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Abstract— Volatility measures the dispersion of returns for a market variable since a reasonable estimation of the volatility is an 
appropriate starting point for assessing investment risks and monetary policymaking. These risks are usually assessed by using the 
GARCH (1,1) model. However, the recursive term in this model makes finding the derivatives of the likelihood function 
mathematically intractable. In this study, the natural cubic spline model is used to estimate the volatility by fitting it to the absolute 
returns of the data. In estimating the parameters, the Maximum Likelihood method was applied while a simple algebra was used to 
find its derivatives. The damped Newton-Raphson method was then used to maximize the likelihood function with the R 
programming software. The proposed method was illustrated using the absolute returns of the crude oil prices data from West Texas 
Intermediate, and it showed similar results with the popular GARCH (1,1) model. The natural cubic spline can be an alternative for 
estimating the volatility of any financial time series data. 
 
Keywords— volatility; natural cubic spline model; the damped Newton-Raphson method; maximum likelihood method; GARCH (1,1) 
model. 
 

 

I. INTRODUCTION 

Unpredictable changes in market prices can lead to losses 
and because of that, any risk involved needs to be estimated. 
Financial institutions rely on the estimation of market risk 
and uncertain change in market factors such as prices of 
securities, indices, interest rates and currency exchange rates. 
Underlying this market risk is the concept of volatility. The 
volatility of a market variable is defining as the fluctuation 
of the returns on prices of the variable for a period. 

Over the last 2 decades, academicians and financial 
analyst have been paying attention to the estimation and 
forecasting of the volatility since information from the 
volatility can be used to assess the investment risk, in order 
to minimize losses [1]. It can also be used in monetary 
policymaking [2]. In order to find the volatility, returns are 
used instead of prices because returns show less correlation 
than prices. In turn, the returns are defined as the 
proportional increases or decreases in the prices over this 
period. However, because the returns fluctuate randomly due 
to unpredictable and unknown factors, it is necessary to have 
a method for assessing the nature and extent of this random 
variation and thus distill the information from the observed 
data. 

The well-known model for estimating the volatility is the 
GARCH model proposed by Bollerslev in 1986 [3]. The 
most widely used is the GARCH (1,1) model given by [4] 
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returns and variance respectively on the trading day i  while 

L
V  is the long-run variance rate. Parameters from the model 

are calculated using the Maximum Likelihood (ML) method, 
derived from the probability density function for normal 
distribution [5]. For m  observations, the likelihood function 
of the normal distribution is given by 
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There is many applications of the GARCH (1,1) model in 
time series data, for estimating banking share returns, stock 
market returns and applications in the agricultural sector [6], 
[7], [8], [9]. Although the GARCH (1,1) is widely used, the 

recursive term 2

1i
σ
−

 in this model [3] makes the derivatives 

of the likelihood function mathematically intractable. This 
leads us to find a model whose derivative of the likelihood 
function is easily calculated. 

In this study, an alternative method was proposed to 
estimate the volatility of a financial time series data. The 
method involved fitting the natural cubic spline model to the 
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absolute returns of the data, and then applied the ML method 
to find estimated parameters. In order to find such estimated 
parameters, it still needed to find a derivative of the 
likelihood function, but in this method, it will be used a 
simple algebra because the cubic spline was just polynomial. 
The damped Newton-Raphson was then used to maximize 
the likelihood function. The parameter estimations were 
carried out using R statistical software. The model was 

illustrated using West Texas Intermediate’s data for the 
crude oil prices [10]. 

II. MATERIAL AND METHOD 

Time series of daily crude oil prices comprising of 7,735 
trading days, prices from 2nd January 1986 to 29th August 
2016, is shown in Fig. 1. The data shows a peak in July 2008 
around 145 US$/barrel. However, the price had crashed 
down to 31 US$/barrel by December 2008. 

 
Fig. 1  The fluctuation of the crude oil prices data for 7,735 trading days 

 
 

However, the high correlation between successive 
values of the crude oil prices data complicates fitting 
statistical models that assume independence of prices as 
shown in Fig. 2. For the oil prices, the correlation on day 
1 is equal to 1, and a1 which is 0.999 is the correlation 

between day 1 and day 2. From Fig. 2, it shows that the 
autocorrelation plot for the prices on the left panel shows 
high correlations whereas the autocorrelation for returns 
shows least correlations on the right panel.  

