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Abstract— Machine vision has been widely implemented to monitor water status of plants. The performance of machine vision affects
the prediction process of plant water status. Therefore optimization is needed to improve the performance of machine vision. The
objective of this study is to optimize the performance of machine vision to mod8lnagoke moss water status. Back Propagation
Neural Network was used to model the relationship of image features ar®linagoke moss water status. Multi Objective Optimization
(MOO) was used to select 212 image features to get maximum prediction accuracy and minimum number of features subset. Nine
nature-inspired algorithms for optimization i.e. Genetic Algorithms (GAs), Discrete Particle Swarm Optimization (DPSO), Honey
Bees Mating Optimization (HBMO), Simulated Annealing (SA), Ant Colony Optimization (ACO), Intelligent Water Drops (IWD),
Discrete Firefly Algorithm (DFA), Discrete Hungry Roach Infestation Optimization (DHRIO), and Fish Swarm Intelligent (FSI) were
compared. The result shows generally that the prediction model using feature selection techniques achieved significant prediction
accuracy, and the number of feature-subset, and was better than the model without feature selection to pre@aehagoke moss water
status.
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In horticulture and agriculture the commonly used colour
I. INTRODUCTION spaces such as gray, RGB, HSL, HSV and L*a*b* have
often been used for plant detection in image analysis [10].
However, no study has reported conclusively about the
combination of some other colour spaces such as XYZ, LCH
and Luv. There is also no research has been conducted in

sound with high resistance to pest and diseases, retains itfnage analysis which is implementing the combination of

; : lour features and textural features in various colour spaces
dark green colour in extreme cold and high temperatures and©
is drought resistant with lack of rainfall leaving no Such as gray, RGB, HSL, HSV, L*a*b* XYZ, LCH and

permanent ill-effects [1]. Thus, water stress is the main Luv.
factor limiting moss mat production [2][3]. Fig. 1 shows
Sunagoke moss mat production in a semi-closed
bioproduction system. Mosses exhibit a high level of
desiccation tolerance [4][5] making them ideal plant for
studying the robustness of water stress detection techniques
in plants. Plant water stress is caused by water deficit or
flooding. Water stress influences stomata resistance, induces
changes in internal and surface leaf structure and leads to
breakdown of photosynthesis pigments. These changes can
be detected by imaging. Imaging techniques make pre-
symptomatic detection of physiological changes in plants
possible and in real-time. Combinations of colour and
textural features have been used in many studies to detect
water stress in moss using imaging techniques [6][7][8][9].

Use of biological materials for roof greening is an
effective strategy for urban heat island mitigatiSBnnagoke
moss, scientifically known aRhacomitrium japonicums
resilient requiring minimal maintenance, is environmentally

Fig.1.Sunagokemoss mat production.
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Feature selection techniques have become an apparent [I. MATERIALS AND METHODS
need in many bioinformatics applications [11]. Two ) _
categories of feature selection techniques that are recently® Materials and equipments
usedi.e. filter methods and wrapper methods. Filter methods Ten samples of high density and immature-based type of
are fast but lack robustness against interactions amonggulturedSunagokenossR. japonicum{(VARORE Co., Japan)
features and feature redundancy. Wrapper methods are morgere grown in polyvinyl netting and anchored in glass wool
effective than filter methods because they evaluate themedia in growth chamber (Biotron NK 350, Japan) with the
candidate feature subsets using learning algorithm [3].0ptimum environment parameters air temperature =C15
Wrapper methods can broadly be classified into two RH = 80%, the C@gas = 400 ppm, light intensity = 86.5
categories based on search strategy: greedy and stochastipmol m” s, light duration = 12 h. Those samples were
Greedy wrapper methods can easily be trapped into localplaced in a 110 x 80 x 25 mm glass vessel. The average
minima [12]. Stochastic wrapper methods such as Simulatednitial dry weight of the samples was 12.5 g. As a mean of
Annealing (SA) [13], Genetic Algorithms (GAs) [14], manipulating their physiological status, the samples were
Particle Swarm Optimization (PSO) [15] are at the forefront subjected to different water states. Water status was defined
of research in feature selection [16]. as the average amount of water available for each sample in

The natural systems have been one of the rich sources ogach day of data acquisition in grams per gram of its initial
inspiration for developing new intelligent systems. In this dry weight [8].
study, artificial intelligence approaches using nature-inspired
algorithms for optimizing image feature-subset to predict B. Model of Study
water status ofSunagokemoss were proposed. Artificial First process is image acquisition in a dark chamber, in
Neural Network (ANN) is simplified models of the human Which the moss images were captured using digital camera
central nervous system. ANN has been shown to be effective(Nikon Coolpix SQ, Japan) placed at 330 mm perpendicular
as computational processors for various task including to the sample surface. The image size was 1024 x 768 pixels.
pattern recognition, classification, modelling, forecasting, Imaging was done under controlled and well distributed light
combinatorial problem solving and noise filtering [17]. GAs conditions. Light was provided by two 22W lamps
is search algorithms based on the mechanics of natura(EFD25N/22, National Corporation, Japan). Light intensity
selection and natural genetics [18]. PSO is an evolutionaryover the moss surface was uniform at 1@@I m” s* PPF
computation technique inspired in the behaviour of bird (Photometer, Li6400, USA) during image acquisition. A
flocks which was first introduced by Kennedy and Eberhart total of 649 image data which varies at different water status
[19]. The Honey Bees Mating Optimization (HBMO) (dry, semi-dry, wet and soak condition) were acquired.
algorithm simulates the marriage behaviour of bees [20]. SAImage features which consist of Colour Features (CFs) and
takes inspiration from the process of shaping hot metals intoT extural Features (TFs) were extracted from each image data.
stable forms through a gradual cooling process whereby the Selection process for selecting relevant image features is
material transits from a disordered, unstable, high-energydone using nine alternative nature-inspired approaches
state to an order, stable, low-energy state [21]. Ant ColonyGAs, Discrete Particle Swarm Optimization (DPSO),
Optimization (ACO) is inspired by the foraging behaviour of HBMO, SA, ACO, IWD, Discrete Firefly Algorithm (DFA),
ant colonies, and targets discrete optimization problems [22].Discrete Hungry Roach Infestation Optimization (DHRIO)
Intelligent Water Drops (IWD) algorithm was invented by and FSI. MOO concerns optimization problems with
Shah-Hosseini [23] which is based on the dynamic river multiple objectives [27]. The fitness is calculated as follows:
systems, actions and reactions that happen among the water

drops in rivers. Firefly Algorithm (FA) was developed by function, = weight, x RMSE,, 1)
Xin-She Yang in 2007 based on the flashing characteristics IE
of fireflies [24]. Hungry Roach Infestation Optimization  function, = weight, x — (2)
(HRIO) is inspired by recent discoveries in the social ¢
behaviour of cockroaches [25]. Fish Swarm Intelligent (FSI) fitness(x) = function, + function, A3)

was developed by Fernandetsal. [26] which is inspired by
the fish swarm behaviour inside water.

