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Abstract— To use computing resources for processing parallel algorithms on demand, cloud computing has been widely used since it 
is able to scale in response to load increases and decreases. Typically, cloud computing providers offer virtual machines to cloud users 
with static configurations, and these configurations are not changed until virtual machines are shutting down. To accelerate parallel 
processing computations in cloud computing environments, we design and implement a dynamic resource manager by isolating 
resources based on workload types. To avoid unnecessary context switching and increase CPUs affinity, our dynamic resource 
manager determines whether vCPU to physical CPU core pinning is required. If so, the VM’s vCPUs are pinned by our dynamic 
resource manager, which can guarantee the resource and performance isolation. With our proposed resource manager for virtual 
machines, we can achieve a performance boost and load balancing at the same time. Performance results show that our proposed 
method outperforms the default scheduler of Xen about 36.2% by reducing the number of context switching for VMs. 
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I. INTRODUCTION 

Scientific applications often require a massive number of 
computing resources for performing large-scale parallel 
computations. Traditionally, these needs have been 
addressed by using high-performance computing (HPC) 
hardware on physical server machines [1-3]. Cloud 
computing providers offer virtual machines (VMs) as 
computing resources to cloud users with user-specified 
configurations [4, 5] and VMs can be dynamically 
provisioned on a pay as you go basis for many applications 
[6-9]. 

Although requirements of cloud users for cloud 
computing services are varied, cloud computing ensures that 
it can supply computing resources on demand by taking 
advantage of virtualization technology. The advances in 
virtualization technology have attracted HPC users to cloud 
computing and enhanced the performance of the hypervisor 
or virtual machine monitor (VMM). The typical examples 
of hypervisors include Xen and kernel-based virtual 
machine (KVM) [10-12]. 

However, the specific demands of HPC applications in 
cloud computing environments often mismatch the 
assumptions and mechanisms provided by default 
hypervisor settings for various workloads. Figure 1 shows 
an example of VMs’ workloads. For vm1, the application 
running on the VM is CPU-intensive, in other words, it 
consumes the CPU resource as much as possible. 

On the other hand, the workload of vm2’s application is 
like to be a background service. When the two VMs are 
running on the same host and the configurations of the VMs 
are the same, the resource allocated to vm2 has more idle 
time than vm1’s case. 

In this paper, we propose a dynamic resource manager 
with effective resource isolation based on workload types in 
virtualized cloud computing environments. The proposed 
resource manager monitors VMs and detects workload types 
of applications for VMs running on the hypervisor. Then, it 
dynamically allocates computing resources to VMs on 
runtime, which can resolve the mismatch and improve 
utilization of resources effectively. 

1771



The rest of this paper is organized as follows. Section2 
describes our research motivation and our intuition for 
designing and implementing the resource manager for VMs. 
Section 3 provides our proposed dynamic resource manager 
with resource isolation. The experiments and performance 
analysis are given in Section 4. Finally, Section 5 concludes 
the paper. 

 

Scientific Workflow

Service Workflow
 

 
Fig. 1  VMs’ workloads. 

II. MATERIAL AND METHOD 

While cloud computing has been considered as an 
efficient solution for processing parallel applications and 
CPU intensive workloads, developing a dynamic resource 
manager with workload types in mind is not fully undertook. 
We found that most cloud applications could be categorized 
into two different groups: scientific workflow and service 
workflow. In this section, we provide research motivation 
and related work in the area. 

In this section, we present our dynamic resource manager 
with resource isolation based on workload types. The 
proposed dynamic resource manager is able to recognize the 
workload types (scientific and service) without prior 
knowledge and history. With the workload type information 
the dynamic resource manager allocates recourses to VMs 
while the VMs are running. 

A. Background and Motivation 
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Fig. 2 Basic process scheduling in operating systems 

 
Figure 2 shows the basic process scheduling in operating 

systems. The scheduler of operating systems is in charge of 
scheduling processes or threads. Therefore, the scheduler 
determines the mapping between threads and processors. 

As cloud computing emerges, software system has 
changed from standalone applications into service-based 
systems based on the virtualization technology. Typically, 
the major goal of resource management of computer 
systems was to provide fairness between processes. 

However, in cloud computing environments, there is 
another mediator, that is, hypervisor. With this in mind, a 
process (threads) can be considered as a VM and, therefore, 
the cost of context switching for VMs is higher than that for 
typical processes. 

Since cloud computing environments are different from 
the traditional distributed systems, resource management 
schemes for processes is not suitable for VMs. In other 
words, it generates unnecessary context switching between 
VMs.  

Hence, we introduce a novel dynamic resource manager 
with effective resource isolation for VMs considering 
performance and load balancing by reducing the number of 
context switching. 