 

(a) (b)

Fig. 2  Autocorrelation functions for the oil prices (a) and the oil price returns (b). 
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For this reason, it is preferable to use the returns on the 

prices, rather than the actual prices. The return for 
th
i  

observation is denoted by i
u

 and can be calculated by 
the following formula [11]. 
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Where 
i
S  is a market price? Usually, volatility models 

for financial time series data use the squared returns, but 
empirical evidence has shown that using the absolute 

returns on the data gives better volatility estimation [12], 
[13], [14] and Ding et al. has also suggested [15]. 

The absolute returns of the crude oil prices are shown 
in Fig. 3, where the horizontal red line represents the 
mean of the absolute returns, which is 0.01747. The 
magnitudes of the crude oil price returns show an 
irregular rise to higher levels, as represented by thick 
dots. A method is needed to highlight these irregular 
swings by smoothing out the local fluctuations to capture 
the signal of the data. For this purpose, the smoothing 
splines are widely used [16]-[18], however, in this study 
the natural cubic spline is used to smooth the local 
fluctuations in Fig. 3. 

 
Fig. 3  The absolute returns of the crude oil prices 

 
   

The natural cubic spline can be shown mathematically as, 
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Where t  denotes time, 1 2 ... pt t t< < <  are specified p  

knots and 
0 1
,b b   

k
c  are the unknown parameters. The 

model in Equation (4) was fitted to the absolute returns 
of the data, as shown by the light curve in Fig. 4. 

 
Fig. 4  Fitted natural cubic spline to the absolute returns 
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The parameters 0 1
,b b

 and k
c

 from the natural cubic 

spline was estimated by using Equation (2) where i
σ

 to 

represent ( )s t  in Equation (4) as the volatility. The 

initial volatility i
σ

 was obtained from the fitted value of 
the natural cubic spline to the absolute returns in Fig. 4. 

The best estimate of i
σ

 was the value that maximizes its 
equation when the ML method was used, and this was 
obtained by applying a numerical method [19]. 

The damped Newton-Raphson iterative method was 
used since it is a powerful method for solving nonlinear 
equations with quadratic convergence [20], based on the 
formula below. 
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where 1xn+  is the new value of 
0 1
, , )x = (

k
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 is the inverse of the 

Hessian matrix (matrix of the second partial derivative) 

of the function ,
iul  ( )xnF  is the first derivative of the 

function 
iul  and d  is the damping factor such that 

[0,1).d ∈  The damping factor d  was used to avoid 

overshooting [21] and to decrease the changes at each 
iteration of the Newton-Raphson method. 

The initial parameters for the iteration processes are 
typically obtained randomly or by guessing. However, in 

this study the initial parameters 
0 1
,b b  and 

k
c  for the 

damped Newton-Raphson method were obtained by 
fitting the natural cubic spline to the absolute returns 
using the linear regression in Fig. 4. By using the 
damped Newton-Raphson iterative method, the estimated 

parameters 
0 1
,b b  and kc  were obtained. 

III.  RESULTS AND DISCUSSION 

Volatility estimation is frequently done by using the 
GARCH (1,1) model. However, in this study, the 
proposed method by fitting the natural cubic spline to the 
absolute returns of the data was presented. Fig. 5 shows 
the initial volatility (yellow curve), and estimated 
volatility (pink curve) obtained, by using 38 specific 
knots of the spline (blue plus sign). The estimated 
volatility was obtained by substituting the estimated 

parameters 
0 1
,b b  and kc  into the formula in Equation (4). 

The pink curve in Fig. 5 shows the estimated volatility of 
the absolute returns of the crude oil prices data from 
West Texas Intermediate. 

 
Fig. 5  The initial and estimated volatility of the absolute returns of the crude oil prices 

 

In order to know how good the method proposed in 
this study is, it was compared with the Spline-GARCH 
(1,1) model. Note that the Spline-GARCH (1,1) model is 
a kind of Spline-GARCH model which was proposed by 
Engle and Rangel in 2005 [22]. This result is shown in 
Fig. 6.  

The daily volatility from the GARCH (1,1) model was 
represented as a dotted line. It can be seen that there are 
some fluctuations in the volatility series from the 
GARCH (1,1) model around 1990 and 2009. In order to 
capture the signal, the natural cubic spline was applied in 

smoothening the daily volatility from the GARCH (1,1) 
model. This is represented as a blue curve, Spline-
GARCH (1,1). Meanwhile, the estimated volatility from 
the proposed method was represented by a pink curve, 
Spline-fitted Model. This curve was obtained from Fig. 5 
but it was multiplied by 100 in order to have the same 
scale with the daily volatility of the GARCH (1,1) model. 
The ability of the proposed method in estimating the 
volatility as well as the Spline-GARCH (1,1) model is 
illustrated in Fig. 6. 
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Fig. 6  Estimating the volatility of the absolute returns of the crude oil prices using the Spline-GARCH (1,1) model and Natural Cubic Spline model 

 
 

1) Obtained the lreturnsl from the prices.

