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Abstract— SVG (Scalable Vector Graphics) Tiny, an XML-based data representation format was used in our Global Train Route
Planner J2ME application to render and manipulate train network images. The SVG Tiny format enables the application to be
adaptable with any train network map. We compared three parsing models namely DOM (Document Object Model), SAX (Simple
API for XML), and StAX (Streaming API for XML) which were used to visualize the images on mobile phone. We present here the
result of the runtime performances, and memory footprints of those parsing models. This is a significant study because handheld
devices like mobile phones require seamless interactivity (i.e. high performance) with users and an efficient parsing mechanism with
less memory footprints. We also empirically investigated two route searching algorithms - graph and matrix based implementation
of DFS (Depth First Search), and matrix based BFS (Breadth First Search) — for performance and memory footprints on a J2ME
mobile device emulator. We concluded that DOM parser and DFS based on graph implementation are of better performance than
the others.
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an XML entity. The handler attached to an interested event
I. INTRODUCTION will perform application-specific tasks for the event. This

The XML based Scalable Vector Graphics (SVG) Tiny gpproach dqes not preserve  the Structure and content
can be used to render graphics. Not only that, it can be used information in memory, thus saving a large am(.)t.lnt of
for zooming, panning, and selecting objects. Due to memory space. Unfortunately, they lack the ?,blllt}/ to
portable nature of XML documents, this can be used do ranfiom access and are forward access only, which limits
develop adaptable mobile route planner where different their use to a very small scope. .
train network maps can be plug and played to find the StAX [Michael, 04], a pull parser, gives p rogrammer
shortest and cheapest routes. This approach, nevertheless, more cont'rol compared to SAX'p arser. 1nstead O.f emitting
requires parsing on the mobile device to convert the text event while parsing from beglm‘l‘mg tﬂ,l, enq like SAX,
based XML document to memory objects accessible by the StA,X allows the ngxt evept to be “p ull?d - This way, once
program. But most mobile devices are typically resource- an interested event is obtained, the parsing can s'top and the
starved: short in memory, and not having a lot of excess rest of the document need not be processed. This approach

CPU to spend on parsing XML. There are several ways to is effective for resource constrained mobile devices.
parse XML document for the J2ME. In this paper, we will DOM [Michael, 04], a model parser, creates 2 node

compare SAX, StAX, and DOM parsers. In general, there object in-memory tree representation for each node that
are three types of parsers: push parsers, pull parsers, and precisely model all the structure and content information of
model parsers. Push parsers will push information that is of the XML document. Unlike SAX and StAX parsing which

interest as it parses through the entire document. Pull traverse hierarchical data linearly, DOM parsing has the full

parsers will need to be guided on what to pull next and how hierarchical representation, in-memory thus enables Fhe
to pull it. Model parser on the other hand, parses the program to access and manipulate any data randomly using

document and creates in-memory representation using a set of API methods. . . . .
nested objects Due to resource constrained nature of mobile devices, it
SAX [Michael, 04], a push based parser, will read from is significant to evaluate the performance and memory

beginning to end and generate an event when it encounters footprints of different parsing mechanisms, and different
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implementations of searching algorithms to choose the best
that will fit route planning mobile application. Hence, in
this paper, we present empirical evaluations of performance
and memory footprints of SAX, StAX, and DOM parsers
parsing SVG Tiny files (containing train network maps),
and also empirical evaluations of different implementations
(i.e. matrix based, and graph based) of BFS, and DFS
algorithms.

The next section explains in more detail the three parsers
and their evaluations from the memory utilization and CPU
performance perspectives. The following section 3 then
delve into Breadth First Search (BFS) and Depth First
Search (DFS) empirical evaluations on a mobile platform
from the perspective of memory utilization and CPU
performance. The search algorithms are used to find the
shortest and cheapest routes. They are implemented in two
methods: graph based approach, and matrix based
approach. The final section concludes our works.

II. PERFORMANCE AND MEMORY FOOTPRINTS OF DOM,
SAX, AND STAX PARSERS

DOM produces many node objects to build a tree object
[Nicola, 03] [Zhao, 06]. Each node object stores element
name, attributes, namespaces, and pointers to indicate the
parent-child-sibling relationship. For example, in figure 1
the node object stores the element name of Path as well as
pointers to its parent (SVG), child (id, link to, price, stroke,
d), and siblings (Text, and Rect).

é

Fig.1 DOM tree representation of SVG document

SAX and StAX [Java, 05] parsers on the other hand,
associate different objects with different events and do not
maintain the structures among objects. For example, in
figure 2, the start element event is associated with three
String objects and an Attribute object. The end element
event is similar to the start element event without an
attribute list. The attribute list’s link to, and price are
custom attributes referring to connecting stations, and their
traveling costs respectively.

| startEvent: Path |

q_nhame:
path ‘

[ |_name:path ]‘

url:null

[arrtList: id,stroke, link_to,d, price]

Fig.2. SAX and StAX representation of Path Node

We used kXML parser, a light footprint parser, to
implement the Pull (StAX) and Model (DOM) parsing
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techniques. For SAX, we utilized JSR172 (Java API for
XML Processing).