The objectives of this study is (1) to compare the water
status prediction ability of colour and texture analysis in
Sunagokemoss; and (2) to compare the performance of
nature-inspired algorithms to find the most significant set of
image features suitable for predicting water content of
cultured Sunagoke moss. Multi-Objective Optimization
(MOOQ) is an optimization problem that involves multiple
objectives or goals. It is necessary to be aware that featurémage features, respectively, wheveight < [0.1, 0.9] and
selection problem in this study is a MOO problem in the weight = 1- weight. In this study, the accuracy is more
sense of prediction accuracy maximization and featureimportant than the number of selected image features in a
subset size minimization. feature-subset.

whereRMSE, is the Root Mean Square Error of validation-
set data of Back-Propagation Neural Network (BPNN) using
only the expression values of the selected image features in a
subsek, wherelF ) is the number of selected image features
in x. f; is the total number of image featuregeight and
weight are two priority weights corresponding to the
importance of the accuracy and the number of selected

46



C. Colour Features (CFs) P[' ] NG, j) (16)
CFs include colour mean value and excess RGB index.' o117 M
Colour mean value can be described as follows [3]: M N
1M p=Yi> Pl i (17)
colour mearvalue=—->"colour value (4) ]
i=1 M N
a=> (- Pii] (18)
i i

where: colour value can be defined as the range of each .
colour space in the pixéle. red, green, blue, grey, hue, where:N(i,j) is the number counts in the image with pixel

saturatiogysy), saturatiogysy), lightnesgisy, valugusy), intensity i followed by pixel intensityj at one pixel
Xxvz), Yxvz), Zxvzy, L* a*, b* Cychy Hichy Uwy and displacement to the left, amd is the total number of pixels.
V- M is the total number of pixels in the image. Based on the results of preliminary observation in various
Excess RGB index was calculated by [8]: combination of angle&(= 0, 6 = 45,0 = 90,6 = 135) and
E&ZZR—G—B. _2G-R-B, _2B-R-G (5) distance d = 1, d = 2, d = 3), it was showed that
R+G+B' " R+G+B' " R+G+B combination of anglef(= 0) and distanced(=2) performed

better than the other combinationébndd to identify water
content. Therefore, in this study, TFs were extracted at those
values off andd. A total of 190 TFs were extracteéé. 10

TFs each for R, G, B, gray, hue, saturatign,

D. Textural Features (TFs) saturatiogysy), lightnesgsy), valugusvy, Xxvz), Yxvz)

The textural analysis can be considered as one onh(XYZ)' LI*,' a, b*]; Cien, H(L%H)’hU(L“") and \Luy). '(Ij'r}erefo[;e,h
applicable techniques for extracting image features [28]. ThetCE totad |_Ir_nFage e;il;r?sﬁ)(w ich were exiracted irom bot
Colour Co-occurrence Matrix (CCM) procedure consists of ~7Sand Irsare eatures.

three primary mathematical processes: (1) the image isg Back-Propagation Neural Network (BPNN)
transformed from RGB colour representation to other colour . . .
A three layers BPNN structure which consists of input

[igiebiergggor;wszucgl?s LgéaHy [2229]]’ a|r-1|ds LLE\? d[glg]SV(ZgSO], layer, one hidden layer and output layer has been developed
’ ' for predictingSunagokenoss water status. Learning rate and

generation of Spatial Gray-Level Dependence Matrices momentum value were chosen at 0.6 and 0.8, respectivel
(SGDMs) [34], resulting in one CCM for each colour space, i ' 7 P y
based on the results of preliminary runs. Five models of

the CCM was calculated based on normalization value; andhidden nodes architecture in the hidden layer were
(3) determination of ten Haralick Textural Features [35]. developed.e. 10, 15, 20, 25 and 30. The output was water

Ten Haralick’s TFs are as follows: content corresponding to the input features. The training,

whereER,, EG, andEB, are the normalized excess R&] (
index, excess Greer5] index and excess Blud) index,
respectively. The total number of CFs are 22 features.

M N
Energy= ZZPZ[i, il (6) validation and testing performance criterion for the
i Mi ) prediction was RMSE as follows:
- - i i (@) N,
Entropy ZZ’P[I' illogPi, il RMSE= \/12($ _st)? (19)
_MN._.Z.. (8) Nni:1
Contrast-ZZ(u NP whereN, is number of input feature vectoi,is the water
MNP ] content predicted by BPNN model, aBtlis the target water
Homogeneit = 227 (9) content. The 649 samples data were randomized and divided
R U JMl v Pl ] into three parts which were 325 data as training-set, 162 data
: — POLIT L 10 as validation-set and 162 data as testing-set. The best
InverseDerrencel\/Ioment—ZZj: li—j '#1 4o number of hidden nodes was determined by validation-set
W N G= (- AP ] (11) RMSE. The best hidden nodes will be used to calculate
Correlation=3"%" e testing-set RMSE. The procedure of training, validation and
[

. testing included: (1) divide data into training, validation and
SunMean:EZZ(iP[i, i1+iPhi, iD (12) testing-set; (2) select certain hidden nodes model; (3) train
2575 selected hidden nodes model using the training-set; (4)

. 13 &, o ot (13) evaluate selected hidden nodes model using the validation-

Vaf'a”C&gzz((' ~APLL T+ - A7PlIL D) set; (5) repeat steps 2 through 4 using different hidden nodes