B. Related Work 

In [13], Li et al. proposed an affinity-aware dynamic 
vCPU pinning scheduling for VMs, the mechanism aims at 
supporting only symmetric multi-processors (SMPs). 
However, the affinity information should be known before 
the scheduling process. 

In [14], Caglar et al. proposed a log based machine 
learning approach for optimizing the hypervisor’s system 
parameters by performing three phases, that is, discover, 
optimize, and observe steps.  

While it can optimize the scheduler of the hypervisor, it 
requires history information for the system and involves 
computational cost for performing the k-means and 
simulated annealing algorithms. In [15], Zhou et al. 
proposed a dynamic VM allocation policy for a cluster by 
migrating VMs for load balancing. 

Our work differs from previous work in that our dynamic 
resource manager can be applied to both SMPs and 
asymmetric multi-processors (AMPs) systems since our 
daemon service implementation is not dependent on a 
specific system. 

Furthermore, the monitoring scheme of our dynamic 
resource manager periodically checks the recent system 
information on a real time basis, and does not require 
history information and complex computation for the 
resource allocation algorithm.  

Moreover, with our dynamic resource manager, both 
performance gain and load balancing can be achieved by 
vCPU pinning. In other words, once vCPUs are pinned, 
other VMs cannot interfere the pinned vCPUs. 

C. System Model 

Figure 3 shows the architecture of our dynamic resource 
manager. The dynamic resource manager resides in the host 
OS and it periodically monitors resources of the system for 
the host OS and the guest OSes to check whether resource 
re-allocation is required. The monitor module in the 
dynamic resource manager automatically categorizes the 
VMs in the system according to the algorithm. 

Then, the allocation module manages the resource 
allocation to optimize the performance of the system. Our 
dynamic resource manager has two policies to allocate 
resources to VMs: 

 
• allocate_pr: it allocates resources to VMs evenly by 

considering load balancing; 
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• allocate_sla: it allocates resources to VMs 
restrictively by considering SLA. 

 
The allocate_pr policy is for the scientific workflow. 

When the allocate_pr policy is used, the dynamic resource 
manager decides the amount of resources for the scientific 
workflow and allocates the resources to the VM accordingly. 
Therefore, the scientific workflow can benefit from the 
dynamic resource manager. 

The allocate_sla policy is for the service workflow. 
When the allocate_sla policy is used, the dynamic resource 
manager allocates the minimum amount of resources to VM 
provided that SLA violation is not detected. 
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Fig. 3 Architecture of our dynamic resource manager 

 

D. Basic Idea 

The hypervisor regards vCPU as a logical computation 
unit for VMs. Unlike physical machines, by taking 
advantage of virtualization technology, the hypervisor is 
capable of adjusting the number of vCPUs of VMs 
regardless of the number of physical CPU cores while VMs 
are running. 

When the number of vCPU is greater than the number of 
physical CPU cores (overcommit), context switching is 
inevitable. On the other hand, when the number of vCPU is 
less than the number of physical CPU cores, VMs are 
underutilizing the host resources. Based on applications’ 
workload types of VMs, our proposed dynamic resource 
manager adds additional vCPUs considering the host’s 
available physical CPU cores. 

Then, to avoid unnecessary context switching and 
increase CPUs affinity, our dynamic resource manager 
determines whether vCPU to physical CPU core pinning is 
required. If so, the VM’s vCPUs are pinned by our dynamic 
resource manager, which can guarantee the resource and 
performance isolation. 

Figure 4 illustrates an example of the basic idea behind 
our vCPU pinning algorithm for the dynamic resource 
manager. Suppose the workload type of VM1’s application 
is scientific workflow, our dynamic resource manager is 
able to detect the type of the application by monitoring 
performance metrics. The Tcheck parameter is used for 
monitoring period and the administrator can adjust the 
parameter according to the resource management policy. 

 

1:1 Matching
 

Fig. 4 An example of vCPU to physical CPU core pinning. 
 
In our design, when the performance metric exceeds the 

threshold value, our dynamic resource manager regards it as 
the scientific workflow. Whereas, when the performance 
metric is below the threshold value, it is considered as the 
service workflow. 

 Note that the workload type can be changed from 
scientific to service or vice versa on runtime. With this in 
mind, our dynamic resource manager can achieve the 
performance gain while maintaining SLA by isolating 
resources. The next subsection describes the algorithmic 
details for our dynamic resource manager with resource 
isolation, and the symbols used in the algorithms are listed 
in Table 1. 

