobile application(app) exploitation that leads to loss of confidential information
and money. Many malware camouflages itself as a genuine mobile app or exploits vulnerabilities inside mobile apps. Hence, this
paper presents a mobile app called CallDetect that detects Android Application Interface (API) exploitation for call logs inspired by
apoptosis. Apoptosis is known as cell-programmed death, and it is part of the human immunology system. Once it suspects any
danger that might cause any harm to the human body, it will kill the suspected danger and itself. In the case of CallDetect, it will scan
and uninstall the potentially malicious mobile application on a mobile phone. CallDetect consists of 13 new classifications of API call
log, which are used as the database for CallDetect. These classifications were built by using static analysis and open source tools in a
controlled lab environment. There were 5560 training datasets from Drebin and 550 anonymous testing dataset from Google
Playstore. Our finding showed that 39 mobile apps, or 7%, were identified with possible call log exploitation. This paper can be used
as a reference for call log API exploitation and can be further enhanced by integrating it with permission and system call exploitation.

Keywords— call log exploitation; API; mobile malware; static analysis; apoptosis.

I. INTRODUCTION

There are different categories of malware, such as worm,
virus, Trojan horse, and mobile botnet. This malware can
infect and exploit PC, notebook, tablet, or mobile phone
without the owner's consent. In a mobile phone, surveillance
features such as call log, Short Message System (SMS),
camera, geolocation (GPS), and audio could be exploited by
malware. The Android platform is the one most commonly
targeted by malware due to its open-source distribution and
being used by many users across the world [1]. Mouawad
and CallJam virus are examples of worms that exploited
Android smartphone by charging the victim with some
amount of money through different applications [2], [3].
Examples of the exploitations are extra charges on phone
bills, invasive advertising, and extra charges messages and
phone calls. According to Gonzales, since 2013, this
exploitation has skyrocketed and caused the loss of money to
the telcos [4]. Therefore, we need mitigation for such
exploitation. In the Android architecture, the Android
Programming Interface (API), permission, and system calls
are the aspects mostly used for exploitation [5].

In this paper, we present a CallDetect app that can detect
call log exploitation. It is inspired by apoptosis. Apoptosis or
also known as cell-programmed death and is part of the

human immunology system. It has been integrated with the
CallDetect app. Once the CallDetect app detects any
potential harm related to the call log, it will uninstall the
application to avoid any harm to the user’s mobile phone.
Compared to other human immunology system mechanisms,
apoptosis is selected due to its role in terms of detection and
response. Once the system detects any harm, if it cannot
destroy the harmful element by itself, it will kill the element
together with itself. This process is called as cell-
programmed death. Few existing works have applied the
apoptosis concept [6]-[8]. These show the practicality of the
apoptosis concept. Inside the CallDetect, there are thirteen
(13) new call log exploitation classifications have been
developed. The details of the results are explained in Section
III of this paper. This paper is organized as follows: Section
II discusses the material and method used; section III
presents results and discussion, and selection IV concludes
this paper and discusses future work.

II. MATERIALS AND METHOD

Lately, many scams have been conducted via phone calls,
and various software packages have been developed to
detect and block the scam phone numbers. Yet, currently, we
are still lack of a solution to detect malicious mobile apps,
especially those related to call log Application Programming

1792

Interface (API) exploitations [9]. For example, MalDozer
has been developed to detect malware in different IoT
devices with API as the input, but not focusing on call logs
[10]. Furthermore, other existing works by [11]-[21] showed
that API could be exploited by malware. Nevertheless,
performance improvement is needed for the experiment [19],
[20]. Existing works [16], [22], [23], combined API and
permission as part of their techniques to detect malware, yet
improvement is needed in terms of the feature selection and
classifier concerning optimizing results. The summarization
of these works can be seen in Table 1. Based on the existing
works presented in this paper, each of these works has its
technique to overcome malware attacks. However, none of
the studies focus on mobile phone surveillance features that
can easily be further exploited by malware. As for the
current scenario, this paper focuses on the call log as it is
one of the leading surveillance features in a mobile phone,
and due to its significant impact concerning losing money
and invading privacy.

TABLE I
SUMMARISATION OF EXISTING RELATED WORKS

Author Feature Suggestion for Performance
Improvement

[16] API and
permission

In term of feature selection and
permission list

[22] API and
permission

In term of feature selection and
classifier.