L VN model; (6) select the best hidden nodes model; and (7) assess
ClusterTendency= > > i +j —24) “P[i, j] (14) this final model using the testing-set. The iteration in the
i training process will stop when the error will reach to a

(15) threshold value.

where: P(i,j) is the (i,j)" element of a normalized co- F- Genetic Algorithms (GAs)

occurrence matrix, and ands are the mean and standard ~ The steps of N-GAs are as follows [36][37]:

deviation of the pixel element given by the following 1. Generate population randomly in which individuals

relationships: (number of individualsni = 70) characterized by
chromosomes represent a set of possible solutions (e.g.
ga: 0,1,1,0,0,0,1,0,0,1,0,fy), wheref, is the number of

M N
MaximumProbability =MaxP[ i, ]
L]
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total image features which equals to 212 features. A psb= ¢ O CRN",g"), which is the social part of the
I H 1

value of O indicates that the corresponding feature is
not selected and will not be added as the input of
BPNN, while a value of 1 means that the feature is
selected and will be added as the input of BPNN.
Compute the fitness of each individual in the
population using Egs. (3).

Select the fittest individuals to be parents for
reproducing offspring using roulette wheel selection
strategy.

Create offspring with two point crossover (crossover
rate = 0.5) and mutation operators (mutation rate = 0.1)
by changing the selected individuals during the mating
periods. Crossover rate and mutation rate were
determined based on the results of preliminary runs.
Two points crossover (pointl and point2) are selected
randomly, where pointl<point2, pointl>1 and poirfit2<
Displace the parents with good offspring to compose

the subsequent generation according to probability best3'

chromosome which is set to 0.2.
The search will terminate if the iteration has reached
500 iterations.

Discrete Particle Swarm Optimization (DPSO)
Pan et al [38] have presented a DPSO optimization

algorithm to tackle the discrete spaces which can not be
solved by PSO, the steps of DPSO are as follows [39]:

1.

4.

5.

components: The first component & = w{J Fp(psd"l),

which represents the velocity of the partidfg. represents
the mutation operator with the mutation strengtp ahd the

) {argm!nf(g”) if min F(p") < F(g"?)
9" = P

Generate a population of particlepsd = [psq”,
psa’,..., psq,] wherenpis the number of particlesi

= 70) andn is global iterationrf = 500). Each particle in
the swarm population has the following attributes: a
current position represented psq” = [psa,”, ps®",...,
psan.T e.g.psq” = 0,1,1,0,0,0,0,1,0,0,1,0/f;.a current
personal best position representedpds [pi1", p2"....,
pm]; and a current global best position represented as
g" = [gn", 62" Gn']-

Evaluate the fitness of each particle in the population
using Egs. (3).

Find personal best position. The personal best position
of each particle is updated using:

o = { g if Fpsd)=F(p™)

psp if Hpsd)<F(p')
Find global best position.

(20)

(21)
g™t else
Update particles of population.
pSe &1 CREI CRwWI E(psd™), p™).g"")
(22)
The update particles of population consists of three

4.
5.
6

8.
9.

10.

11.
12.
13.

mutation probability ofv (w = 0.5). The second component
is = ¢OCRA", p"™). which is the cognition part of the

particle representing the private thinking of the particle itself.

CR represents the crossover operator betwgmand p"*
with the probability ofcy[0, 1]. The third component is
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particle representing the collaboration among partidBd®.
represents the crossover operator betwgeandg” with the
probability ofc,[0, 1]. Probability ofc; andc, were chosen

at 0.8 based on the results of preliminary runs. Here
crossover is performed by two points crossover.

6.

The search will terminate if the global iteratianhas
been reached.

H. Honey Bees Mating Optimization (HBMO)

The steps of proposed HBMO are given as follows:
Initialisation of HBMO parameters. The maximum
iteration is 500. The number of bee’s population is 70,
the capacity of spermatheca is 50 and the number of
worker is 40. The initialspeedandenergyof the queen
are 0.9 and 1, respectively based on the results of
preliminary runs.
Generate the initial value of worker randomly [0, 1].
Generate the initial population of bees randomly (e.qg.
bee: 0,1,1,0,0,0,0,1,0,0,1,0,..1).
Evaluate the fithess dfeg using Egs. (3).
Compute the individual solutiofR(beg).
Based on the individual solutidf(beg), only in the first
iteration, the best member of the initial population of
bees is selected as the queen of the hive. The number of
queen is one. All, the other members of the population
are the drones.
Selection ofdrong. A drone mates with a queen using
annealing function [40]:

-1x| K bee)- F queen)|

speed(t)

Prob(D) =e (23)
whereProb(D) is the probability of adding the sperm of
drone D to the spermatheca of the queeR(bég)-
F(queen)|is the absolute difference between the fitness
of D and the fitness of the queen aspeed(t)is the
speed of the queen at tirhe
Add sperm of the drone in queen’s spermatheca.
Updatespeedandenergyof the queen.

speedt +1) = a x speedt) (24)

energy(t +1) = a xenergy(t) (25)
whereq is a factor [0, 1] that determines the amount that
the speed and the energy will be reduced after each
transition and each step.

Selection of the workerworker is randomly selected
from the list. Random numbemd[0, 1] is generated to
determine the probability of worker to do crossover
function (between the queen genotype and the selected
sperm) or mutation function (selected sperm) to the
brood. Broods are generated from the cross-over and
mutation process.

Evaluate the fithess dfrood using Egs. (3).

Compute the individual solutioR(brood).

Replace the queen and update the fitness of the queen if
the solution of the brood is better than the solution of
the current queen.

F(brood)
Kquee Rqueed

If q( l:(brood)) > q(F(queen)
otherwise
(26)



where functiory(.) gives the quality of the solution.

14. Update the total best solutidi®:

if q(T°)zq(T®)

) (27)
otherwise

. TTB
T T 1B

15. The search will terminate if the maximum iteration has

[

been reached.

Simulated Annealing (SA)
The N-SA steps are as follows [39]:

Pow

Set the maximum iteratiom = 70), set the initial value
of temperature ) and randomly generate an initial
solution of feature-subsesd). Set this solution as the
current solution as well as the best solution. The
independent variablea in the SA procedure is set to
subset of features which is determined by random value5.
[0, 1], e.g.s2 0,1,1,0,0,0,0,1,0,0,1,0,.. .

