

Vol.7 (2017) No. 4-2

ISSN: 2088-5334

Comparative Evaluation of the State-of-art Requirements-based Test
Case Generation Approaches

Ahmad Mustafa#, Wan M.N. Wan-Kadir#, Noraini Ibrahim#

#Software Engineering Department Universiti Teknologi Malaysia, Skudai, Johor Baharu, 81310, Malaysia
 E-mail: wnasir@utm.my

Abstract— The overall aim of software testing is to deliver the error-free and high-quality software products to the end users. The
testing process ensures that a software is aligned with the user specification and requirements. In software testing process, there are
many challenging tasks however test case generation process is considered as the most challenging one. The quality of the generated
test cases has a significant impact on efficiency and effectiveness of the testing process. In order to improve the quality of a developed
software, the test cases should be able to achieve maximum adequacy in the testing and requirements' coverage. This paper presents a
comparative evaluation of the prominent requirement-based test case generation approaches. Five evaluation criteria namely, inputs
for test case generation, transformation techniques, coverage criteria, time and tool's support are defined to systematically compare
the approaches. The results of the evaluation are used to identify the gap in the current approaches and research opportunities in
requirements-based test case's generation.

Keywords— test case generation; requirements; specification-based testing; diagram-based testing; coverage criteria

I. INTRODUCTION

Software testing is performed to assure the quality of a
software product. Therefore, it is considered as one of the
important phases of software development. In addition, it
provides the system stakeholders with the measures on the
degree of how far the system meets the customer’s
expectation.

Software testing takes 40-70% of the development effort,
time, and cost [1]. In another study [2], software testing
accounts for 50-75% of total development cost. Although
software testing is an expensive phase, it has a significant
impact on achieving a high degree of software quality and
consumer confidence.

Nowadays, software testing researchers are concentrating
on the efficiency of software testing process. Furthermore,
automation of the software testing process is considered as a
solution to lower the cost, decrease the effort, and increase
the time to market of software product [3]. However,
automation of testing is not a silver bullet which can provide
a solution to all problems. It is considered that software test
case automation process is itself an expensive activity and
requires development effort, cost and time. Despite expenses,
it has a significant impact on development cost, time to
market and quality of the product [4].

Adequate validation of functional requirements in test
cases is considered as one of the industrial software
problems. The foremost effort to cover this difficulty stems

that how each source requirement is typically mapped onto a
respective test run result. The suitability of mapping a
requirement onto a test is typically not formally recognized.
Industry expert generally fills this gap in some way with test
reviews or inspections [5].

Software requirements based testing is considered as an
important phase of the software development process, as it
addresses the problem that how to validate the developed
software against its requirements. Designing of test cases is
the foremost success factor of the testing process, and
customers are concerned with test cases successful
implementation. Furthermore, requirement based test case
generation helps to obtain the adequate traceability
information of requirements. It also ensures the complete
requirements coverage in the designed test case suite [6].

A perfect set of test cases is one that has a high chance of
discovering unknown errors. To uncover all potential errors
in a program, detailed testing is required to examine all
possible input and logical execution paths, but it is neither
possible nor economically feasible. Thus, the actual goal of
software testing is to increase the finding errors' probability
using a limited number of test cases that perform in less time
with less effort [7].

Many metrics have been proposed to evaluate the quality
of test case generation, e.g., cost, time, effort and coverage
criteria. Many researchers have put their efforts on
minimization of time, effort and cost. However, from last
decade, researchers put their efforts on automation of test

1567

case generation [8]. The main function of requirement
coverage metric is to monitor and report the number of
requirements tested and whether these requirements are
correctly implemented or not.

Similarly, a test coverage criterion shows that how
effective the testing process has been done. As per testing
approaches, there are two main types of coverage criteria:
requirement coverage and structural coverage [9].
Requirements' coverage which covers all requirements in
functional testing. Particularly, it is a measurement of the
requirements that are covered in the testing and specifies the
performance of functional testing achievement [10].
Likewise, the structural coverage checks how many
behaviours of the requirements' specification are covered by
the testing process [11].