[24] API and
permission

In term of malware classification
based on binary format.

Fig. 1 displays the apoptosis cycle in the human body [24].
Table II shows how the apoptosis is being mapped to a
mobile phone. For malware detection, there are other bio-
inspired computing algorithms such as Particle Swarm
Optimisation (PSO), Negative Selection Algorithm (NSA),
Artificial Bee Colony, and Bat algorithm that have been
applied in existing works. Nonetheless, based on the
comparison between these algorithms and apoptosis (refer
Table III), apoptosis is selected due to its performance
capability in terms of faster detection and response, to its
being easier for real-time implementation, and its higher
detection rate.

Fig. 1 Apoptosis Cycle

TABLE II
MAPPING APOPTOSIS TO MOBILE PHONE

Apoptosis Mapping Apoptosis to Mobile
Phone Surveillance Features

The system must be able to
readjust itself automatically,
either to support a change in
circumstances or to assist in
meeting other system
objectives.

The mobile phone will terminate
any detected malicious process
before it can cause any harm. It
is based on a mobile phone
surveillance feature: the call log.
Mobile phones will uninstall the
potentially harmful process or
application.

TABLE III
COMPARISON WITH OTHER BIO-INSPIRED ALGORITHMS

Name of
Algorithm

Weakness

PSO Performance issue in term of optimisation.

NSO Continuous learning ability issue and
performance issue in terms of practicality
concerning implementation in the real world.

Artificial bee
colony

Performance issues in terms of accuracy.

Bat
algorithm

Performance issues in terms of accuracy and
optimisation.

Genetic
algorithm

Performance issues in terms of optimisation

Apoptosis Unique technique with better accuracy, faster
and easier detection and response mechanisms.

Before the development of the CallDetect application,

5,560 of the Drebin dataset were reverse-engineered by
using static analysis [25]. The Drebin dataset is one of the
biggest datasets for mobile malware and has been used by a
small number of other studies [11], [26]-[28]. Five hundred
fifty mobile apps have been selected randomly from the
Google Play Store to evaluate the proposed classification
and the app proposed in this paper. The experiment was
conducted in a controlled lab environment and as per
displays in Fig. 2 and Table 2.

Fig. 2 Lab experiment architecture

1793

TABLE IV
SOFTWARE USED FOR THE EXPERIMENT

In contrast with dynamic analysis, static analysis is an

analysis where the codes will not be executed. Existing work
[29] summarises the value of static analysis, dynamic
analysis, and hybrid analysis for malware analysis and
detection techniques. Each of the techniques has it owns
strength. In this paper, static analysis is used to extract the
manifest file and APIs, due to its suitability for depth
analysis. Based on the APIs’ extraction from the training
dataset, those that are related to possible call log exploitation
were retrieved. These were then compared with the testing
dataset from the Google Play Store.

Fig. 3 represents the static analysis conducted, and Fig. 4
depicts the overall research processes involved in this
experiment.

Fig. 3 Static analysis

.

Fig. 4 Overall research process

Fig. 5 Covering algorithm for the call log classification formation

Fig. 5 depicts the method by which the covering
algorithm is used for the formation of API call log
classification. The covering algorithm has the rule to be
followed during each phase of the existing attributes. It
consists of a positive instance and a total of the dataset.
Positive instances are represented as PA, while the dataset
total is D. The accuracy of the approach is based on the
formulation of PA/D. Then it develops rules with a 100%
accuracy rate. It is simplified as pseudocodes in Fig. 5, and
Fig. 6. The concept of covering algorithm excludes many
instances of other classes and include as many instances of
the desired class as possible.

Fig. 6 Covering algorithm for instance space

III. RESULT AND DISCUSSION

The following are the interfaces for the CallDetect app
mobile application. Fig. 7 displays the main interface of the
developed apps, while Fig. 8 shows the extracted manifest
file from the selected app. Once the user selects a mobile app,
the CallDetect app will run the scanning process. If it is
matched with the database of the potential call log
exploitation, it will ask the user if the user would like to
uninstall the mobile app (refer Fig. 9). CallDetect is better
compared to emulator-based work because it is real-time and
based on the real scenario of a smartphone user.