Evaluate the fitnesB(sa) using fitness function in Egs.

(3).

Generate another feature-subseat)(

Evaluate fithess~(sa’). If sa’ improves onsag it is
accepted; ifsa’ is worse tharsa thensa’ is accepted

with a probability which depends on the difference in
objective function value F(sa)-F(sa’) and on a
parameterT. T is lowered during the run of the
algorithm, reducing in this way the probability of
accepting solutions worse than the current one. The
probability paccept0 accept a solutiosa’ is often defined
according to the Metropolis distribution [41]:

1 it Rsd)< F(sa
Qccept( Sasa"T) = {GXF{RSQ_F(S&)] otherwise
T )
(28)

UpdateFsa’, global minimumand memorizea'.

Update temperature. The decrement function for
decreasing the value @fis given byT=T-(a,*T), where

o, is a anneal factor which can be defined as a constant

6.
7.

pc hc

Tll// X ,711//
pc hc
2Ty %y

antTallowed,

If an ant is not able to optimize fitness function in ten
successive steps, it will finish its work and exit. Each
ant consist of feature-subset with selected features as ant
paths (e.gant: 0,1,1,0,0,0,0,1,0,0,1,0,..f).

Evaluation of antsant) using Egs. (3).

Update the global best solutiof’{®) by the current ant
solution ™).

ant _

p/z//

(29)

-I-best .I: -I-best > -I-ant
Tbest t I q( . ) q( ) (30)
T otherwise
Pheromone updating.
k
le// (t + n) = (1_ p)rll// (t) + ZATI[// (31)

ant=1
whereAr,, represents the sum of the contributions of
all ants that used move () to construct their solution
between timeg andt+1. Using the feature subsets of
the bestk ants, the pheromone trails intensity are
updated using the following equation:

Forj=1tok
max( fitness value,) - fitness value;,
AT, = —ZH

max max( fitnessvalue,) - fitness valuehj

h=1:k \ g=1k
(32)

In the first iteration, each ant will randomly choose a

feature subset df features. Only the bektsubsetsk

< na, will be used to update the pheromone trail and

influence the feature subsets of the next iteration.
Generation of new ants.
The search will terminate if the maximum iteration has
been reached.

smaller than but close to 1. Typical values lie between K. Intelligent Water Drops (IWD)

0.8 and 0.99. Based on the results of preliminary runs
using some variations df value, we determine the best ;.
a, is 0.9.

The search will terminate if the iteration has reached
500 iterations or the current solution does not change for
more than 300 iterations.

. Ant Colony Optimization (ACO)
The steps of N-ACO [35]:

Set the initial parameters.e. the number of ant
population &nt;, anb, ang,....anty) is na = 70;
maximum of allowed iterations = 500; heuristig,, X
which is defined as the inverse of the validation-set
RMSE between two features, (v) as the input of
BPNN; intensity of pheromone trail level £ 100); the
best ants selectedt € 8); pheromone constarjq= 1);
heuristic constanthc = 1); and evaporation rate of
pheromoneer,[0, 1]. er, was determined to be 0.2
through preliminary runs. 3
Generating ants for solution generation. Each ant
movement for finding the trail path is based on the 4
pheromone and heuristic probability. '
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The steps of the proposed N-IWD are as follows [42]:

Initialisation of static parameters. Set the maximum
iteration (global iteration = 500). The number of IWD
population (IW0Q, IWD,, IWDs,....IWDg) is = 70. Each
IWD consist of feature-subset with selected features as
the river paths (e.g. IWDO0,1,1,0,0,0,0,1,0,0,1,0,.f).

For velocity updating, the parameters age= 1, b, =
0.01 andc, = 1. For soil updatinggs = 1, bs = 0.01 and

Ccs = 1. The local soil updating parameigrand the
global soil updating parametgfyp were chosen at 0.3
based on the results of the preliminary runs. The initial
soil on each path is denoted by the consftat§oil such
that the soil of the path between every two nddssd]

is set bysoil(i, j) = InitSoil. InitSoil = 10000 andnitVel
=4.

Initialisation of dynamic parameters. Every IWD has a
visited node lisiv, (IWD). Each IWD’s velocity is set to
InitVel. All IWD are set to have zero amount of soil.
Spread the IWDs randomly on the nodes as their first
visited nodes.

Update the visited node list of each IWD to include the
nodes just visited.



5. Repeat steps 5.1 to 5.4 for those IWDs with partial L. Discrete Firefly Algorithm (DFA)

solutions.

5.1 For the IWD residing in nodechoose the next noge 1.

which is not in the visited node list(IWD) if the IWD,
using the following probability,"V°(j):

, f (soil(, :
piIWD(J) — ( ( J)) (33) 2
> f(soil(i,k))
KIVc(IWD) 3.
such that
1 4,
f(soil(i,j))= —— (34)
£, +9(soil(i, ])) 5
soil (,j) if min @oil{,1))=0
g(soila,j)):{ 'I( ]_)_ IE_V\/C(IWD)(_ _( ))I (35)
soil (,j) wq(\wm(sm(l, D)) else
Then, add the newly visited nofleo the listV,(IWD).
5.2. For each IWD moving from nodédo nodej, update
its velocityvel*'"(t) by
vel"® (t+1) =vel™ (t) + ol (36)
(t+d O, +c, xs0l?G, )
wherevel"P(t+1) is the updated velocity of the IWD.
5.3. For the IWD moving on the path from nod® j,
compute the soisoil(i, j) that the IWD loads from the
path by
Bsoil , }) = % (37)
b+ ¢ xtimé (i, j;vel™ (t +1))
such that
time(i, j:vel™ (t+1)) = —HUPUL ) (38 6.

vel™ (t+1)

where the heuristic undesirabilityuD(i,j) is defined as 7.

the validation-set RMSE of two nodeis j). The lower
validation-set RMSE value between two nodie$){ the
lower HUD(], j) value.

