

Vol.8 (2018) No. 2

ISSN: 2088-5334

A Sleep Scheme Based on MQ Broker Using Subscribe/Publish
in IoT Network

Wenquan Jin#1, DoHyeun Kim#2
Computer Engineering Department, Jeju National University, South Korea

 E-mail: 1 wenquan.jin@jejunu.ac.kr, 2 kimdh@jejunu.ac.kr

Abstract— Constrained Application Protocol (CoAP) is a transfer protocol that is used for Internet of Things (IoT) devices such as
sensors and actuators equip with low power supply, limited computing processor, and constrained network environment. For the
constrained devices of CoAP based IoT network, we present a sleepy scheme based on a Message Queue (MQ) broker that supports
the subscribe/publish communication architecture in the IoT middleware to enable the devices having better energy consumption.
The IoT middleware is a server that providing services for storing and retrieving information of IoT node using Resource Directory
(RD) functionality, and supporting the sleepy scheme using MQ broker functionality. The RD provides HTTP services to the HTTP
client based application for discovering and looking up information of IoT nodes which are registered to the RD. The functionality of
MQ broker is used for performs store-and-forward messaging. The MQ provides the service for IoT nodes to publish data to the
middleware. The data shall be subscribed by the client application. The IoT node in the sleep mode that cannot be accessed by the
client. Through the IoT middleware, the client can subscribe the IoT node for getting the result from IoT node after wake up. Once
the IoT node wakes-up from the sleep status, the IoT middleware publishes the subscribed result to the client.

Keywords— IoT; CoAP; Constrained Application Protocol; resource directory; sleepy; middleware.

I. INTRODUCTION

A large number of connected device have been deployed
to support efficient and comfortable functions through the
client applications [1]. The smartphones are the most
popular Internet-connected devices which attached our daily
life through its applications and sensors to provide
heterogeneous services. However, more devices can be
deployed and already have been deployed which create
worldwide and private networks to support smart and
ubiquitous solutions. The Internet of Things (IoT) is
comprised by heterogeneous devices to provide greater
solutions for the industries of a specific or cross domains [2].
The IoT devices shall be easily configured and automatically
do pre-defined jobs such as registration, actuating clone jobs,
and sleepy schedules [3]. According to the changes of
communication paradigm from human-centric to machine-
centric which illustrates the IoT devices do the task without
the human touch [4]. Furthermore, the IoT devices need to
be describable in order to communicate with other objects or
services [5]. For describing the IoT device to the others, the
information of IoT device needs to be appeared in the IoT
network. In the IoT network, the directory entity is required
for storing and providing information of IoT devices such as
identifier, name, location, security parameters, and etc [6].

Through the directory entity in the IoT network, clients can
look-up the information of IoT devices to access services
which are provided by resources of IoT devices.

The service for discovering information in the IoT
environment is important to look-up devices [7] [8].
Especially, the IoT devices are deployed in constrained
environment with limited power resources, which cannot
available to provide services all the time. For the constrained
device, the IEFT had proposed the Constrained Application
Protocol (CoAP) to reduce the network communication cost
through reducing the transmission message size [9]. The
CoAP supports a request/response interaction model
between application endpoints using REST based service
accessing architecture through the UDP [10]. The size of
CoAP message is small than HTTP and support more
efficient parameter options to build the network entities [11].
For saving the energy of IoT device, the IETF have
mentioned the sleepy scheme in IETF-87 [12]. The sleepy
feature can be implemented in the MAC layer or external
application with the CoAP based application entity of IoT
node [13] [14]. The CoAP based IoT node can be used for
devices with limited memory and small battery power, and
the IoT node is also expected with the sleepy scheme can
support better constrained solutions in the CoAP network.

In this paper, we present a sleepy scheme based on the
Message Queue (MQ) broker using subscribe/publish in the

639

proposed IoT network where the service provider, IoT
middleware, and IoT device are deployed. The middleware
includes RD and MQ broker to interact with IoT nodes using
the CoAP-based communication. The IoT nodes equip one
or more units for sensing and actuator, and are deployed in
constrained environment where support the CoAP network.
The RD is a server that hosts descriptions of CoAP nodes
and shall always allow lookups for retrieving registered
information [15]. In CoAP based communication network,
the CoAP client can search the CoAP node from the RD.
Before the searching process, the CoAP node needs to
register its information to the RD [16]. An extension of the
RD is MQ broker which enables entities to publish and
subscribe information through storing and forwarding
messages [17]. The subscribe/publish architecture is used by
the communications of wireless, local area network, and
remote control, that synchronizes the information in clients
with the broker [18]. Once the IoT node goes into a sleep
status, then the node sends the information for the current
status to the IoT middleware. The client can subscribe the
IoT node from the MQ broker of IoT middleware. Once the
IoT node goes into a wake-up status, then the client can get
the data from the IoT node through the IoT middleware.