SAX and StAX interlace parsing and access, so the
application can access partial data before parsing is
complete. Because the objects associated with events can be
destroyed regularly, memory usage does not grow with
document size [Zhao, 06][Java, 05].

SAX adopts the push model, which uses callback
functions to report events from the parser to the application
[Nicola, 03]. The parser has a loop to continuously check
tokens produced from lexical analysis. When it finds a
token, the parser invokes a callback function based on the
token type such as startElement(..), endElement(..),
characters(..).

In contrast, StAX adopts the pull model [Java, 05]. An
application in the pull model can skip uninterested events
by calling nextEvent(), whereas an application in the push
model must handle all events fed from the parser. The pull
model does not need to maintain states between callback
functions to decide correct actions, making the
programming flow more natural and maintainable. A
common misconception is that pull parsers are always
faster than push parsers because they save effort by
skipping uninteresting events. However, numerous studies
reveal that this is not always true [Java, 05]. Although the
application can skip events by calling nextEvent(), the
parser still creates the events sequentially without skipping
them. Performance therefore depends on the application
needs. If the application has to navigate through the entire
document, the pull model has little advantage over the push
model, but if it can stop parsing after accessing certain
uninteresting data, the pull model is faster.

Comparison of SAX, StAX and DOM parsing algorithms
were done using WTK Profiler 2.2 for our mobile
application. This profiler is embedded into Wireless Toolkit
Emulator and provides memory monitor as well as general
CPU performance profiler. Pull parsing executed around
270 millions (refer to Tablel) of cycles in total while
parsing whole SVG file and outputting the list of stations.
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CPU PERFORMANCE OF STAX PARSING TECHNIQUE
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Based on the Figure 3, the current amount of memory
used by the mobile application for Pull parsing was around
215Kbytes. The maximum amount of memory used in Pull
parsing algorithm since program execution begun was
around 477Kbytes. Maximum memory usage is denoted in
the graph by a broken red line.

In case of SAX parsing, total amount of cycles is around
195 millions of cycle (refer to Table 2), which is less than
StAX’s total amount of cycles (270million). It means that,



in case of SAX parser CPU performance is better than in
StAX.

When comparing memory usage between SAX and
StAX parsing algorithms, maximum amount of memory
used in SAX parsing algorithm is around 493Kbytes (Refer
to Figure 4) which is a bit more than in StAX.

Eile  Utiities
Savel [ RunGC
Grash | Objects

Current: 214656 bytes
Maximum: 477456 bytes

biects: 4453 Used: 214656 bytes

Free: 285344 bytes

Total: 500000 bytes|

Fig.3. Memory Monitor Graph for PULL parsing

TABLE II
CPU PERFORMANCE OF SAX PARSING TECHNIQUE
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File Utiities

Graph | Chiects

Current: 196532 bytes
Maximum: 493852 bytes

bjects: 4120 Used: 196532 bytes

Froe: 303468 bykes

Tokal: 500000 bytes|

Fig.4. Memory Monitor Graph for SAX parsing

DOM can access data only after parsing is complete —
that is, when the loop inside the parser program can draw
no more tokens from lexical analysis to construct the tree.
A large document will significantly delay data access
[Nicola, 03] [Zhao, 06]. Moreover, the two models’ long-
lived data representations make memory usage grow with
document size, which is undesirable for streaming.

In case of our mobile application, DOM parsing
executed around 39 millions of cycles in total (refer to
Table 3) while parsing whole SVG file and outputting the
list of train stations.
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TABLE III
CPU PERFORMANCE OF DOM PARSING TECHNIQUE
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Based on results from Table 1, 2, and 3, DOM parsing
algorithm is 5 times faster than SAX parsing (195/39 = 5),
and DOM is 7 times faster than StAX(270/39 = 7).

But in case of memory usage, DOM definitely consumes
more memory than previous parsers (refer to Figure 5).
Maximum amount of memory consumed by DOM parsing
algorithm is around 1.9 Mbytes which is 4 times more than
in Pull parsing algorithm, and 3.8 times more than in SAX
parsing algorithm. But still, the performance in DOM
parsing algorithm is much faster than SAX and StAX.