5.4. Update the sogoil(i, j) of the path from nodéto |

traversed by that IWD and also update the soil that the1

IWD carriessoil*'® by
soil (,])= @~ p,)xsoil (i, j) - p, xbsoil (i, ]) (39)

soil™® = s0il""® + Asoil(i, j) (40)

6. Evaluate each IWD’s solutionr{'®) using the fitness
function in Egs. (3).

7. Find the iteration-best solutiof® from all the solutions

TP found by the IWDs using
T® = argmax q(m"™®) (41)

8. Update the 50|Is on the paths that form the currentj

iteration-best solutiofi™® by

oG, joT®
(42)

whereNj is the number of nodes (selected features) in

the solutionT™®,

soil (,j) =@+ p|WD)XSO|| (%)) ~ Pwo mxSOillg\lD
B

9. Update the total best solutio'™® by the current 6.

iteration-best solutio™® using

el T0 i a™®)2q") (43)
T® otherwise
10. The search will terminate if the global iteration has been
reached.
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5.

The steps of the proposed DFA are given as follows:

Set the initial parameters of DFiRe. the number of
fireflies population fa;, fay, fas,....fay) is nf = 70 and
the maximum iteration (global iteration = 500).
Generate the location of each firefly randomly [0, 1]
(e.g.fg: 0,1,1,0,0,0,0,1,0,0,1,0,..1).

Determine light intensity; atfa, asF(fa;) based on the

fitness function in Egs. (3).

Rank the fireflies from the worst to the best and find the

current best solutiorfdyes).

Repeat steps 5.1 to 5.4 for tho$sg with partial

solutions.

5.1 Search over all the dimensions to find other firefly
with brighter light intensityfg;).

5.2 If |; is brighter tharl; or we can say if the solution
of F(fa) is better than the solution &f(fa) then
there will be two point crossover between firefily
and firefly fa;. The output of this crossover process
is a new locationfgy ;).

5.3 If the new solutionF(fa;;) is better than the
previous solutionF(fa) then replace the current
location of fa; with fa;; and update the current
individual solution.

5.4 In case ofa can not find any brighter firefly then it
will move randomly. The output of this process is
fame. If F(famg) is better than the previous solution
F(fa;)) then replace the current location faf with
famg and update the current individual solution.

Update global best solution as the best feature-subset

from the fireflies’ population.

The search will terminate if the global iteration has been

reached.

M. Discrete Hungry Roach Infestation Optimization

(DHRIO)

The steps of N-DHRIO are as follows [43]:

Initialisation of DHRIO parameters. The maximum
iteration €.,o,=500), the number of roach populatiow)

is = 70. For neighbours updating, the parameterd\are
= 0.49,A, = 0.63 andA; = 0.65. For hunger updating,
thunger= 100. The probability of mutation is set £ 0.5)
and the probability of crossover is s€, (= 0.5) based
on the results of preliminary runs.

Generate roach locatiomiq;) randomly andhunger =
rand{0, thungerl}. Each roach consist of feature-subset
(e.g.rio;: 0,1,1,0,0,0,0,1,0,0,1,0,..5).

Evaluate the fitness of each roacio) using Egs. (3).
Update the individual solutioR(rio;).

Calculate neighbours threshold valag)(

|F (rio ;) ~F (rio, )|
M [ Jk] 2

d, = mediafM, OM :1< j<k<N,} (45
Repeat steps 6.1 to 6.4 for those; with partial
solutions.

6.1 Updating personal best solutiorp)( for the
individual cockroach agent:

p, =rio, if F(rio; )<F(p,)
P P, otherwise

(44)

(46)



gt

6.3 Update the darkest local location or group best

. =1, = argmin {F(p,)bh ={i, j,}

i{rioi =random

6.2 Compute the neighbourblj of roachi.
Forh=1toN,

N=N+1 if hl< h< N, h# i ANDM, <d,

otherwise

(47)

solution (;) according to:
Forr =1 toN,

if rand[01] < A, 3
otherwise
(48)

where {, j} are the indices of the two socializing
cockroaches ang, is the darkest known location
for the individual cockroach agent personal best.

6.4 Update roach locatiomi¢;):
rig= GOCR(G O CRWI F, (ri9 ),p ).] ) ifhunger<t

hunger

otherwise
(49)

6.5 Evaluate each roachi¢;) using Egs. (3).

6.6 Update the individual solutioR(rio;).

6.7 Updatehunger.

hunger = hunger + rand [01] X t, .., (50)
6.8 Update iteration-best solutiof®.
T'® = arg maxq(F(rio))) (51)

Update the total best solutio'® by the current
iteration-best solutiofi’® using:
B H -TB 1B
pe[T0 a2 a(T™) 2
T®  otherwise

Update the best feature-subset.

The search will terminate if the maximum iteration has

been reached.

N. Fish Swarm Intelligent (FSI)
The steps of the proposed FSI are as follows:

1.

N

oukw

Initialisation of FSI parameters. The maximum iteration

is 500. The number of fish populatioNs,) is 70, the

crowded parameterCf) is 0.3 and the leaping value

(leap) is 10 based on the results of preliminary runs.

Generate the location of each fish randomly [0, 1] (e.g.

fish: 0,1,1,0,0,0,0,1,0,0,1,0,..f).
Evaluate the fithess dish; using Egs. (3).
Update the individual solutioR(fish).
Find the best solutioffi§hyes)-

Calculate visual SCOP&ibscopg:

]= | R fisty) - F(fish)|

2
ViSqcope = mediarﬁMjk OM :1< j<ks< Nﬁsh} (54)

Calculate central point of the populatiare(teiny:

M=[M,

(53)

N fish
> features;,
features, = 'ZlN— (55)
fish
1 if featureg = 05 (56)

feature
? {0 otherwise

e.g.centeinc 0,0,0,1,1,0,0,1,0,0,.....1%
Repeat steps 8.1 to 8.4 for thofish with partial
solutions.