Rest of the paper is structured as follows; Section 2
introduces the sleepy scheme in the proposed IoT system.
Section 3 introduces the implementation, experiment result
of proposed IoT system. Finally, we conclude our paper in
Section 4.

II. MATERIAL AND METHOD

Figure 1 shows the overall IoT architecture based on the
IoT middleware. The IoT architecture includes service
provider, IoT middleware, and IoT node. The service
provider and IoT middleware communicate through the
HTTP communication protocol because most of clients in
the Internet are developed using HTTP client. The IoT
middleware and IoT node communicate through the CoAP
communication protocol because most of devices in the
constrained environment. The service provider includes the
HTTP client to communicate with the IoT middleware for
forwarding request from its clients to the IoT node and
managing information of IoT node or other entity in this
system. The IoT middleware provides services using REST
APIs based on HTTP to the service provider and using
REST APis based on CoAP to the IoT node. The APIs
deliver the requests to the handlers of IoT middleware.

The IoT middleware includes the RD for IoT node
information managing and MQ brother for forwarding
requests from the HTTP client of service provider. The RD
provides services to the IoT nodes for registering
information to be retrieved by clients. The MQ broker
provides services to the client for forwarding requests. In
this forwarding process, if the IoT node is in sleep status,
therefore, cannot respond the request immediately, then the
MQ broker shall store the request and later forward the
request message to the destination IoT node. The IoT node
in the constrained environment that requests the IoT
middleware for notifying the sleep status once it goes into a
sleep mode. For applying the sleepy scheme to CoAP-based
IoT network, the IoT middleware needs the functionalities of
RD and MQ broker. The RD is used to hold the information

of IoT node to provide discovery service to the client for
looking up the information. The MQ broker enables the IoT
node publishes sensing data to the IoT middleware for being
subscribed by clients. Based on the RD and MQ, the IoT
middleware is used for supporting interoperability with
sleepy devices in the CoAP based IoT network.

Fig. 1 Overall IoT architecture based on the IoT middleware

Figure 2 shows the sequence diagram for the IoT

middleware-based sleepy scheme. The sleepy scheme is used
for IoT nodes in the CoAP network. IoT nodes are
constrained devices which need to save the energy.
Therefore, the devices need the limited energy consumption
through the sleepy scheme.

The IoT node can fall into sleep mode through the request
from the IoT middleware. The request uses the PUT method
with URI coap://{node-uri}/sleepy and query parameters
sleep_state and sleep_duration. The URI includes the
resource of sleep status which is used for changing the sleep
mode of IoT node. The query parameter sleep_state is used
for setting up the sleepy mode of IoT node, e.g. 1 for setting
up the IoT node go into a sleep status and 0 for setting up the
IoT node go into a wake status. The query parameter
sleep_duration is used for setting up the sleep duration of
IoT node, e.g. the duration time is 5 then the IoT node shall
be inaccessible 5 seconds. Once the request message is sent
to the IoT node, the information in the IoT node shall be
updated and the information in the IoT middleware also shall
be updated after receive the response message. The process
of updating the IoT node information is handled by the RD
of IoT middleware.

Once the IoT node is in the sleep status, the client cannot
access the service from the IoT node. The response message
shall be indicating the sleep status of destination IoT node.
Then the client can request to the IoT middleware to get the

640

sleepy duration value or subscribe the IoT node for getting
the response when the IoT node wakes up.

The subscribe/publish process can be done by 5 steps.
Step 1: The client sends the request to the IoT middleware

to register the subscription and IoT middleware store the
information of request for the client.

Step 2: Once the IoT node becomes wake status after the
sat up sleep duration time is passed, the IoT node sends the
request to notify the IoT middleware. Then the information
of IoT node shall be updated.

Step 3: IoT middleware sends the request to the IoT node
that is store for the client.

Step 4: Once the IoT middleware receives the response
from the IoT node, then IoT middleware sends the request to
the client for publishing the subscribed information by the
client.