Before the development of CallDetect, analysis and
reverse engineered were carried out. The database inside the
CallDetect app is based on the classification formed during
the experimental work. The database is based on the highest
number of potential features that could be exploited related
to the call log, as displayed in Table V.

Software Function
JAVA/Android
Studio

To develop mobile application

Genymotion It acts as Android emulator.

Show Java
Application /APKtool

For APK resource file decompiling
and permission extraction.

Java Decompiler For API extraction.

1794

Fig. 7 CallDetect Main Interfaces

Fig. 8 CallDetect for manisfest file extraction

Fig. 9 CallDetect displays uninstall message for potential harm apps

Before these 13 classifications are developed, all the APIs

related to the call log are extracted, and the most closely
related could be exploited by malware. From the testing
dataset, all APIs related to call logs have been extracted, and
the ten (10) most related are listed in Table VI. Each is
assigned with different values either as normal or dangerous.
The normal is a default value, and it could be executed
without asking the owner’s consent. While dangerous has a
higher risk related to privacy, and it could be executed with
or without asking the owner’s consent. Based on these
normal and dangerous values, the classification is created, as
displayed in Table V.

TABLE V
NEW CALL LOG EXPLOITATION CLASSIFICATION

Classification Content
1 A1+A2+A3+A4+A5+A6+A7+A8+A9+A10
2 A4+A6+A9
3 A6+A9
4 A5+A6+A9
5 A4+A5+A6+A7+A8
6 A8+A8+A9
7 A4+A6
8 A4+A9
9 A4+A5
10 A4+A8
11 A5+A9
12 A2+ A4
13 A2+A5

TABLE VI
TEN API MOST RELATED WITH CALL LOG EXPLOITATION

D
at

a
R

ep
re

se
nt

at
io

n

API Function Value

A1 addToMyCont
actsGroup

To add contact. Normal

A2 startListening It starts to listen to audio
speech.

Danger
ous

A3 isVoiceMailN
umber

It checks the given
number with the
voicemail number inside
the SIM card.

Normal

A4 getLine1Num
ber

It returns the phone
number string.

Danger
ous

A5 getNeighborin
gCellInfo

It gets and informs the
neighbouring device
information.

Normal

A6 getSimSerialN
um-ber

It gets the Simcard serial
number.

Danger
ous

A7 getVoiceMail
AlphaTag

It retrieves the voice mail
number based on the
alphabetic identifier.

Danger
ous

A8 getVoiceMail
Number

It retrieves the voice mail
number

Normal

A9 listen It is a listener for changes
notification in the mobile
phone.

Danger
ous

A10 getCallerInfo To retrieve caller
information.

Danger
ous

Then 550 dataset randomly picked from the Google Play

Store are tested with the proposed classification and database
inside the CallDetect app. Based on the testing, it was found
that 39 out of 550 mobile apps matched with the call log
exploitation in Table V. Fig. 10 and Table VII are the
summarization of the test results. Based on the testing
process, communication has the highest frequency with
23.1%, followed by entertainment with 20.5% and games
with 15.4%. Mobile phone users most commonly use these
three categories. Entertainment with its call log feature
makes user life more comfortable but also exposes them to

1795

possible call log exploitation. As for games, this is
something to be pondered, since most games do not need
call features inside the game. It could lead to possible
premium call rates if an attacker is abusing it. Other
categories, in the form of social media, browser, emulator,
fitness, and lifestyle, have the lowest possible call log
exploitation.

Fig. 10 CallDetect evaluation result

TABLE VII
EVALUATION RESULTS WITH GOOGLE PLAY STORE

Category

Number
 Percentage

Communication 9 23.1
Entertainment 8 20.5
Game 6 15.4
Tool 5 12.8
Photo 3 7.7
Wallpaper 3 7.7
Social Media 1 2.6
Browser 1 2.6
Emulator 1 2.6
Fitness 1 2.6
Lifestyle 1 2.6

The significant formation of 13 API call log classifications

is that these APIs are used as the database for CallDetect app.
It is capable of detecting potential call log exploitation inside
a mobile phone. Once it detects any potential harm, it will
trigger a message to the user and asks the user to uninstall it
to avoid further harm. Furthermore, with the existence of
these 13 APIs call log classifications, developers will use it as
a form of guidance and will implement secure coding in
developing mobile apps. Furthermore, it could be used as
guidance for mobile apps developer concerning how attackers
could exploit a smartphone via the API of the call log.
Nonetheless, users must be aware of the apps they installed,
since these APIs might pose financial risks for smartphone
users in terms of premium rate phone calls and scam phone
calls. Users and developers must be aware that API
concerning call logs could be exploited by malware.

