
 

 

 

Vol.8 (2018) No. 4-2 

ISSN: 2088-5334 
 

 
 
 
 

 
 

Semi Non-Standard Trimean Algorithm for Rosenzweig-MacArthur 
Interaction Model 

Mohammad Khatim Hasan#, Noor Ashikin Othman#, Samsul Ariffin Abdul Karim+ , Jumat Sulaiman* 

# Center for Artificial Intelligence and Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600 
UKM Bangi, Selangor, Malaysia. 

 E-mail: mkh@ukm.edu.my, annisrulwaqi7342@gmail.com 
 

+Fundamental and Applied Sciences Department and Centre for Smart Grid Energy Research (CSMER), Institute of Autonomous System 
Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610 Seri Iskandar, Perak DR, Malaysia 

E-mail:samsul_ariffin@utp.edu.my 
 

*Programme of Mathematic with Economy, School of Science and Technology, Universiti Malaysia Sabah, Locked bag 2073, 88999 Kota 
Kinabalu, Sabah 

E-mail: jumat@ums.edu.my 

 
 
Abstract— Most real world natural systems are shows seasonal behaviour due to seasonal environmental or climate change. As a 
results, many species display seasonal changes in their life history parameters. It is crucial to comprehend how the seasonal forcing 
controls the behaviour of the population dynamics. The Rosenzweig-MacArthur model is a system with at least two ordinary 
differential equations used in population dynamics to model the interaction of predator and prey bonding. Rosenzweig-MacArthur 
model overcome the weakness of Lotka-Volterra model to simulate interaction between two species. In Rosenzweig-MacArthur 
model, logistic growth rate of prey is resource limited. The model utilizes Holling type II as the functional response representation. 
The purpose of the study is to construct method to improve simulation on the behaviour of interactions between species and 
predicting equilibrium point accurately and fast. Current methods seem to predict accurately the equilibrium point if only small mesh 
size used. Using small mesh size will require long simulation time to predict the equilibrium point. Able to increase the mesh size will 
increase the speed of predicting the equilibrium point. In this paper, we propose three new semi non-standard trimean algorithms to 
simulate the behaviour of interaction between species represented by Rosenzweig-MacArthur model. The new algorithms apply a 
hybrid of semi non-standard approach and trimean to approximate the nonlinear terms in the differential equation model. Two cases 
of experiment conducted to examine the performance of all three semi non-standard schemes. Result shows that all three new semi 
non-standards schemes accurately predict the equilibrium point (0.25, 0.46875) even using big mesh size ( 6.4=h and 1.2=h ) for both 
cases. Thus, all three semi non-standard schemes fulfil the purpose of this study. 
 
Keywords— semi non-standard discretization; trimean; Rosenzweig-MacArthur model; interaction between species. 
 
 

I. INTRODUCTION 

Ecological populations in real world typically expose 
oscillations behaviour due to predator-prey interactions 
among species. In mathematical models, the situations 
usually represented in the structure of ordinary differential 
equation systems are widely being employed to comprehend 
and forecast the dynamics behaviour of interacting species. 
Lotka-Volterra dynamic model is the simplest and pioneered 
dynamic model used to simulate species interaction. 
Researcher modified the model in many ways since its 
original formulation in the 1920s. 

For many decades, various interactions between 
populations explored via various versions of Lotka-Volterra 
equations, which comprise Modifications to the original 
Lotka-Volterra to gain better understanding for the dynamics 
of population interactions was included later. The Lotka-
Volterra model composes of two impractical assumptions. 
First, in the absence of predators, the prey population will 
increase exponentially. Second, the individual predator’s 
stomach never gets full.  

Rosenzweig and MacArthur improve Lotka-Volterra 
model in 1963 [1] by proposing Rosenzweig-MacArthur 
model. The model corrects the impractical of Lotka-Volterra 
assumptions. Rosenzweig and MacArthur admit prey growth 
reliant on density and saturating uptake of prey by the 
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predator. The Rosenzweig-MacArthur model is becoming an 
alternative fundamental models used in exploring interaction 
between systems. The differences are the growth and death 
rates are not totally depending on prey and predator 
population. The model has taken into consideration the 
environment around particular area. Predator can also find 
other source of food beside prey and prey death can cause by 
disease and inter fight amongst predators. The model serves 
as a starting point for extensions to simulate interactions that 
are more complex. Some example of researchers that apply 
of Rosenzweig-MacArthur model are Weitz & Levin [2], 
Salomon & Stotle [3], Feng, Rock & Hinson [4], and 
Huincahue-Archos & Gonzales-Olivares [5].  