The subscribe/publish functionality is belong to the MQ
broker of IoT middleware. The handlers of request buffer,
state observer, and data observer handle the request from
clients and IoT nodes for caching, notifying, and updating
the information of sleepy and service results.

Fig. 2 Sequence diagram for IoT middleware-based sleepy scheme

For presenting the scenario of sleepy scheme with the

entities in the CoAP network, we use the business process
model to show the interaction of client, IoT middleware, and
IoT node in Figure 3.The process begins from the client
which sends message to the RD of IoT middleware to get the

IoT node’s data by accessing service that is provided from
the IoT node.

Once the IoT node goes into the sleep status then the IoT
middleware returns the sleep information to the client. The
IoT middleware checks the IoT node’s sleep state by its
identifier using RD and hold the request from client using
MQ broker until the IoT node becomes wake status. Once
the IoT middleware receives the subscription request from
the client, then the MQ broker waits the wake-up notification
from the IoT node. After the node wakes up from sleep
status, then the MQ broker requests to the IoT node based on
the request from the client and publish the result of response
from the IoT node to the client.

Fig. 3 Business process model for the scenario of sleepy scheme

III. RESULTS AND DISCUSSION

The system includes the service provider, IoT middleware,
and IoT node for supporting the sleepy scheme to the IoT
network where the devices support CoAP based
communication. We implement the CoAP based
communication for the proposed IoT middleware and IoT
node, and the service provider provides HTTP-based web
services to its web client. Table 1 shows the development
environment for the service provider, IoT middleware, and
IoT node. The service provide is developed in C# and the
application runs on dot net 4.5 platform with the Windows
OS. We use Visual Studio as the development tool to
develop the application. The IoT middleware is developed in
Java and the application runs on Java Runtime Environment
with the Window OS. We use eclipse as the development
tool to develop the application. The IoT node is developed in
C and the application runs on GCC with the Ubuntu OS. We
use gedit as the development tool to develop the application.

The IoT middleware is developed using Java with
Californium CoAP framework (Cf) [19]. In order to support
HTTP RESTful APIs, we use Apache Tomcat to run the
Java servlets of IoT middleware. The IoT middleware
includes SQL server for managing data via data access
objects. Once the Java servlets run in the Apache Tomcat,
there is initialization function for initializing the CoAP
resources.

The IoT node is developed using Linux C libraries which
are libcoap library and cJSON library for developing the
application of IoT node [20] [21]. The library libcoap is used
for implementing CoAP resources to support CoAP RESTful
APIs, and cJSON is used for parsing transmission messages
which are formatted in JSON. The system uses JSON data in

641

the communication between the IoT middleware and IoT
node. The library libcoap implements a lightweight
application-protocol for IoT devices that are constrained
such as computing power, RF range, memory, bandwidth, or
network packet sizes. The library is published as open-
source software without any warranty. The usage is
permitted under the terms of the GNU general public license
version 2, higher, or the revised BSD license. In the process
of the IoT node, all data is formatted in JSON format.
Incoming data and out-going data are formatted in JSON for
the interaction between IoT node and IoT middleware.

TABLE I
DEVELOPMENT ENVIRONMENT

Environment
Service
Provider

IoT
Middleware

IoT Node

OS Windows 7 Windows 7 Ubuntu 12.4

Runtime
environment

.Net 4.5 Java 7 GCC

Tool Visual Studio Eclipse gedit

Language C# Java C

We present the IoT node for constrained environment

such as sensor networks and actuator networks using the
CoAP communication. The RESTful APIs are supported by
the IoT node which enables to provide IoT services by the
IoT node.

Figure 4 shows the functional components of IoT node.
The node information manager has GET and PUT method
handlers for handling IoT node’s information. The GET
method handler is used for responding the information of
IoT node to the requester. The PUT method handler is used
for updating the information of IoT node. The sleepy
manager is use for updating sleepy information and
providing the service for changing the sleepy mode of IoT
node. The data manager is use for handling the request to the
IoT service that is provided by the IoT node.