This study presents a comparative evaluation of different
approaches for automated test case generation from
requirements, which is a critical part of software testing
process and types of coverage criteria that are used in these
methods.

In this paper, we classify the existing prominent
approaches in requirements-based test case generation. In
Section II, we briefly elaborate these approaches, we explain
the process of test case generation from requirements, and
we explain the evaluation criteria used to check the quality
of approaches. Discussion on the evaluation results of
approaches is presented in Section III. Conclusion and future
research work are presented in Section IV.

II. MATERIAL AND METHODS

Test case generation process is the most important and
fundamental testing process. If the test cases are generated
earlier, it will reduce the cost, time and effort when actual
testing starts.

A. Classification of Test Case Generation Approaches

In general, there are two major approaches in
requirements-based test case generation namely
specification-based testing and Sketched Diagram-based
testing.

1) Specification-based Testing: In specification-based
testing, requirements are used to develop the application and
define the test cases. The defined test cases verify that all
requirements are applied in the application domain.
Specification-based methods for testing are the techniques to
generate a bulk of test cases from the documentation
regarding the specifications of the system such as a formal
requirement specification [12], [13]. Specification-based
testing depends on requirement's models. It can be further
categorized in two requirements analysis approaches namely
natural language requirements and formal method's analysis.

In the early phase of system development, requirements
are specified in natural language because natural language is
universal, flexible and comprehensible. In addition, natural
language can be used to describe any circumstances and
environment [14].

According to IEEE-830 standard, the term “natural
language requirement” is referred as a requirement
document that is documented using natural languages such
as English, French, Arabic, Malay, and Urdu. “Shall"

requirements, use case, user stories, scenarios, and feature
lists are examples of natural language requirements [15].
“Shall” requirements are stated with “The system shall ...”,
with the possibility to swap “system” with system or actor
name for example, “The temperature sensor shall send the
temperature of the ducts to the duct monitoring system” [16].

Formal methods are the rigorous mathematical-based
approaches that are used for the specification, modeling, and
verification of software and hardware systems [17]. Formal
methods are associated with three techniques such as formal
specification, formal verification, and refinements.

There are some drawbacks of using the formal methods as
a specification-based technique. First, it is difficult to
estimate the effort cost in conducting formal analysis due to
the complexity of the analysis process [18]. Second, the
great manual effort is required in generating test cases as
compared to automated test case generation process [19],
[20]. Third, formal specification methods are not widely
accepted for several reasons. For example, a formal model is
difficult to be used for communication purpose, especially
for non-technical personnel. Furthermore, extensive training
is required during the implementation of formal models,
which is a time-consuming and expensive process.

2) Sketched Diagram-based Testing: The Sketched
Diagram-based testing technique is the type of model-based
testing. It is also known as UML-based testing because it
generates test cases from the UML diagram. The test cases
can be generated in analysis and design phase from the
requirement-based model. UML diagrams are a most
common way to represent the requirement-based model. The
UML-based testing (UBT) is defined as a testing approach
that uses UML-based software models or specifications in
the design, generation, and execution of the test cases. In the
UML-based testing process, UBT particularly designs and
generates test cases (with oracles), and evaluates test results
based on the relevant UML-based software models and
UML-based specifications for testing the SUT [21].

The UML diagrams can be categorized into behavioural
and structural diagrams [22].

• Behavioural Diagrams are the type of diagrams that
represent behavioural features of a business or system
process. These diagrams show that what should
happen in a system. Behavioural diagrams include
activity, sequence, use case, state chart and four
interaction diagrams (communication, interaction,
sequence, and timing). The interaction diagrams are
used to describe that how objects interact with each
other to create the functions within the system.

• Structural diagrams emphasise the elements of the
specification which is irrespective of time. Diagrams
included under this category are composite,
deployment, package, profile, class, object and
component diagrams.