Weitz & Levin [2] suggest a scaled Rosenzweig-
MacArthur model using both Type 1 and Type II functional 
responses. They offered an analytical framework how to 
integrate scaled term in Rosenzweig-MacArthur model. 
They evaluated predator-prey ratio for a broad class of 
interaction system. Salomon & Stolte[3] used Rosenweig-
MacArthur model to forecast dynamic population of 
Amoebophrya and dinoflagellate. The model is useful to 
explain how Amoebophrya can control dinoflagellate. Feng, 
Rock & Hinson [4] apply Rosenzweig-MacArthur to 
simulate two-patch predator-prey interactions with migration 
elements in both species. His finding shows that both species 
population keep on fluctuating at the same level. Interactions 
of both species are longer than Rosenzweig-MacArthur 
original model. Huincahue-Archos & Gonzales-Olivares [5] 
apply the Rosenzweig-MacArthur by incorporating the Allee 
effect on the prey equation. They modify the Rosenzweig-
MacArthur to incorporate Gause type model. The study 
shows that population with strong Allee effects can be 
extinct by predation. 

Standard finite difference method seldomly used to solve 
differential equations problems [6]-[9]. Besides standard 
finite difference, Non-standard (NS) finite difference was 
proposed in [10] as a practical solution to conserve 
qualitative characteristic of differential equation. Mickens 
has construct the basic theory for non-standard approaches 
[10]-[13]. Standard finite difference approaches seldomly 
require small meshes to approximate a problem with high 
accuracy. NS eliminate numerical nonstability in standard 
approaches. Other contribution on extending non-standard 
approach are in [14]-[19]. 

Trimean was proposed by Tukey in 1977 as follows  
,4/)2( 21 HMHTM ++=  

where M is median and 
1H and 

2H  is the upper and 

lower quartile [22]. Trimean have been used to estimate 
wavelet coefficient [23]  while [21] apply trimean in colour 
model constancy and [25] combine Trimean and Quartile to 
estimate the variance. 

In this paper, we develop three new schemes for 
simulating Rosenzweig-MacArthur model by proposing a 
semi non-standard approximation with trimean approach. 
Previously, [26],[27] developed non-standard approach 
(SNST) for simulating Lotka-Volterra. The algorithm 
proposed used Scilab to code. We modified and apply 
method used in [11],[18],[26] to simulate Rosenzweig-
MacArthur model.  

 
 

Rosenzweig-MacArthur model is given by 
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x  and y  are prey and predator population, b  prey’s growth 

rate )0( >b , =a  predation rate )0( >a , =d predator’s death 

rate rate ).0( >d  

In Eq. (1), it is assumed that 
[ ] 0')(,0)(',0)( ≥≤≥ xxgxgxg and )(xxg is the boundary if 

∞→x . Following [28], we assumed that if food volume 
increased, predator population would increase. This will 
increase prey consumption since number of predator 
increase.  Thus, prey population will decrease, and then 
predator population will decreased because of lack of food. 
The equilibrium point for (1) is defined by  

 
,0)()1( =−− xyxagxbx  

 .0)( =− dyxyxg                                 (2) 

 
Depending on parameter values and reaction function, 

)(xxg , Eq. (1) will have equilibrium points given below : 
1) );0,0(0 =E  

2) )0,1(1 =E and 

3)  ),( ppp yxE = where px  is solution for dxxg =)(  

and 
ad

xbx
y

pp
p )1( −= . Equilibrium point pE  exists if and 

only if .)1( dg >  

By following stability theorem for nonlinearity, the given 
statement for equilibrium point is true. 

1) Equilibrium point 0E  is always linearly non-stable. 

2) Equilibrium point 
1E  is linearly stable if dg >)1(  

and non-linear otherwise; 
3) Equilibrium point pE is linear stabil if  

0)(' >+ pp xgayb  and non-stabil linear if 

.0)(' <+ pp xgayb  

II. MATERIAL AND METHOD 

To construct the Semi Non-standard Trimean (SNST) 

scheme for Eq. (1), we approximate 
dt

dx  with 
h

xx ii −+1  , and 

dt

dy  with 
h

yy ii −+1 . For the right hand side we proposed 

three new non-standard schemes of Eq. (1), 
 

A. Scheme 1 

For Eq. (1), the 2, xx  and xy  is approximate by non-local 

representation as follows. 