Fig. 4 Functional components of IoT node

The information of IoT node in the IoT node that is stored
in the file as the profile of IoT node and the profile is
formatted in a JSON data. The profile includes node’s
information and unit’s information which are included in the
IoT node application. The version of the node profile is used
for synchronizing the information between the IoT node and
the IoT middleware. And other attributes are used for
functions of the IoT node such as sleep status, sleep duration,
notify enable and notify interval. There can be multiple units
of a node. The information of the units can be appropriately
different without id of the unit. Unit’s information includes
resource type and interface which are proposed in the RFC
6690. The resource type attribute is an opaque string used to
assign an application-specific semantic type to a resource.
And the interface description attribute is an opaque string
used to provide a name or URI indicating a specific interface
definition used to interact with the target resource.

Each IoT node has own URI with IP address. But it is
quite common for a node to change its IP address due to
rebooting. We design the IoT node seamless synchronize its
information with RD in the IoT middleware. Service users of
the IoT middleware, which retrieve the IoT node’s URI via
the ID of node to find the IoT node in the network. For
example, a service provider need to send a command to
actuate a unit of the IoT node, then the service provider will
get the ID which are related the requirement. Service
provider requests a command to the IoT middleware with the
node ID and unit ID which are parameters of query. And IoT
middleware sends the command to the IoT node via node’s
URI through CoAP with unit ID, the node URI is retrieved
using node ID from database. Finally, IoT node receives the
command and actuates the unit by the unit ID. Those IDs
also are used for retrieving the sleep information of the IoT
node. Furthermore, the node and unit of the IoT device also
involves own status and features to relate with physical parts.
Those parts are represented as data in the IoT network.
Therefore, the IDs are the keys to mapping those information.

Fig. 5 Functional components of IoT middleware

642

Figure 5 shows the functional components of IoT
middleware. The IoT middleware includes the RD and MQ
broker. The RD includes the connection manager to control
the registration of IoT node, and manage the sleepy
information of IoT node and its information through the
sleepy information manager and IoT node information
manager. The MQ broker includes the sleepy manager for
receiving the request from the IoT node. The sleepy manager
is a CoAP resource that has PUT method to handle request
from IoT node. In the IoT middleware, we use Cf CoAP
Framework to implement CoAP communication for
providing CoAP services to the IoT node in constrained
network. The HTTP service is use for HTTP client from the
service provider.

Figure 6 shows the use case of CoAP resources of IoT
middleware. The IoT middleware has 3 CoAP resources for
providing CoAP services. The CoAP resource “conn” is use
for registering the IoT node information. The resource
provides service through GET, POST and PUT method
handlers. The GET method handler is use for retrieving the
IoT node’s identifier from the database of IoT middleware to
get define the unique identifier of IoT node in the system.
The POST method handler is use for creating the IoT node
information. The PUT method handler is use for updating
the IoT node information. The CoAP resource
“/observer/data” is use for accepting sensing data from
equipment units of IoT node such as sensors and actuators.
The CoAP resource “/observer/sleepy” is use for notifying
the sleep status of IoT node to client in the system.

Fig. 6 Use case for CoAP resources of IoT middleware

Figure 7 is the database ER- diagram for database in the

IoT middleware for saving related information of IoT nodes.
In this ER-diagram, there are table t_node, table t_unit and
table t_data.

Table t_node is use for saving IoT nodes information. The
IoT node information involves node’s basic information, the
IoT middleware URI, and node’s status information. “id” is
the ID of the registered IoT node. “version” is used for
identify the profile of the IoT node. “uri” is the node’s URI
and “mw_uri” is the IoT middleware’s URI. “sleep_status”,

“sleep_duration”, “notity_enable”, “notify_interval”, ”conn -
ection_status” and “sleep_time” are used for sleepy
mechanism.

Unit information are stored in Table "t_unit" which
includes the following columns: ID, resource type, interface,
and status information of unit. The unit can be sensors and
actuators, such as temperature sensor, humidity sensor, fan,
LED, etc. According to the IETF CoRE WG and other (OCF,
oneM2M, etc) organization’s specifications, the resource
type and interface are required for representation of sensors
or actuators. The unit information is not much important for
the sleepy mechanism. But, as a part of the IoT environment,
the representation of those equipments are necessary.
Therefore, the table includes status of the unit and data
collection interval information.