B. Requirements based Test Case Generation Process

This sub-section briefly explains the process of two
requirements based test case generation approaches namely
specification-based test case generation process and
Sketched Diagram-based test case generation process. The
generation of test value is not covered by this work.

1568

1) Specification-based Test Case Generation Process:
Many of the researchers focus on the derivation of test cases
from natural language requirements. The finite state machine
and formal modelling languages are used to represent the
requirement model of the system. The state machine is used
to derive natural language scenarios. To write test cases
from requirements, the test engineer must clearly understand
the requirements' specification. Fig. 1 shows the generic
process of test case generation from natural language
requirements. It is a summarization of approaches [24]-[33],
and a brief description of steps is mention below:

• In specification-based testing, documents are written
in natural language / textual requirements.

• To increase the quality of natural language
requirement, the approach [23] has performed
syntactic and semantic analysis of natural language
requirements.

• Different requirement formalization tools are used to
develop a formal model from textual requirements,
i.e., consistency checking tool analysed that formal
model is in the correct state. If the formal model is
not in the correct state, then requirements are
inconsistent. In a failure, situation requirements are
again analysed and corrected. If errors are not
corrected, then inconsistency may result in
subsequent phases of system development.

Natural language
Requirements

Formalized
Requirements
specification

Code for test case
generation

Test case generator
Executable

Behaviour Tree

Test Cases

Test case generation
Algorithm

Compile

Execute

Post Processing

Consistency Checking

NL Requirements
Analysis

Fig. 1 Test case Generation Process from natural language requirements

• Test case generation tools derived test cases from the
consistent formal model. Then test cases are executed
on system implementation via the executable tool.
The code for test cases is compiled with the
generation algorithms.

• Then simulation of test cases is performed using any
simulation tool, e.g., MATLAB Simulink Design
verifier.

• The approach [24] applied behaviour trees (BTs) as a
graphical notation to capture formal requirements.
Using behaviour tree is easy to maintain direct
traceability between individual functional
requirements and their representation in the BT
model.

• During post-processing test cases are extracted from
behaviour tree by performing a modified depth-first
traversal algorithm.

2) Sketched Diagram-based Test Case Generation
Process

In Sketched Diagram-based test case generation, at the
initial phase of requirements, requirement engineer starts
describing the requirements as scenarios. These scenarios
are transformed into a requirement model, e.g., activity or
use case diagram. These diagrams are used for generation
of initial test scenarios using the searching algorithm, e.g.,
graph search, Breadth-First Search (BFS) [34]-[36]. Fig. 2
shows the sequence of task's implementation for automation
of test case generation process [36]-[39].

• Describe system requirements as scenarios.
• Transform requirement into any one UML diagram,

e.g., activity, use case or class diagram.
• The XML metadata interchange (XMI) file is used to

store the requirement model.
• It transforms requirement model into test model using

meta modelling.
• When test model and metamodel have loaded a

searching, the algorithm is adopted to generate
different test item sequences from the test model.

C. Evaluation Criteria

This sub-section briefly explains the criteria used for
evaluation of test case generation approaches.

1) The input to Generate Test Case: It refers to a type of
information that is being used to generate test cases at the
start of a testing process. It presents the information used for
test cases generation process. For example, in case
specification-based testing input may be in the form of
natural language requirements or formal specification.
Similarly, in Sketched Diagram-based testing approach input
may be a use case, activity or class diagram.

2) Transformation Techniques: It refers to change that
how from requirements to testing requirements are a process
and reshaped. This metric is checking which transformation
technique is more effective. Transformation techniques used
in selected studies are formal checking, metamodelling, and
formal methods.