51

8.1 If the visual scope ofish is empty ViSscope = O)
then fish.; will generate its location randomly.
Otherwise it goes toonditionl
Conditionl If the visual scope dish is crowded
(Visscope > Cp) then searchingwhich meandish
will generate random locatidish ang. If F(fisShang)
is better thanF(fish) then there will be a two
points crossover process betwdish,,,q andfish.
Otherwise it goes toondition2
8.3 Condition2
1" process If the F(centoin) is better tharF(fish)
then swarming which means there will be a two
points crossover process betwemmt,i,; andfish,
but if the F(centoin) is not better thar(fish) then
searching The output of the®iprocesss fishy,.
2" process If the F(fishyes) is better tharF(fish)
then chasing which means there will be a two
points crossover process betweeh,s; and fish.
But if the F(fish,es) is not better tham(fish) then
searching The output of the™ processs fishy,.

i fishy, if K fish,)) > o F(fish,,))
f|sh+1{ fish,  otherwise &7

8.4 UpdateVisscope C€Nboint aNdfishpest

9. If the F(fish) equal toF(fish.,) then update théeap
factor. If the leap factor reaches the threshold point
(leap = 10), therfish,, will move randomly.

10. Update the best feature-subset.

11. The search will terminate if the maximum iteration has
been reached.

8.2

[ll. RESULTS ANDDISCUSSION

The main assumption underlying this study was that
changes in the external appearances and surface structure of
a plant which is caused by water stress can be detected by
visible light imaging techniques. In Fig. 2 typical sample
images ofR. japonicumused in this study are shown. Image
Fig. 2a shows dry moss, Fig. 2b semi-dry moss, Fig. 2c wet
moss or well watered moss and Fig. 2d soak moss or too
much water status inside moss. Images Fig. 2c and Fig. 2d
are not distinguishable. Therefore, the application of
intelligent approaches is required to solve this problem.
BPNN model performance was tested successfully to
describe the relationship betwe&unagokemoss water
status and image features. It indicates that colour and texture
can be good indicators to predict water content in moss.

Fig. 3 shows the average testing-set RMSE of BPNN
model trained using various colour spaces. Based on the
average testing-set RMSE, R TFs (RMSE = 1.5Fxad
the lowest prediction error followed by gray TFs, L* TFs,
lightnesgisy TFs, valugisyy TFs, G TFs, L*a*b* mean
value, Xxyz TFs, Luv mean value, hue TFsyy TFs,

Y xvz) TFs, b* TFs, &vz TFs, Hicwy) TFs, LCH mean value,
saturatioghsyy TFs, B TFs, Gcny TFS, Yy TFs, a* TFs,
HSV mean value, Excess RGB index, saturggion TFs,
HSL mean value, RGB mean value and XYZ mean value in
that order, respectively. Thepy, TFs shows the least
absolute deviation, which means that,w TFs shows the
highest consistency and the highest reliability in predicting
water content ofSunagokemoss. ANOVA analysis shows
that the significant level is less than 0.01, which means there



is significant difference between the groups showed in Fig. 3 The performance of BPNN using individual feature-
with a confident level of 99%. The TFs feature-subset in subset (R TFs) is satisfactory. The performance of BPNN is
each colour space, for example R TFs, consist of tengetting better through all the iterations as shown in Fig. 4.
Haralick’'s TFsi.e. R energy, R entropy, R contrast, R This indicates that the BPNN used for learning algorithm is
homogeneity, R inverse difference moment, R correlation, R effective. It means that iteration size of 10000 is appropriate
sum mean, R variance, R cluster tendency and R maximunfor BPNN to predict water content &unagokeMoss. The
probability. HSV mean value means the combination of hue smallest training-set RMSE of BPNN using R TFS is
mean value, saturatigryy mean value and valygy) mean 6.62x10%. In general, training of BPNN may be terminated
value. Excess RGB index consists of excess R index, excesat the convergence with the total training-set RMSE value
G index and excess B index. less than 10% [17].
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Training-set RMSE (R TFs)

0 2000 4000 6000 8000 10000
Iteration

(b)

Fig. 4. Performance of BPNN model trained using R TFs.

Table 1 and table 2 show the performance of nine nature-
inspired features selection algorithms using different values
of weight andweight. A value of the formxty represents
an average value with a standard deviation Overall, the
prediction accuracy (based on the testing-set data) and the
number of selected image features fluctuated because of the
diversity of the solutions based on adjusted weights.
Moreover, MOO searches simultaneously the solution which
is superior in one objective, but poor at others. Based on the
objective of the MOO used in this study, where the
prediction accuracy is more important than the number of
selected image features, the results show that the best
performance of each feature selection method are GAs with
the average testing-set RMSE of 8.98%khd the average
feature subset of 46.0 usimgeight = 0.9 andweight = 0.1;
bl 4 s DPSO with the average testing-set RMSE of 1.37xaAd
Fig. 2. CulturedSunagokenoss in various water content: () d; (b) semi- the_ average feature Su_bset of 3ms2ngwe|g_htl = 0.9 and
dry; (c) wet; (d) soak. weight = 0.1; HBMO with the average testing-set RMSE of

9.96x10° and the average feature subset of 23.2 using
500E-02 weight = 0.9 andveight = 0.1; SA with the average testing-
450E-02 | [ set RMSE of 1.28x16 and the average feature subset of
3.508-02 11 average testing-set RMSE of 1.24%1@nd the average
Zgg:i I feature subset of 9.6 usimgeight = 0.9 andweight = 0.1;
9 00E-02 | IWD with the average testing-set RMSE of 1.36%Hhd the
150E-02 1 average feature subset of 9.6 usivejght = 0.9 andwveight
1.00E-02 = 0.1; DFA with the average testing-set RMSE of 9.78%10
5.00E-03 [
0008+00 7 ‘3‘ ‘5‘ ‘7‘ ‘9‘ ‘”‘ ‘13‘ ‘15‘ ‘17‘ ‘19‘ ‘21‘ ‘23‘ ‘25‘ ‘27 and weight = 0.1; DHRIO with the average testing-set
Feature-subset RMSE of 1.48x1G and the average feature subset of 19.6
using weight = 0.9 andweight = 0.1; and FSI with the
mean value; (3) HSV mean value; (4) L*a*b* mean value; (5) LCH mean L _ . _
value; (6) Luv mean value; (7) XYZ mean value; (8) Excess RGB index; (9) feature subset of 18.0 usimgight = 0.9 andweight = 0.1.
R TFs; (10) G TFs; (11) B TFs; (12) gray TFs; (13) hue TFs; (14)
ValUQst TFs; (18) ){xyz) TFs; (19) nyz) TFs; (20) %(YZ) TFs; (21) L*
TFs; (22) a* TFs; (23) b* TFs; (24)iGH) TFs; (25) Hcny TFS; (26) W)
TFs; (27) \w) TFs.