Table t_data includes contextual data and the data inserted
time for recording collection of environment data by units of
the IoT node. These data from the IoT node, which
formatted in JSON type and parsed in the IoT middleware
and saving to the database. The real time data is saved in the
IoT node by collection of units such as sensors. The IoT
middleware request to the IoT node to get the data
discontinuously. And we design the resource interface of the
IoT node to support respond period data. The IoT node saves
the real time environment data to the repository of the IoT
node, and the IoT middleware can request the period data
from IoT node. In this case, the inserted time is same for all
the data is inserted which from the request.

t_node

idPK

version

uri

mw_uri

sleep_status

sleep_duration

notify_enable

notify_interval

connection_status

sleep_time

t_unit

idPK

resource_type

unit_interface

unit_status

recording_interval

changed_notify_enable

notify_enable

notify_interval

node_id

t_data

idPK

ins_time

data

node_id

unit_id

Fig. 7 ER-diagram of IoT middleware database

For implementing the IoT middleware, the CoAP

resources should be implemented using Cf CoAP framework.
These resource classes extend CoapResouce which is a basic

643

implementation of a resource. Figure 8 shows the resources
which extends class CoapResouce to implement the CoAP
resource in the IoT middleware. Instances of type or subtype
of CoapResource can be built up to a tree very easily.
CoapResource uses four distinct methods to handle requests,
that includes handleGET(), handlePOST(), handlePUT() and
handleDELETE(). Each method has a default
implementation that responds with a 4.05, that means the
method is not allowed. Each method exists twice but with a
different parameter, which are handleGET(Exchange)
handleGET(CoAPExchange) for instance. The class is used
internally in Cf to keep the state of an exchange of CoAP
messages.

Fig. 8 CoAP resources of IoT middleware

Figure 9 shows CoAP resource initialization functions of

the IoT Node. The function coap_resource_init() is used for
initializing CoAP resources which is supported by the
library libcoap. The function coap_register_handler() is used
for registering the CoAP resources to the CoAP server for
providing CoAP services. The functions hnd_get_info,
hnd_put_info, hnd_get_units, hnd_get_units_period,
hnd_get_sleepy, and hnd_get_notify are handlers for the
CoAP resources.

Fig. 9 Components of IoT middleware and IoT node

Figure 10 shows the sensing data record of IoT node for

presenting the activity of IoT node in the sleepy mode.Once
the IoT node receives the sleep command from the IoT
middleware, the IoT node goes into the sleep mode. In other
case the IoT node can go into the sleep mode based on the
rule that is applied in the IoT node. In this case that is shown

in the figure, the IoT node have received the request from
the IoT middleware to go into the sleep mode for 15 seconds
in sleep duration. In this period, the IoT node stops the
communication and sensing or actuating functions.
Therefore, record shows from “02:33:12” to “02:33:41” to
sensing data is recorded.

Fig. 10 Sensing data record of IoT node in sleep mode

Once the client of service provide request to the IoT node

in a sleep mode, the client cannot get any result from the IoT
node. In this case, the client shall subscribe the IoT node
through the IoT middleware. The client needs to request the
IoT middleware the subscription process with the IoT node.
For the process, the IoT middleware stores the information
of request. After the IoT node notifies the wake-up status to
the IoT middleware, the IoT middleware shall request to the
IoT node for handling the subscription of client using the
stored request information.

Fig. 11 Wake-up message mapping of IoT middleware and IoT node

Figure 11 shows the CoAP message for notifying the

sleep status to the IoT middleware. The CoAP message is
sent by the IoT node to the IoT middleware for updating the
sleep information in the IoT middleware. The log of CoAP
message in the IoT node that includes the CoAP message ID

644

for 26435, and the log of CoAP message in the IoT
middleware that includes same CoAP message ID. The log
of IoT middleware shows the resource URI is
“notify/sleepy”, query is ni with the value node001. The
message payload is 0, which means the IoT node sleep mode
is wake up status.

IV. CONCLUSIONS

The IETF CoAP is a transmission protocol in the
application layer that is used for the communications
between devices in constrained environments. The IoT
device equips with sensors and actuators to provide services
ubiquitously to the users. Therefore, the device requires the
small size with limited computing parts and power supply.
With the sleepy mode, the IoT device can reduce the power
resource more efficiently. We have proposed the sleepy
scheme using the subscribe/publish communication
architecture of MQ broker for the IoT device in the CoAP
network. The subscribe/publish enables the client to request
the IoT device in a sleep status through the IoT middleware.
The IoT middleware includes the functionalities of RD and
MQ broker to support the sleepy scheme through subscribe-
publish communications to the client. Through the RD, the
IoT middleware provide services of registering the IoT
device information, and looking-up by the client. The
information of sleepy mode also available in the IoT
middleware for being retrieved by the client. From the IoT
middleware, the client can subscribes the data that provided
by the IoT device through the IoT service. Once the IoT
device goes into the wake-up status from the sleep status, the
IoT middleware gets the data and publishes to the client.
Through the sleepy scheme in the CoAP network, we can
apply more efficient energy consumption on IoT devices for
having long life time in the constrained environment.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information
Technology Research Center) support program(IITP-2017-
2016-0-00313) supervised by the IITP(Institute for
Information & communications Technology Promotion), and
this research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science
and Technology (2015R1D1A1A01060493), Any
correspondence related to this paper should be addressed to
DoHyeun Kim.