 

TABLE I 
SYMBOLS USED IN THE ALGORITHMS 

Symbol Description 

VMi
sc i-th VM of VMsc 

VMi
se i-th VM of VMse 

Listsc A list of VMsc 

Listse A list of VMse 

Tcheck Monitoring period 

α Threshold of utilization 

β Threshold of count 

Nsc The number of VMsc 

Nse The number of VMse 

add_vm() A function to add a VM to a list 

delete_vm() A function to delete a VM from a list 

allocate_pr() A function to perform the allocate_pr 

policy with a VM list 

allocate_sla() A function to perform the allocate_sla 

policy with a VM list 
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E. Resource Monitoring Algorithm 

The resource monitoring step is essential for the dynamic 
resource manager. Based on the resource monitoring 
information, our dynamic resource manager can categorize 
the workflow types of VMs and allocate the specified 
amount of resources to VMs. 

The resource monitoring algorithm is periodically 
performed as follows (cf. Algorithm 1). 

1)  When a VM is created: Since our dynamic resource 
manager does not rely on history information of VMs, the 
default policy is used when a VM is created. In other words, 
the type of workflow of the newly created VM is 
unspecified and the default resource scheduling policy is 
used. Note that when the default resource scheduling policy 
is used, the VM’s resource is static and does not changed 
during the VM is running in the system. 

2)  Checking the resource utilization of VMs: For a newly 
created VM, the resource monitoring algorithm checks the 
resource utilization. When the utilization of the VM exceeds 
the threshold α, it increases count_scientific parameter. 
Similarly, when the utilization of the VM below the 
threshold α, it increases count_service parameter. The 
count_scientific and count_service parameters are used 
when determining the types of workflow.  

In this procedure, the count_scientific and count_service 
parameters cannot have the positive values simultaneously 
when determining the workflow types. Either 
count_scientific or count_service parameter can have the 
positive value in order to become a workflow type. 

 
Algorithm 1. Dynamic Resource Monitoring Algorithm 

1:  /* The algorithm is performed every Tcheck */ 

2:  /* Resource monitoring for VMse */ 

3:  for  i =1 to Nse do 

4:      if  (VMi
se.cpuUtilization > α) then 

5:          increase VMi
se.count by 1;  

6:      else 

7:          decrease VMi
se.count by 1; 

8:      end if 

9:  end for 

10: /* Resource monitoring for VMsc */ 

11: for  i =1 to Nsc do 

12:     if  (VMi
sc.cpuUtilization < α) then 

13:         increase VMi
se.count by 1;  

6:       else 

7:           decrease VMi
se.count by 1; 

16:     end if 

17: end for 

 
More specifically, when the resource monitoring 

algorithm increases the count_scientific parameter, it 
initializes the count_service parameter to 0. Similarly, when 
the resource monitoring algorithm increases the 
count_service parameter, it initializes the count_scientific 

parameter to 0. By doing so, the dynamic resource manager 
maintains the workflow types of VMs in the system. 

 
Algorithm 2 Dynamic Resource Management Algorithm 

1:  /* The algorithm is performed every Tcheck */ 

2:  /* Dynamic resource management for VMse */ 

3:  for  i = 1 to Nse do 

4:      if  (VMi
se.count > β) then 

5:          VMi
se.count ← 0; 

6:          delete_vm(Listse, VMi
se); 

7:          add_vm(Listsc, VMi
se); 

8:          allocate_pr(Listsc); 

9:      end if 

10: end for 

11: /* Dynamic resource management for VMsc */ 

12: for  i = 1 to Nsc do 

13:     if  (VMi
sc.count > β) then 

14:        VMi
sc.count ← 0; 

15:        delete_vm(Listsc, VMi
sc); 

16:        add_vm(Listse, VMi
sc); 

17:        allocate_sla(Listse); 

18:   end if 

19: end for 

 

3)  Determining the workflow types: Based on the 
resource monitoring information, our dynamic resource 
manager is able to determine the types of workflow. When 
the count_scientific parameter reaches β, the dynamic 
resource manager considers the workflow as the scientific 
type. Similarly, when the count_service parameter reaches β, 
the dynamic resource manager considers the workflow as 
the service type. 

Note that a VM cannot become both scientific and 
service workflow types since the resource monitoring 
algorithm guarantees the mutual exclusion for the 
count_scientific and count_service parameters. 

F. Dynamic Resource Management Algorithm 

With the workflow type information, the dynamic 
resource manager allocates resources to VMs as follows (cf. 
Algorithm 2). 

1)  Resource maintenance: The dynamic resource 
manager maintains the available resources of the system as 
Equation 1 for performance and load balancing.  

 ,servicescientific Resγ)(1  Resγ  Total_Res ⋅−+⋅=  (1) 

where γ is the system parameter and 0 < γ < 1. 
The γ parameter can be tuned according to the number of 

scientific workflows and the number of service workflows 
in the system. With this resource maintenance method, the 
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resource isolation is effectively achieved by taking 
advantage of the libvirt library. 