IV. CONCLUSION

In this paper, based on the CallDetect app that has been
developed, it is proven that possible call log exploitation via
API could be detected and responded. It is inspired by
apoptosis and uses 13 new API call log classifications as its
database. It is the right solution in detecting any new mobile
apps with potential call log exploitation. Based on the
evaluation conducted, 7% of the tested mobile apps matched
with the possible call log exploitation where mobile apps
from communication, entertainment, and game categories
have the highest score, respectively. Mobile phone users
commonly use these categories. Hence user awareness and
solutions such as CallDetect app offer proper detection and
preventive mechanisms. In the future, other surveillance
features in the form of SMS, camera, audio and GPS, should
be integrated with the CallDetect app for better performance,
and more comprehensive detection and preventive
mechanisms.

ACKNOWLEDGMENT

The authors would like to express their gratitude Ministry
of Higher Education (MOHE), Malaysia and Universiti
Sains Islam Malaysia (USIM) for the support and facilities
provided. This research paper project is under FRGS grant:
[P5-2-50-50819-KPT-FRGS-FST].

REFERENCES
[1] A. Verma, S. Arora, and P. Verma, “Android OS, its security and

features,” Int. J. Recent Res. Asp., vol. 4, no. 3, pp. 241–251, 2017.
[2] M. Kumar, “Mouabad Android Malware is calling to Premium

numbers; Generating revenue for its Master,” 2013. [Online].
Available: https://thehackernews.com/2013/12/mouabad-android-
malware-calling-to.html. [Accessed: 15-Jun-2020].

[3] Matthew Broersma, “Google Play CallJam Malware Infects Half A
Million Users,” 12-Sep-2016. [Online]. Available:
https://www.silicon.co.uk/mobility/google-play-malware-premium-
calls-197557. [Accessed: 15-Jun-2020].

[4] Katia Gonzales, “Telecom Fraud: $29 Billion And Counting - Why It
Matters More than Ever in the Digital Era | Horizon House
Publication Inc.,” 04-Apr-2018. [Online]. Available:
https://www.telecomengine.com/article/telecom-fraud-29-billion-
and-counting-why-it-matters-more-than-ever-in-the-digital-era/.
[Accessed: 15-Jun-2020].

[5] H. Shewale, S. Patil, V. Deshmukh, and P. Singh, “Analysis of
Android Vulnerabilities and Modern Exploitation Techniques,”
ICTACT J. Commun. Technol., vol. 5, no. 1, pp. 863–867, 2014.

[6] D. Jones, “Implementing biologically-inspired Apoptotic behaviour
in digital objects : An Aspect-Oriented Approach,” no. March, 2010.

[7] M. M. Saudi, M. Woodward, A. J. Cullen, and H. M. Noor, “An
overview of apoptosis for computer security,” in Proceedings -
International Symposium on Information Technology 2008, ITSim,
2008, vol. 3.

[8] R. Sterritt, “Apoptotic computing: Programmed death by default for
computer-based systems,” Computer (Long. Beach. Calif)., vol. 44,
no. 1, pp. 59–65, Jan. 2011.

[9] P. Ravi Kiran Varma, K. P. Raj, and K. V. Subba Raju, “Android
mobile security by detecting and classification of malware based on
permissions using machine learning algorithms,” in Proceedings of
the International Conference on IoT in Social, Mobile, Analytics and
Cloud, I-SMAC 2017, 2017, pp. 294–299.

[10] E. M. B. Karbab, M. Debbabi, A. Derhab, and D. Mouheb,
“MalDozer: Automatic framework for android malware detection
using deep learning,” in DFRWS 2018 EU - Proceedings of the 5th
Annual DFRWS Europe, 2018, vol. 24, pp. S48–S59.

[11] K. A. Talha, D. I. Alper, and C. Aydin, “APK Auditor: Permission-
based Android malware detection system,” Digit. Investig., vol. 13,
pp. 1–14, Jun. 2015.