© &

@ £

Average Testing—set RMSE

400E-02 7 19.0 usingweight = 0.9 andweight = 0.1; ACO with the
and the average feature subset of 18.2 usieght = 0.9
Fig. 3. Performance of BPNN based on: (1) RGB mean value; (2) HSL average testing-set RMSE of 1.19531@md the average
saturatiogusyy TFs; (15) lightnesssy TFs; (16) saturatigrsyy TFs; (17)
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TABLE |
AVERAGE TESTINGSETROOT MEAN SQUARE ERROR(RMSE)AND
AVERAGE FEATURE-SUBSET IN DIFFERENT VALUES OF WEIGHTW; AND W)
(5 RUNS ON AVERAGH

(s

02+ 0.45 02+ 0.89 02+ 2.30
2.68E- 1.42E- 5.37E-
04 03 04
1.39E- 16.8+ 1.46E- 6.4+ 1.62E- 7.6x
07 03 02+ 1.79 02+ 1.34 02+ 2.19
’ "~ 5.21E- 1.34E- 1.39E-
04 03 04
1.39E- 17.0+ 1.38E- 6.6+ 1.41E- 8.2+
08 02 02+ 2.12 02+ 0.89 02+ 1.79
’ "~ 5.04E- 7.61E- 1.07E-
04 04 03
1.28E- 19.0+ 1.24E- 9.6+ 1.36E- 9.6+
09 01 02+ 141 02+ 0.89 02+ 1.52
’ T 2.71E- 1.92E- 4.46E-
04 04 04

Weight GAs DPSO HBMO
w; W, RMSE features RMSE features RMSE featu
2.00E- 2.08E- 2.35E-
01 09 2+ 12.0+ 02+ 9.8+ 02+ 3.4+
5.28E- 0.71 4.22E- 3.03 3.83E- 0.55
04 04 04
2.12E- 2.10E- 1.83E-

02 08 02+ 11.4+ 02+ 10.2+ 02+ 3.6x
1.68E- 0.89 6.93E- 2.68 7.83E- 0.89
03 04 04
1.68- 2.05E- 1.57E-

03 07 02+ 12.8+ 02+ 10.4+ 02+ 6.0+
1.68E- 045 1.03E- 251 959E- 141
03 04 04
1.72E- 2.05E- 1.55E-

04 06 02+ 11.6+ 02+ 10.8+ 02+ 6.4+
7.49E- 055 158E- 2.68 7.39E- 0.89
04 04 04
1.57E- 2.05E- 1.40E-

05 05 02+ 14.8+ 02+ 11.0+ 02+ 9.0+
1.17E- 179 1.80E- 283 157E- 141
03 04 03
1.34E- 1.55E- 1.28E-

06 0.4 02+ 17.0+ 02+ 20.6+ 02+ 8.0+
5.76E- 0.71 255E- 321 241E- 0.71
04 04 04
1.14E- 1.55E- 1.18E-

07 03 02+ 23.2+ 02+ 20.8+ 02+ 11.8+
) "~ 8.01E- 045 289E- 390 1.06E- 1.30
04 04 03
1.07E- 1.47E- 1.17E-

08 02 02+ 28.8+ 02+ 25.0+ 02+ 14.6+

2.12E- 110 137E- 332 1.79E- 0.89
04 03 04
8.98E- 1.32E- 9.96E-
09 0.1 03+ 46.0+ 02+ 31.2+ 03+ 23.2+
7.55E- 141 431E- 349 7.69E- 1.30
04 04 04
TABLE Il

AVERAGE TESTINGSETROOT MEAN SQUARE ERROR(RMSE)AND
AVERAGE FEATURE-SUBSET IN DIFFERENT VALUES OF WEIGHTW; AND W)
(5 RUNS ON AVERAGH

5

Weight SA ACO IWD
Wi W, RMSE features RMSE features RMSE features
2.72E- 7.2+ 1.53E- 4.4+ 1.59E- 4.4+
01 09 02+ 0.45 02+ 0.89 02+ 0.89
2.96E- 5.71E- 8.24E-
03 04 04
2.41E- 7.6+ 1.54E- 4.2+ 1.59E- 5.6+
02 08 02+ 1.14 02+ 0.45 02+ 0.89
' ' 3.88E- 4.53E- 8.09E-
03 04 04
1.88E- 7.8+ 1.54E- 4.4+ 1.62E- 6.2+
03 07 02+ 1.30 02+ 0.89 02+ 1.30
’ ’ 1.60E- 4.34E- 1.07E-
03 04 03
1.67E- 9.6+ 1.55E- 5.0+ 1.64E- 6.2+
04 06 02+ 0.89 02+ 0.71 02+ 1.30
' ' 2.17E- 6.38E- 5.56E-
04 04 04
1.80E- 9.4+ 1.60E- 5.8+ 1.61E- 7.0+
05 05 02+ 1.95 02+ 1.09 02+ 1.73
' ' 1.27E- 3.79E- 9.87E-
03 04 04
06 04 159E- 12.2+ 1.47E- 5.6+ 1.65E- 7.4x

3

Comparative studies was conducted to see how good
feature selection effect on the prediction performance of
water status using image features. The results show that
feature selection models using GAs, DPSO, HBMO, SA,
ACO, IWD, DFA, DHRIO and FSI have better performance
for minimizing prediction error than model using individual
feature-subset or without feature selection method (R TFs).
Based ont-test statistical analysis, there is significant
difference between feature-subset using GAs and feature-
subset without feature selection (R TFs) at= 0.01
significant level, and there is significant different between
feature-subsets obtained from other feature selection
methods (DPSO, HBMO, SA, ACO, DFA, FSIl) and R TFs
at a = 0.05 significant level. However, though the average
testing-set RMSE of IWD or DHRIO is better than R TFs,
but there is no significant different between feature-subsets
obtained from IWD or DHRIO and R TFs. Based on this
result, we can conclude that feature selection method
improves the performance of prediction using BPNN.