1569

Requirement
Modelling(RM)

(Activity/Use case /class
diagram)

Load Model

Transforming RM-TM

Transformation Rules

TC1 TC2

TC3 TC4

TC5

Test
Model =

XMI

Load TM

Transforming TM-TC

Transformation Rules

Searching Algorithm

XMI

Fig. 2 Test case generation process from requirement's modelling

3) Coverage Criteria: Coverage metric is applied to
quantify the quality of a system specification and is
commonly applied to assess progress in system validation.
For example, in the case of white box testing coverage
metric answer question that “have I written enough tests
cases?" Similarly, in black box testing, it addresses “Have I
written enough properties?” Highest coverage to satisfy the
test adequacy criteria that is given as input to the software
under test, there are many types of coverage criteria
depending on the type of testing.

4) Time: Through the testing process, the time can be
increased due to unsuitable test cases. These unsuitable tests
cases caused resources wasted as well as time. For that
reason, there is a need to reduce time.

5) Tool Supports: It refers to use of Computer-Aided
Software Engineering (CASE) tools for automation in the
process.

III. RESULTS AND DISCUSSION

Table 1 shows the result summary of comparison of
requirements based test case generation approaches.

The evaluation metric time and CASE tool support
responses are recorded in “yes” or “No” only. If any
approach is not considering time factor during generation of
test cases sign (X) is used, and in case yes sign (✔) is used.
Similarly, if CASE tools are applied for automation in test
cases generation process then sign (✔) and in case of no
automation in test cases generation process sign (X) is used.

As we can see in Table 1, use case and sequence diagrams
[35], [40], [42] are used as the input of test case generations.
The proposed approach in [40] uses XMI parser for
transformation to test cases. Equivalency class partition
techniques are applied with the use of an automated tool to
achieve maximum time to market and to minimize the cost.

In a similar manner, the approach in [36] has used activity
diagrams as the input of test case generation whereas model
transformation approach is used to convert the artefacts of
activity diagrams into test cases. On the other hand, this
study has no focus on time and cost. Moreover, no
automation tool is used during the study.

Most of the studies [24], [25], [27]-[29], [32], [33] use
natural language requirements as the input for their test case
generation. At beginning phase of the system development,
requirements are documented in natural language while the
natural language's requirements may be ambiguous,
incomplete and inconsistent. Meanwhile, manual inspection
of natural language issues can be hard to minimize.

The study [28] proclaimed a method to generate test cases
using natural language. The data-flow reactive system
(DFRS) is used for transformation formal model. The
(DFRS) automatically obtained artifacts from natural-
language requirements that describe functional, reactive and
temporal properties. Despite the generation of test cases
from natural language, this study does not provide any
mechanism of test case reduction.

Similarly, the requirement centred analysis and testing
framework are used for the formalization of natural language
requirements. After analysing the requirements' issues, test
cases are generated from formalised requirements and
executed on the implementation model [29]. However, this
study is not addressing the issue of test case reduction.
Moreover, no cost-effective solution is provided to minimize
the cost of the testing process.

Likewise, the approach [27] proposed a method for
generation of test cases from natural language (NL)
requirements using an automated tool. This C&L tool
translates automatically natural language requirement's
descriptions into behavioural models for automated testing.
Studies [27], [41] used path coverage, although it is a
reliable metric though it is not applicable to large systems.
Like previous studies, this study is not proposing any
strategy of test case reductions.

In like manner, the study [25], proposed a method of test
case's generation from natural language SRS documents.
Text mining and symbolic execution techniques are used for
generation of test cases. However, the study does not clearly
state the transformation strategy and no cost-effective
solution by focusing on test case reduction.

1570

TABLE 1
 COMPARISON OF TEST CASE GENERATION APPROACHES

 Approach Input Transformation
Techniques

Coverage criteria Time Tools
Support

S
p

ecificatio
n

-b
ased

 A
pp

ro
ach

es

Lindsay et al. [24] Natural language model checking

Path coverage ✖ ✔

Elghondakly et. al. [25] Natural language ✖ Requirement
coverage

✖ ✔

Venkatesh et al. [26] Formal
specification

Formal Model Requirement
coverage

✖ ✖

Sarmiento et al. [27] Natural language Model
transformation

Path coverage ✖ ✔

Carvalho et al [28] Natural language Formal model ✖ ✖ ✔
Aichernig et al. [29] Natural language model checking