1796

[12] A. Saracino, D. Sgandurra, G. Dini, and F. Martinelli, “MADAM:
Effective and Efficient Behavior-based Android Malware Detection
and Prevention,” IEEE Trans. Dependable Secur. Comput., vol. 15,
no. 1, pp. 83–97, Jan. 2016.

[13] S. Y. Yerima, S. Sezer, and I. Muttik, “High accuracy android
malware detection using ensemble learning,” IET Inf. Secur., vol. 9,
no. 6, pp. 313–320, Nov. 2015.

[14] Z. Wang, J. Cai, S. Cheng, and W. Li, “DroidDeepLearner:
Identifying Android malware using deep learning,” in 37th IEEE
Sarnoff Symposium, Sarnoff 2016, 2017, pp. 160–165.

[15] Kamesh and N. S. Priya, "Security Enhancement of Authenticated
RFID Generation," International Journal of Applied Engineering
Research (IJAER), vol. 9, no. 22, pp. 5968-5974, 2014.

[16] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, “Significant
Permission Identification for Machine-Learning-Based Android
Malware Detection,” IEEE Trans. Ind. Informatics, vol. 14, no. 7, pp.
3216–3225, Jul. 2018.

[17] D. Li, Z. Wang, L. Li, Z. Wang, Y. Wang, and Y. Xue, “FgDetector:
Fine-Grained Android Malware Detection,” in Proceedings - 2017
IEEE 2nd International Conference on Data Science in Cyberspace,
DSC 2017, 2017, pp. 311–318.

[18] M. Mohd Saudi and A. Husainiamer, “Mobile Malware
Classification via System Calls and Permission for GPS Exploitation,”
Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, pp. 277–283, 2017.

[19] P. Burnap, R. French, F. Turner, and K. Jones, “Malware
classification using self organising feature maps and machine activity
data,” Comput. Secur., vol. 73, pp. 399–410, Mar. 2018.

[20] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti,
“Detecting Android Malware Leveraging Text Semantics of Network
Flows,” IEEE Trans. Inf. Forensics Secur., vol. 13, no. 5, pp. 1096–
1109, May 2018.

[21] Z. Abdullah and M. M. Saudi, “RAPID-Risk assessment of android
permission and application programming interface (API) call for
android botnet,” Int. J. Eng. Technol., vol. 7, no. 4, pp. 49–54, 2018.

[22] S. Chen et al., “Automated poisoning attacks and defenses in
malware detection systems: An adversarial machine learning
approach,” Comput. Secur., vol. 73, pp. 326–344, Mar. 2018.

[23] S. Y. Yerima and S. Sezer, “DroidFusion: A Novel Multilevel
Classifier Fusion Approach for Android Malware Detection,” IEEE
Trans. Cybern., vol. 49, no. 2, pp. 453–466, Jan. 2018.

[24] M. Abou-Ghali and J. Stiban, “Regulation of ceramide channel
formation and disassembly: Insights on the initiation of apoptosis,”
Saudi J. Biol. Sci., vol. 22, no. 6, pp. 760–772, Nov. 2015.

[25] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
“Drebin: Effective and Explainable Detection of Android Malware in
Your Pocket,” in Network and Distributed System Security
Symposium(NDSS), 2014, pp. 1–15.

[26] M. Yusof, M. M. Saudi, and F. Ridzuan, “A new mobile botnet
classification based on permission and API calls,” in Proceedings -
2017 7th International Conference on Emerging Security
Technologies, EST 2017, 2017, pp. 122–127.

[27] Z. Li, L. Sun, Q. Yan, W. Srisa-An, and Z. Chen, “DroidClassifier:
Efficient adaptive mining of application-layer header for classifying
android malware,” in Lecture Notes of the Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering,
LNICST, 2017, vol. 198 LNICST, pp. 597–616.

[28] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y.
Fratantonio, V. Van Der Veen, and C. Platzer, “ANDRUBIS -
1,000,000 Apps Later: A View on Current Android Malware
Behaviors,” in Proceedings - 3rd International Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security,
BADGERS 2014, 2016, pp. 3–17.

[29] R. Sihwail, K. Omar, and K. A. Z. Ariffin, “A survey on malware
analysis techniques: Static, dynamic, hybrid and memory analysis,”
Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 4–2, pp. 1662–1671,
Sep. 2018.

1797