The plots of best fithess values of MOO using all feature
selection methods are displayed in Fig. 5 to highlight the
search process in each feature selection method. At the
beginning of the iteration, all feature selection methods
(GAs, DPSO, HBMO, SA, ACO, IWD, DFA, DHRIO and
FSI) were given the same feature-subset which is defined as
the initial feature-subset. The fitness value obtained from the
initial feature-subset and then normalized by the value of
1.00. During the optimization process (minimizing the
RMSE of validation-set data and minimizing the number of
selected features) the fitness value continues to decrease,
searching for the most minimum fithess value. Using the
sameweightparameterweight = 0.9 andweight = 0.1), it
shows that FSI has the best performance to minimize the
fitness value (normalized fithess value = 0.45), followed by
DFA (normalized fitness value = 0.65), DHRIO (normalized
fithess value = 0.67), GAs (normalized fithess value = 0.67),
HBMO (normalized fitness value = 0.74), ACO (normalized
fithess value = 0.78), SA (normalized fitness value = 0.81),
DPSO (normalized fitness value = 0.84) and IWD
(normalized fitness value = 0.89) in that order, respectively.
Most of all feature selection methods can quickly minimize
the fitness value at the beginning of 50 iterations, but based
on the comparison analysis on the performance of all feature
selection methods, it shows the superiority of FSI to
minimize the fitness value in early iterations, followed by
DFA, DHRIO, HBMO, ACO, SA, GAs, IWD and DPSO,
respectively. However, the performance of feature selection
method to predict the water status ®finagokemoss is



determined by the performance of its testing-set data. Based
on the testing-set data and the objective of this study to
minimize the prediction error, it shows that GAs has the
most minimum testing-set RMSE. The best GAs’ fithess
function converged with the lowest testing-set RMSE of
8.26x10° when using 45 features. The best DPSO’s fitness
function converged with the lowest testing-set RMSE of
1.27x10% when using 25 features. The best HBMO's fitness
function converged with the lowest testing-set RMSE of
9.75x10° when using 24 features. The best SA’s fitness
function converged with the lowest testing-set RMSE of
1.26x10* when using 19 features. The best ACO's fitness
function converged with the lowest testing-set RMSE of
1.22x10° when using 10 features. The best IWD’s fithess
function converged with the lowest testing-set RMSE of
1.33x10° when using 10 features. The best DFA’s fitness
function converged with the lowest testing-set RMSE of
9.64x10° when using 18 features. The best DHRIO’s fithess
function converged with the lowest testing-set RMSE of
1.46x10* when using 24 features. The best FSI's fitness
function converged with the lowest testing-set RMSE of
1.17x10? when using 19 features. From Fig. 5, we can see
that the fithess value changed and it is getting better through
all the iterations. It indicates that GAs, DPSO, HBMO, SA,
ACO, IWD, DFA, DHRIO and FSI are effective. In all of
the iterations, the validation-set RMSE of all feature
selection methods changed most at the beginning of
iterations. It means that iteration size of 500 is appropriate
for all feature selection methods.
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Fig. 5. Plot of best normalized fithess values of MOO using: (a) GAs; (b)
DPSO; (c) HBMO; (d) SA; (e) ACO; (f) IWD; (g) DFA; (h) DHRIO; (i)
FSI.

Fig. 6 indicates that the performance of BPNN models
using (a) GAs; (b) DPSO; (c) HBMO; (d) SA; (e) ACO; (f)
IWD; (g) DFA; (h) DHRIO; (i) FSI are satisfactory. The
smallest value for training-set RMSE of all BPNN models
(GAs = 6.08x1d; DPSO = 1.72x18, HBMO = 1.28x10";

SA = 2.13x10% ACO = 6.32x10; IWD = 2.22x10%, DFA =
2.03x10% DHRIO = 1.48x1(; FSI = 2.38x10) are less

than 10%. The BPNN performances also indicate that the
BPNN used for learning algorithms is effective. Finally, the
weights value obtained from the BPNN model using relevant
feature-subset can be used to detect water stress in moss. For
the future works, the results from this study can be used to
develop machine vision-based irrigation system for moss
production in closed bio-production system.
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Fig. 6. Training performance of BPNN: (a) GAs; (b) DPSO; (c) HBMO; (d)
SA; (e) ACO; (f) IWD; (g) DFA, (h) DHRIO; (i) FSI.

In this study, we found that the prediction accuracy and
the number of selected features using nine feature selection
methods were not equal when using different values of
weight andweight. This result shows that there are many
irrelevant image features, and some of them act negatively
on the accuracy acquired by the relevant image features. The
weights obtained from the ANN model using relevant image
features which has been developed in this study can be
applied for water stress detection in cultuBathagokemoss
mat production in closed bio-production system. Though,
Sunagokemoss mat was used in this study, the methods can
be extended to other plants or to other purposes for solving
feature selection problems.

IV. CONCLUSIONS

In this study, colour and textural features from various
colour spaces such as gray, RGB, HSV, HSL, L*a*b*, XYZ,
LCH and Luv were used to predict water statuSumagoke
moss. Back-propagation Neural Network (BPNN) has been
tested successfully to describe relationship between image
features and water status of cultu®dnagokemoss. Based
on the testing results, red textural feature-subset had the best
performance in prediction using BPNN as individual feature-
subset than those extracted from other colour spaces. Feature
Selection methods improved the BPNN performance for
prediction. Overall, there is a significant difference between
methods using feature selection and methods without feature
selection. Based on the optimization performance, Fish
Swarm Intelligent (FSI) has the best performance for
optimizing the fitness function of Multi-Objective
Optimization (MOO) problem, followed by Discrete Firefly
Algorithm (DFA), Discrete Hungry Roach Infestation
Optimization (DHRIO), Genetic Algorithms (GAs), Honey
Bees Mating Optimization (HBMO), Ant Colony
Optimization (CO), Simulated Annealing (SA), Discrete
Particle Swarm Optimization (DPSO) and Intelligent Water
Drops (IWD) in that order, respectively. However, in the
testing process, BPNN model using feature-subset obtained
from GAs has the best prediction accuracy which has a
higher ability and reliability to predict water status in
Sunagokemoss. The best prediction performance using
feature-subset obtained from GAs (45 features) has the
lowest testing-set Root Mean Square Error (RMSE) of
8.26x10°.
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