Requirement
coverage

✖ ✔

Carrera et al [30] Natural language Metamodeling Functional
coverage

✔ ✔

Gao et al. [31] category partition Formal model Equivalency
partition

✖ ✔

Yue et al. [32] Natural language Model
transformation

Structural
coverage

✖ ✔

Carvalho et al. [23] Natural language Model
Transformation

Requirement
coverage

✖ ✔

S
ketch

ed
 D

iag
ram

-b
ased

 A
p

p
ro

ach
es

Chatterjee et al. [33] Use case Formal model Requirement
coverage

✖ ✔

Barbosa et al. [34] Sequence & use
case diagrams

XMI parser equivalency
partition

✖ ✔

Gutiérrez et al. [35] category-partition
method

Metamodeling Path coverage ✖ ✔

Zhang et al. [36] Use case diagram Metamodeling Structural
coverage

✖ ✔

Ibrahim et al. [37] Sequence & use
case diagrams

✖ ✖ ✖ ✔

Gantait et al. [38] Activity diagram Model
transformation

Path coverage ✔ ✖

Gutiérrez et al. [39] category-partition
method

Metamodeling Functional
coverage

✖ ✔

Granda et al. [40] Requirement
model

Model
transformation

Path coverage ✖ ✔

Straszak et al. [41] Use case scenarios Metamodeling Requirement
coverage

✖ ✔

Wang et al. [42] Use case Metamodeling Requirement
coverage

✖ ✔

In addition to above studies, the following study [30]

proposed a methodology for test case generation using an
open source framework Behavioural Agent Simple Testing
(BEAST). It uses Behaviour Driven Development (BDD)
techniques and Multi-Agent Systems (MASs) for generation
of test cases process. Yet, this study can be only applied in
agile development methodology. Moreover, the study is
covering only functional requirements no emphasis on non-
functional requirement coverage.

The study [30] presented a method to generate abstract
level test suites from requirement's models using model-
driven testing paradigm. Navigational Development
Techniques are incorporated in functional system test cases.
Moreover, the metamodeling is applied for verification of
functional requirements in testing. However, at the same
time focus on test case reduction.

Furthermore, the study [35] proposed a systematic
approach for automated derivation of manually executable
test cases from use case's model. The use cases and test cases
are derived from restricted Natural Language with a tool

support. Moreover, the presented approach helps in
describing diverse test coverage criteria on requirements.
However, the approaches are using structural coverage,
which focuses on structural features, i.e., structural coverage
and branch features, and it is not addressing requirement
coverage.

In the same way, the proposed study [39] generates
acceptance level test cases from use cases using the model-
driven paradigm. Metamodeling is used for transforming the
Requirements Specification Language (RSL) into test's cases.
Same like above studies, this study is not providing any
solution to minimise the cost and time during the testing
process.

Likewise, research [26] proposed a method for test case's
generation from a formal specification of the system. It
implements the Expressive Decision Table (EDT) algorithm
for requirement notation to reduce translation efforts of
formal specification. After all, it is a fact that formal
specifications are difficult to use for communication propose
especially for non-technical personnel. Moreover, extensive

1571

training is required for implementation of formal models,
which is a time-consuming and expensive process.

Like the formal specification, the study [24] proposed the
generation of test cases using a symbolic model checker. It
ensures that test cases are correct and complete. The test
case generated from the behaviour tree requirements model
is traced back to the original requirements and with
correctness and completeness guaranteed by the model
checker. The approach is validated using case studies of an
Automated Teller Machine, an air-traffic control system.
However, the study is using model checking approach,
which is mainly appropriate to test the control intensive
application and it is less suitable for the data-intensive
application. Moreover, it has the capacity to verify system
model only, and it does not verify the actual system
(product/prototype).