When the number of scientific workflows is greater than 
the number of service workflows, the dynamic resource 
manager increases the γ parameter. On the other hand, when 
the number of service workflows is greater than the number 
of scientific workflows, the dynamic resource manager 
decreases the γ parameter. 

2)  For scientific workflow:  The dynamic resource 
manager allocates γ·Resscientific/nscientific to a VM, where 
nscientific is the number of scientific workflows. 

3)  For service workflow: The dynamic resource manager 
allocates the minimum amount of resources to a VM if SLA 
violation is not detected. 

Note that like the resource monitoring algorithm, the 
resource allocation procedure is also performed periodically. 
Therefore, the dynamic resource manager can achieve both 
performance and load balancing by reducing the number of 
context switching for VMs. 

III.  RESULTS AND DISCUSSION 

In this section, we provide the experimental results to 
show the effectiveness of the proposed dynamic resource 
manager. The NAS Parallel Benchmarks (NPBs) are used 
for scientific workflow applications. Table 2 shows the 
experimental settings for performance evaluation. 

Although the experimental environment is configured 
with the Xen hypervisor, our dynamic resource manager can 
be used with other hypervisors like KVM since the resource 
monitoring module and the dynamic resource allocation 
module are developed without dependency of hypervisors. 

 

TABLE II 
EXPERIMENTAL SETTINGS 

Parameter Value 

Host OS Ubuntu 14.04 

Hypervisor Xen 

Host CPU Intel(R) i5-4590T  

The number of host CPU 

cores 

Quad core without hyper-threading 

Host Memory 8 GB 
 
Figure 5 shows the performance results of NPBs for the 

default scheduling method and the proposed method with 
our dynamic resource manager. The results show that with 
our dynamic resource manager, the execution time is 
reduced by 36.2% for the benchmarks on average. This 
demonstrates that our dynamic resource manager effectively 
controls the vCPU to physical CPU core mapping and 
monitors the VMs’ resource status. 

Because our dynamic resource manager is running as a 
background service at dom0, the overhead of controlling 
VMs is almost zero without requiring history information or 
complex computation. It is interesting to note that the 
proposed solution can achieve almost 2 times faster than the 

default scheduling policy for some of the benchmark results 
(e.g., BT and LU). 
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Fig. 5 Performance comparison for benchmark runtime 

 
This signifies that when we apply the proposed dynamic 

resource manager to the scalable clusters, the performance 
gain will become large. Since we focus on implementing the 
prototype of the dynamic resource manager by pinning 
vCPUs to physical CPU cores and detecting the workload 
types of VMs’ applications with our novel algorithm, we 
leave the deployment our dynamic resource manager to a 
large-scale cluster as future work. 

For some of the benchmark results (e.g., CG), the 
difference of execution time is comparable. The reason why 
this result is introduced is that some applications do not 
affected by CPU performance. 

Nevertheless, the proposed solution always results in the 
better execution time in comparison with the default 
scheduling policy. With our dynamic resource monitoring 
and management algorithm, the number of context 
switching can be reduced since our algorithm does not allow 
vCPU overcommits. 

The downside of our approach is as follows. Since the 
resources are allocated on runtime, some vCPUs mappings 
to physical CPU cores should be altered as the number of 
VMs is increasing or decreasing or the workload types of 
the applications are changing. 

To overcome this challenge, we can use the epoch 
parameter to determine the re-allocation of vCPUs. After 
epoch, our dynamic resource manager checks whether the 
vCPUs mapping has to be altered. If this is the case, the 
algorithm adds or subtracts vCPUs according to the 
monitoring information without violating SLA and allowing 
overcommits. 

TABLE III 
PERFORMANCE RESULTS FOR THE NUMBER OF CONTEXT SWITCHING 

 Default Scheduling Proposed Solution 

BT 200,932 110,576 
 
Table 3 shows performance results for the number of 

context switching. For the BT benchmark, the number of 
context switching is 200,932 when the default scheduling 
method is used. When our dynamic resource manager is 
used, the number of context switching is 110,576, which is 
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about 55% of reduction in comparison with the default 
scheduling method. 

IV.  CONCLUSION 

In this paper, we proposed a dynamic resource manager 
for parallel processing in virtualized cloud computing 
environments. Our proposed resource manager for virtual 
machines classifies workloads into two categories (service 
workload and scientific workload). Then, it effectively 
isolates computing resources for virtual machines during 
runtime. Performance results show that our proposed 
method outperforms the default scheduler of Xen about 
36.2% by reducing the number of context switching for 
VMs. Future work includes finding the optimal resource 
monitoring period and applying machine learning 
algorithms for the tasks of resource isolation and scheduling. 
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