12 +−= ii xxx  

1
2

+= ii xxx  

ii yxxy 1+=  
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which equal to 

AGxyBxBx
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xx ii −−=−+ 21  
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Since trimean approaches need two previous nodes to 

calculate the next node, thus we use non-trimean equation, 
which is Eq. (3) for the first two nodes.  
For ,0=i the equation (3) become 
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For ,1=i Eq. (3) become 
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Applying Trimean formula, 
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While for y  and xy  in the right-hand-side of (1) also is 

replaced by non-local representation as follows. 

12 ++−= ii yyy  

112 ++ −= iiii yxyxxy  
Thus, 

DyGxy
h

yy ii −=−+1 , 
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For  ,0=i Eq. (5) become 

.
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For  ,1=i  Eq. (5) become 
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Trimean formulation 







 ++ +−

4

2 11 iii yyy  to Eq. (5) for y , 

without any changes in xy  and for ,1>i  
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B. Scheme 2 

The value of x and xy  at the right-hand-side of Eq. (1) is 

similar to scheme 1 while the approximate value of y  and 

xy  was replaced by non-local representation as follows. 

1+= iyy  
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For ,0=i Eq. (7) become 
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For ,1=i  Eq. (7) become 
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C. Scheme 3 

The value of x and xy  at the right-hand-side of Eq. (1) is 

similar to scheme 1 while the approximate value of y  and 

xy  was replaced by non-local representation as follows. 

 

12 +−= ii yyy  
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For ,0=i     
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          (10) 

Algorithms for all semi non-standard trimean (SNST) 
schemes proposed in this study are given in Algorithm 1-3. 

III.  RESULTS AND DISCUSSION 

In this paper, three SNST schemes simulate Rosenzweig-
MacArthur model. We analyse the behaviour of these SNST 
schemes for two set of initial values with two mesh size 
values each. We conduct the experiment with two sets of 
parameters value [29]: 

.2.0,0.1,0.1,0.2 ==== DCBA  

a. Case 1: ;4.0;4.0 00 == yx with 3.1=h  and .6.4=h  

b. Case 2: ;2.0;1.0 00 == yx with 1.2=h  and .001.0=h  

Simulated results presented in Table 1-6. We analyzed the 
pattern of behavior and equilibrium value compared to 
analytic solution. From the theory of equilibrium described 
in section I, we can calculate the third linear stable point of 
equilibrium. The theory mention that ),,( ppp yxE =  where 

px is solution for DxxG =)(  and 
AD

xBx
y

pp
p )1( −= . 

Equilibrium point pE  exists if and only if .)1( DG > Thus, in 

this experiment, ,2.0,0.1,
1

)( ==
+

= DC
xC

xG .2.05.0)1( >=G  

Therefore, the pE equilibrium point is linearly stable.  
 

Algorithm 1: SNST scheme 1 

initialize: 
mesh size, h , solution domain i , initial value of predator and prey, 
relevant parameters in prey and predators differential equations 
 
approximate predator and prey for each i  from 1 to 1−n : 
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. 
Display Output: minmaxmin ,, yxx  and 

maxy  

Plot 
1) Prey and predator 
2) Interaction between prey and predator 
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Algorithm 2: SNST scheme 2 

initialize: 
mesh size, h , solution domain i , initial value of predator and prey, 
relevant parameters in prey and predators differential equations 
 
approximate predator and prey for each i  from 1 to 1−n : 
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Display Output: minmaxmin ,, yxx  and 
maxy  

Plot 
1) Prey and predator 
2) Interaction between prey and predator 

 

Algorithm 3: SNST scheme 3 

initialize: 
mesh size, h , solution domain i , initial value of predator and prey, 
relevant parameters in prey and predators differential equations 
 
approximate predator and prey for each i  from 1 to 1−n : 
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Display Output: minmaxmin ,, yxx  and 
maxy  

Plot 
1) Prey and predator 
2) Interaction between prey and predator 

 
We calculate the equilibrium point as follows. 










+
→=→= −

p
pp

xC
DxDGxDxGx

1
)()( 1  

.25.02.02.00.1,2.0 =→+=→== ppp xxxCD  

,2.0,0.2,0.1,
)1( ===−= DAB

AD

xBx
y

pp
p  

.46875.0
4.0

)75.0(25.0
)2.0(2

)1( ==−=
pp

p xx
y  

Therefore, the equilibrium point, pE  is ).46875.0,25.0(  

From Table 1, all SNST schemes for both mesh size 
values saturated at value 4687.0=y  at around the same time. 