Consequently, it is concluded that most of the studies of
requirements based test case generation [24]-[29], [31]-[35],
[37], [38], [40]-[43] have no focused on requirement
coverage. Moreover, there is no cost-effective solution of
test case generation in the literature. No evidence found
which is first focusing on natural language requirement's
issues, for example, ambiguity, incompleteness, and
inconsistency and subsequent generation of test cases.

IV. CONCLUSION

Software testing aims at assuring that the developed
system conforms to the stated requirements and reducing
errors arose during system operation. This paper presented
our comparative evaluation of requirements based test case
generation methods. The comparative evaluation was
performed based on five evaluation criteria namely input of
test case generation, transformation techniques, coverage
criteria, time and tools support. The comparative evaluation
results show that there is no single approach fulfil all
evaluation criteria. Based on the evaluation, it is found that
the specification-based approach is the more mature and
effective approach for the generation of test cases. It has the
capacity to effectively capture the behaviour within the
system and maximum requirement coverage. Furthermore, it
implements a rigorous mathematical model for verification
and validation of the system.

However, the UML-based approach is very complex and
contains a comprehensive set of numerous modelling
diagrams and notations for general-purpose system
modelling. UML activity and use case diagrams are often
used to model and validate system requirements. Sequence
and state machine diagrams to capture the behavior of the
system and derive unit tests for the system. The class
diagram is used to model classes and static structure of the
system. It can be used for all testing levels.

UML sequence and state machine diagram are unable to
capture non-functional requirements. Likewise, these
techniques are not effective for verification and acceptance
of the large software system.

In future, we will present a model of test case generation
from requirement using Natural Processing Language (NLP)
techniques. This model will be helpful in the effective
formalization of requirements and generation of test cases.
Moreover, this dynamic model will help the practitioner in

the successful completion of a software project with a
quality product, minimizing cost and time to market.

ACKNOWLEDGMENT

The authors would like to express their deepest gratitude
to Research Management Center (RMC), Universiti
Teknologi Malaysia (UTM) and Ministry of Higher
Education Malaysia (MOHE) for their financial support
under Research University Grant Scheme (Vot number
Q.J130000.2516.11H71).

REFERENCES
[1] N. Kosindrdecha and J. Daengdej, "A Test Case Generation Process

and Technique," Journal of Software Engineering 4(4): 265-287, 2010,
2010.

[2] C. P. Lam, Computational Intelligence for Functional Testing: IGI
Global, 2010.

[3] E. Alégroth, R. Feldt, and P. Kolström, "Maintenance of automated
test suites in industry: An empirical study on Visual GUI Testing,"
Information and Software Technology, vol. 73, pp. 66-80, 2016 2016.

[4] D. Kumar and K. K. Mishra, "The Impacts of Test Automation on
Software's Cost, Quality and Time to Market," Procedia Computer
Science, vol. 79, pp. 8-15, 2016/01/01 2016.

[5] S. Baranov, V. Kotlyarov, and T. Weigert, "Verifiable Coverage
Criteria for Automated Testing," in SDL Forum, 2011, pp. 79-89.

[6] Y. I. Salem and r. Hassan, "Requirement-based test case generation
and prioritization," in 2010 International Computer Engineering
Conference (ICENCO), Giza, 2011, pp. 152-157.

[7] M. S Geethadevasena and M. L Valarmathi, "Search based Software
Testing Technique for Structural Test Case Generation," International
Journal of Applied Information Systems, vol. 1, pp. 20-25, 2012.

[8] S. M. Mohi-Aldeen, S. Deris, and R. Mohamad, "Comparative
Evaluation of Automatic Test Case Generation Methods," in
Proceedings of Technology, Education, and Science International
Conference (TESIC) 2013: Developing Innovative Technology
towards Better Human Life, 2013, p. 66.

[9] M. Utting and B. Legeard, Practical model-based testing: a tools
approach: Morgan Kaufmann, 2010.

[10] Y. Sun, G. Memmi, and S. Vignes, "A Model-Based Testing Process
for Enhancing Structural Coverage in Functional Testing," Complex
Systems Design & Management Asia 2016, pp. 171-180, 2016.