2) The unknown parameters from the following formula of the 
Natural Cubic Spline was calculated by the Maximum Likelihood 
method

where         represent as 

3) The damped Newton-Raphson method was used in term to 
maximizing the eq (1), where the derivatives of Equation (1) was 
calculated using the simple algebra
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    

     


4) By substituting the estimated parameters back to the Equation 
(1), the estimated volatility was obtained by fitting it to the 
lreturnsl of the data.

1) Obtained the returns from the prices.

2) The unknown parameters from the following formula of 
the GARCH (1,1) was calculated by the Maximum 
Likelihood method

2 2 2
1 1, (1)

i i iL
V uσ γ α βσ− −= + +

3) The damped Newton-Raphson method was used in term 
to maximizing the eq (1), where the derivatives of eq (1) 
was calculated using the approximation numerical 
method.

4) By substituting the estimated parameters back to the 
Equation (1), the estimated volatility was obtained by plot 
the graph.

5) Spline-GARCH (1,1)

(a) (b)

( )s t .iσ

 
Fig. 7  The framework of the proposed method (a) and the Spline-GARCH (1,1) model (b) 

 
 

Typically, to compare two models and determine which 
one is a better fit to the data, we could use the maximum 
value of their likelihood function [22] and the vague 
description (framework) of both methods. Table 1 shows the 
maximum values of the likelihood function of two models.  

 
 

Based on the likelihood value in Table 1, the estimation of 
the volatility of the absolute returns of the crude oil prices 
data from West Texas Intermediate by the proposed method 
shows better performance. This concept based on the best 
estimate of the ML method is the value that maximizes its 
function [22]. 
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TABLE I 
THE LIKELIHOOD VALUE OF TWO METHODS 

 

Model The likelihood value 

Spline-GARCH (1,1) 25,625.74 

Proposed Method 25,681.33 

 
As we mentioned that another diagnostic check of a model 

is to compare the framework. The frameworks of the two 
methods were shown in Fig. 7. The differences between the 
two methods are in the steps 3 and 5. The step 3 shows that 
the likelihood function in the Spline-GARCH (1,1) model 
was calculated using the numerical approximation method. 
Furthermore, the step 5 shows that the Spline-smoothed was 
needed in order to capture the signal of the data on a daily 
basis for the long period. Meanwhile, for the proposed 
method, the estimated volatility was obtained by substituting 
the estimated parameters back to the formula of the natural 
cubic spline then fitting it to the returns of the data. 

Although the GARCH (1,1) is well-known, it does not 
sufficiently fit data set over an extended period, see [24]. So, 
a smoothing method to capture the signal from the daily 
volatility of the GARCH (1,1) model is needed. From the 
Fig. 7, the proposed method gives a more straightforward 
way to estimate the volatility from the financial time series 
data. Also, the initial parameters from the proposed method 
were obtained by fitting the natural cubic spline to the 
absolute returns using the linear regression, where generally 
in the GARCH (1,1) model the initial parameters were 
obtained by guess randomly. 

Fitting the natural cubic spline to the absolute returns for 
estimating the volatility is a new approach for the volatility 
models. However, the findings from this study should depict 
a new approach for volatility estimation among the financial 
time series data. However further analyses in the future are 
required in order to apply this method to other financial time 
series data since only one dataset was used in this study. 

IV.  CONCLUSIONS 

For over 25 years, academicians and financial analysts 
have been paying attention in developing better volatility 
estimation models for financial time series data. This is 
because volatility estimation plays an essential role in 
assessing investment risk. An alternative method has been 
proposed in this study to estimate the volatility of financial 
time series data by fitting the natural cubic spline model to 
the absolute returns of the data. The parameter of the model 
was estimated using the ML together with the damped 
Newton-Raphson method. The volatility that was estimated 
from the proposed method showed similar findings with the 
Spline-GARCH (1.1) model. The natural cubic spline model 
can be an alternative method for estimating the volatility of 
financial time series data. However, further analysis is 
required in the evaluation of the performance of the natural 
cubic spline model for other financial time series data. 
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