The only difference is that less behaviour fluctuation occurs 
for bigger mesh size. 

TABLE I 
SIMULATED PREDATORS FOR ROSENZWEIG-MACARTHUR MODEL  

FOR CASE 1  

3.1=h  6.4=h  

  

  

  

 
From Table 2, all SNST schemes for both mesh size 

values saturated at value 25.0=x  at around the same time. 
The only difference is that less behaviour fluctuation occurs 
for bigger mesh size. 

TABLE II 
SIMULATED PREY FOR ROSENZWEIG-MACARTHUR MODEL FOR CASE 1  

3.1=h  6.4=h  
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TABLE III 
SIMULATED PREDATOR AND PREY INTERACTION FOR ROSENZWEIG-

MACARTHUR MODEL FOR CASE 1  

3.1=h  6.4=h  

 

  

  

TABLE IV 
SIMULATED PREDATORS FOR ROSENZWEIG-MACARTHUR MODEL FOR  

CASE 2  

1.2=h  001.0=h  

From Table 3, all SNST schemes for both mesh size 
values saturated at value 4687.0,25.0 == yx  at around the 

same time. The only difference is that non-smoth behaviour 
and less circulary behaviour occurs for biger mesh size. 

This finding is accurately simulating the analytic solution, 
which is

 )46875.0,25.0(  with percentage relative error of 

%.0107.0  
From Table 4, all SNST schemes for both mesh size 

values saturated at value 4688.0=y  at around the same time. 

The only difference is that less behaviour fluctuation occurs 
for bigger mesh size. 

From Table 5, all SNST schemes for both mesh size 
values saturated at value 25.0=x  at around the same time. 
The only difference is that less behaviour fluctuation occurs 
for bigger mesh size. 

TABLE V 
SIMULATED PREY FOR ROSENZWEIG-MACARTHUR MODEL FOR CASE 2  

1.2=h  001.0=h  

 
From Table 6, all SNST schemes for both mesh size 

values saturated at value 4688.0,25.0 == yx  at around the 

same time. The only difference is that non-smoth behaviour 
and less circulary behaviour occurs for biger mesh size. 
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This finding is accurately simulating the analytic solution, 
which is  )46875.0,25.0(  with percentage relative error of 

%.0107.0  
Table 3 and 6 shows the interaction between predator and 

prey. Both tables show that prey population will increase if 
predator population decrease. This phenomena is as such 
because the decreasing of predator population will increase 
the possibilities of prey to stay alive. High ratio of prey to 
predator will increase the possibility of predator to consume 
prey, and again will increase the predator population. This 
explain why predator population will increase if the prey 
population increase. A continuous decrease in prey 
population will decrease the population of predator. Since, 
predator will be lack of food. This is the prime dying factor 
of predator. This phenomena follows exactly the food chain 
relationship between prey and predators.  

All three SNST schemes precisely simulate the 
equilibrium point both cases. Mesh size used greatly impact 
the behavior of simulated interaction between both parties. 
Using high resolution of mesh size will increase the 
accuracy of the simulation.  

TABLE VI 
SIMULATED PREDATOR AND PREY INTERACTION FOR ROSENZWEIG-

MACARTHUR MODEL FOR CASE 2  

1.2=h  001.0=h  

 
Thus, Table 4-6 clearly shows that using smaller mesh 

size simulate the interaction clearer than using bigger mesh 
size. This exhibited by more fluctuations predator and prey 
behaviour and more circular activity of interactions between 
prey and predator.  

 
 
 

IV.  CONCLUSION 

Ordinary differential equations have been widely utilized 
in engineering, biology, medicine, economics, and wide 
range of areas. We proposed three new algorithms called 
Semi Non-Standard Trimean algorithms in this paper. We 
have shown that the ordinary differential solutions via three 
new numerical algorithms accurately simulate the 
equilibrium point of the interaction. It is always a good idea 
to implement simulation to verify the performance of these 
new algorithms. We also suggest varying the initial values 
when examining the accuracy of these algorithms. The 
algorithm shows almost similar behaviour between each 
other. Mesh size selection play an important role in 
simulating precise simulation behaviour. However, the 
equilibrium point is precisely approximate even though by 
using bigger mesh size. This is the main advantage of the 
proposed schemes. 
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