[11] I. Ober and I. Ober, SDL 2011: Integrating System and Software
Modeling: 15th International SDL Forum Toulouse, France, July 5-7,
2011. Revised Papers vol. 7083: Springer, 2011.

[12] P. A. P. Salas and B. K. Aichernig, "Automatic Test Case Generation
for OCL: a Mutation Approach," UNU-IIST Report, 2005.

[13] M. A. Almeida, J. de Melo Bezerra, and C. M. Hirata, "Automatic
generation of test cases for critical systems based on MC/DC criteria,"
in 2013 IEEE/AIAA 32nd Digital Avionics Systems Conference
(DASC), ed: IEEE, 2013, pp. 7C5-1-7C5-10.

[14] K. Pohl, Requirements engineering fundamentals: a study guide for
the certified professional for requirements engineering exam-
foundation level-IREB compliant: Rocky Nook, Inc., 2016.

[15] K. Pohl, Requirements engineering: fundamentals, principles, and
techniques: Springer Publishing Company, Incorporated, 2010.

[16] IEEE Computer Society, "Ieee recommended practice for software
requirements specifications," Institute of Electrical and Electronics
Engineers 0738103322, 1998.

[17] T. Pandey and S. Srivastava, "Comparative analysis of formal
specification languages Z, VDM, B," International Journal of Current
Engineering and Technology E-ISSN, pp. 2277-4106, 2015.

[18] C.-H. Liu, D. C. Kung, P. Hsia, and C.-T. Hsu, "An object-based data
flow testing approach for web applications," International Journal of
Software Engineering and Knowledge Engineering, vol. 11, pp. 157-
179, 2001.

[19] R. Nilsson, J. Offutt, and J. Mellin, "Test case generation for
mutation-based testing of timeliness," Electronic Notes in Theoretical
Computer Science, vol. 164, pp. 97-114, 2006.

[20] X. Jia and H. Liu, "Rigorous and automatic testing of web
applications," in Proceedings of the 6th IASTED International
Conference on Software Engineering and Applications (SEA 2002),
2002, pp. 280-285.

1572

[21] W. Zheng, "Model-Based Software Component Testing," PhD, School
of Electrical, Electronic and Computer Engineering, The University of
Western Australia 2012.

[22] S. S. Alhir, Learning Uml: O'Reilly Media, Inc., July 2003.
[23] G. Carvalho, D. Falcão, F. Barros, A. Sampaio, A. Mota, L. Motta, et

al., "NAT2TESTSCR: Test case generation from natural language
requirements based on SCR specifications," Science of Computer
Programming, vol. 95, pp. 275-297, 2014.

[24] P. A. Lindsay, S. Kromodimoeljo, P. A. Strooper, and M. Almorsy,
"Automation of Test Case Generation from Behavior Tree
Requirements Models," in 2015 24TH AUSTRALASIAN SOFTWARE
ENGINEERING CONFERENCE (ASWEC 2015), ed. 345 E 47TH ST,
NEW YORK, NY 10017 USA: IEEE, 2015, pp. 118-127.

[25] R. Elghondakly, S. Moussa, and N. Badr, "Waterfall and agile
requirements-based model for automated test cases generation," in
2015 IEEE Seventh International Conference on Intelligent
Computing and Information Systems (ICICIS), ed: IEEE, 2015, pp.
607-612.

[26] R. Venkatesh, U. Shrotri, A. Zare, and S. Agrawal, "Cost-effective
functional testing of reactive software," in Evaluation of Novel
Approaches to Software Engineering (ENASE), 2015 International
Conference on, 2015, pp. 67-77.

[27] E. Sarmiento, J. C. S. d. P. Leite, and E. Almentero, "C&L:
Generating Model Based Test Cases from Natural Language
Requirements Descriptions," in 2014 IEEE 1st International
Workshop on Requirements Engineering and Testing (RET), ed: IEEE,
2014, pp. 32-38.