REFERENCES
[1] Evans, Dave. "The internet of things: How the next evolution of the

internet is changing everything." CISCO white paper1.2011 (2011):
1-11.

[2] Atzori, Luigi, Antonio Iera, and Giacomo Morabito. "The internet of
things: A survey." Computer networks 54.15 (2010): 2787-2805.

[3] Jin, Wenquan, and Do Hyeun Kim. "Design and Implementation of
e-Health System Based on Semantic Sensor Network Using IETF
YANG." Sensors 18.2 (2018): 629.

[4] Series, M. "IMT Vision–Framework and overall objectives of the
future development of IMT for 2020 and beyond." (2015).

[5] Jazayeri, Mohammad Ali, Steve HL Liang, and Chih-Yuan Huang.
"Implementation and evaluation of four interoperable open standards
for the internet of things." Sensors 15.9 (2015): 24343-24373.

[6] Kafle, Ved P., et al. "Scalable Directory Service for IoT
Applications." IEEE Communications Standards Magazine 1.3
(2017): 58-65.

[7] Edwards, W. Keith. "Discovery systems in ubiquitous computing."
IEEE Pervasive Computing 5.2 (2006): 70-77.

[8] Meshkova, Elena, et al. "A survey on resource discovery mechanisms,
peer-to-peer and service discovery frameworks." Computer networks
52.11 (2008): 2097-2128.

[9] Bormann, Carsten, Angelo P. Castellani, and Zach Shelby. "Coap:
An application protocol for billions of tiny internet nodes." IEEE
Internet Computing 16.2 (2012): 62-67.

[10] Shelby, Zach, Klaus Hartke, and Carsten Bormann. "The constrained
application protocol (CoAP)." (2014).

[11] Levä, Tapio, Oleksiy Mazhelis, and Henna Suomi. "Comparing the
cost-efficiency of CoAP and HTTP in Web of Things applications."
Decision Support Systems 63 (2014): 23-38.

[12] A. Rahman, "Sleepy Devices: Do we need to Support them in
CORE?", draft-rahman-core-sleepy-nodes-do-we-need-01, February
11, 2014.

[13] Jin, Wenquan, and DoHyeun Kim. "A Sleep-Awake Scheme Based
on CoAP for Energy-Efficiency in Internet of Things." JOIV:
International Journal on Informatics Visualization 1.4 (2017): 110-
114.

[14] Rahman, A. Enhanced Sleepy Node Support for CoAP. Internet-
Draft, draftrahman-core-sleepy-05, 2014.

[15] Jin, Wen-Quan, and Do-Hyeun Kim. "Implementation and
Experiment of CoAP Protocol Based on IoT for Verification of
Interoperability." The journal of the institute of internet, broadcasting
and communication 14.4 (2014): 7-12.

[16] 10] Shelby, Zach, Carsten Bormann, and Srdjan Krco. "CoRE
resource directory." (2013).

[17] Koster, M., A. Keranen, and J. Jimenez. Message Queueing in the
Constrained Application Protocol (CoAP). Internet-Draft, draft-
koster-core-coapmq-00, 2014.

[18] Zakaria, Mohamad Fauzi, Joo Chin Shing, and Mohd Razali Md
Tomari. "Implementation of Robot Operating System in Beaglebone
Black based Mobile Robot for Obstacle Avoidance Application."
International Journal on Advanced Science, Engineering and
Information Technology 7.6 (2017): 2213-2219.

[19] Californium, http://people.inf.ethz.ch/mkovatsc/californium.php,
3.13.2018.

[20] Libcoap, http://libcoap.sourceforge.net, 3.13.2018.
[21] cJSON, https://sourceforge.net/projects/cjson, 3.13.2018.

645