[28] G. Carvalho, A. Cavalcanti, and A. Sampaio, "Modelling timed
reactive systems from natural-language requirements," Formal
Aspects of Computing, vol. 28, pp. 725-765, 2016.

[29] B. K. Aichernig, K. Hormaier, F. Lorber, D. Nickovic, R. Schlick, D.
Simoneau, et al., "Integration of Requirements Engineering and Test-
Case Generation via OSLC," in 2014 14th International Conference
on Quality Software, ed: IEEE, 2014, pp. 117-126.

[30] Á. Carrera, C. A. Iglesias, and M. Garijo, "Beast methodology: An
agile testing methodology for multi-agent systems based on behaviour
driven development," Information Systems Frontiers, vol. 16, pp. 169-
182, 2014.

[31] R. Gao, J. S. Eo, W. E. Wong, X. Gao, and S.-Y. Lee, "An empirical
study of requirements-based test generation on an automobile control
system," in Proceedings of the 29th Annual ACM Symposium on
Applied Computing - SAC '14, ed. New York, New York, USA: ACM
Press, 2014, pp. 1094-1099.

[32] T. Yue, S. Ali, and M. Zhang, "RTCM: a natural language based,
automated, and practical test case generation framework," in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis - ISSTA 2015, ed. New York, New York, USA: ACM
Press, 2015, pp. 397-408.

[33] R. Chatterjee and K. Johari, "A prolific approach for automated
generation of test cases from informal requirements," ACM SIGSOFT
Software Engineering Notes, vol. 35, pp. 1-11, 2010.

[34] D. L. Barbosa, H. S. Lima, P. D. L. Machado, J. C. A. Figueiredo, M.
A. Jucá, and W. L. Andrade, "Automating functional testing of
components from UML specifications," International Journal of
Software Engineering and Knowledge Engineering, vol. 17, pp. 339-
358, 2007.

[35] J. Gutiérrez, G. Aragón, M. Mejías, F. J. D. Mayo, and C. M. R.
Cutilla, "Automatic test case generation from functional requirements
in NDT," in International Conference on Web Engineering, 2012, pp.
176-185.

[36] M. Zhang, T. Yue, S. Ali, H. Zhang, and J. Wu, "A Systematic
Approach to Automatically Derive Test Cases from Use Cases
Specified in Restricted Natural Languages," in Lncs vol. 8769, ed:
Springer, 2014, pp. 142-157.

[37] R. Ibrahim, M. Z. Saringat, N. Ibrahim, and N. Ismail, "An automatic
tool for generating test cases from the system's requirements," CIT
2007: 7th IEEE International Conference on Computer and
Information Technology, pp. 861-866, 2007.

[38] A. Gantait, "Test Case Generation and Prioritization from UML
Models," in 2011 Second International Conference on Emerging
Applications of Information Technology, ed: IEEE, 2011, pp. 345-350.

[39] J. Gutiérrez, M. Escalona, and M. Mejías, "A Model-Driven approach
for functional test case generation," Journal of Systems and Software,
vol. 109, pp. 214-228, 2015.

[40] M. F. Granda, N. Condori-Fernandez, T. E. J. J. Vos, and O. Pastor,
"Towards the automated generation of abstract test cases from
requirements models," in 2014 IEEE 1st International Workshop on
Requirements Engineering and Testing (RET), ed: IEEE, 2014, pp. 39-
46.

[41] T. Straszak and M. Śmiałek, "Model-driven acceptance test
automation based on use cases," Computer Science and Information
Systems, vol. 12, pp. 707-728, 2015.

[42] C. Wang, F. Pastore, A. Goknil, L. Briand, and Z. Iqbal, "Automatic
generation of system test cases from use case specifications," in
Proceedings of the 2015 International Symposium on Software Testing
and Analysis - ISSTA 2015, ed. New York, New York, USA: ACM
Press, 2015, pp. 385-396.

1573