File  Utities
Gave: E[Rungc

Graph | Ohjerts

Current; 1983726 bytes
Maximum: 1983728 bytes

hjects: 42014 Used: 1983728 bytes Fres: 113424 bytes

Tokal: 2097152 bytes|

Fig.5. Memory Monitor Graph for DOM parsing

II1. DEPTH FIRST SEARCH (DFS) AND BREADTH FIRST
SEARCH (BFS) EVALUATIONS

We implemented both DFS and BFS on the mobile
environment to find the shortest path and cheapest cost.
Two implementations of DFS were done: graph based, and
matrix based. For BFS, it was implemented using matrix. In
the matrix implementation, two 2D arrays were created to
store connectivity between stations and also fares between
stations. On the other hand, in the graph implementation,
the vertices stored the station info and an adjacent list
contained the list of stations linked to the station. The
details of the stations, connections, and fares are parsed
form the SVG network map. Indent the first line of the
second and all subsequent paragraphs. If you use figures,
make sure the figures stay within the printing area.

The WTK 2.2 tool was used to obtain the memory
footprint and processing performance empirical results.
And the profiling includes average of both distant and near
stations. The definition of the metrics is as follows:



Current - Current amount of memory used by the
application.

Maximum - Maximum amount of memory used since
program execution began, shown in the graph by a broken
red line.

Objects - Number of objects in the heap.

Used - Amount of memory used.

Free - Amount of unused memory available.

Total - Total amount of memory available at startup.

A. Memory footprint experiment results

DFS algorithm (graph based implementation) evaluation

4 Memory Monitor Extension-#+535
Eile tilities
Open Save

Goaoh [ bjects

jects: 0485 Used: 1817357 bytes Free: 784900 bytes

Fig.6. Memory Monitor Graph for Graph based DFS

Current: 1812352 bytes
Maximum: 1812352 bytes
Objects: 30485

Used: 1812352 bytes
Free: 284800bytes

Total: 2097152 bytes

DEFS algorithm (matrix based implementation) evaluation

w’\ Memary Monitor Extension-+5530000 - DefaultColorPhone - Sun Java(TM) Wireless TonIE_ —

File Utilities View

Open ave ‘ W g

Graph | Objects

Current: 1543416 bytes
[Maximum; 1543416 bytes

Free; 553736 bytes

Used: 1543416 bytes

biects: 27656
Fig.7. Memory Monitor Graph for Matrix based DFS

Current: 1543416 bytes
Maximum: 543416 bytes
Objects:27656

Used: 543416 bytes
Free: 553736 bytes
Total: 2097152 bytes
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B. BFES algorithm  (matrix based implementation)
evaluation
. e
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 ———
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Ogen Bavel| [ Run g

Graph | Objects

iCurrent: 1093396 bytes
[Maximum; 1727892 bytes

bjects: 2874 Used: 1093836 bytes Free: 1003256 bytes Total: 2097152 bytes|

Fig.8. Memory Monitor Graph for Matrix based BFS

Current: 1093896 bytes
Maximum: 1727892 bytes
Objects:21879

Used: 1093896 bytes
Free: 1003256 bytes
Total: 2097152 bytes

C. CPU performance
DFS algorithm (graph based implementation) evaluation

Whole application:
Cycles with children: 16361702
Cycles without children: 100
Graph initialization:
Cycles with children: 1943866
Cycles without children: 11.8
Graph.DFS:
Cycles with children: 468583
Cycles without children: 2.8
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Fig.9. CPU performance table for Graph based DFS



DFS algorithm (matrix based implementation) evaluation
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Fig.10. CPU performance table for Matrix based DFS

Whole application:
Cycles with children: 18047977
Cycles without children: 100
matrix initialization:
Cycles with children: 2083567
Cycles without children: 13.3
Matrix.DFS:
Cycles with children: 76512
Cycles without children: 0.4

BFS algorithm (matrix based implementation) evaluation

Whole application:
Cycles with children: 15606421
Cycles without children: 100
matrix initialization:
Cycles with children: 2083567
Cycles without children: 13.3
Matrix.BFS:
Cycles with children: 81514
Cycles without children: 0.5
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Fig.11. CPU performance table for Matrix based BFS
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From observations above, the DFS based on graph
performed better than the DFS based on matrix. However,
the BFS based on matrix gave the best overall result. In the
aspect of memory footprint, matrix implementation left less
footprint compared to graph implementation of data
structure.

IV. CONCLUSION

Based on the evaluation done in previous section, we can
conclude that SAX and StAX do not maintain long lived
structural data and are limited to sequential access. Memory
consumption depends on location of particular element in
the document. In order to modify, the application must
buffer the entire document before it can alter the document.
SAX and StAX thus do not have an advantage in terms of
memory consumption as they do in streaming applications.
For this reason, SAX and StAX are typically used for
forward-only applications or simple modifications.

In contrast to SAX and StAX, DOM maintains parent-
child-sibling information in their long-lived structural data.
Preparing this data incurs more overhead, but the simple-to-
navigate tree ease access. DOM is better because of its
modification capability. DOM is more suitable for massive
and frequent updates. It is possible to add or delete a node
to or from the DOM tree by simply manipulating the
pointers between tree nodes. The modified tree is then
ready for further updates.

From figure 12 it is seen that the DOM parsing algorithm
consumes much more less CPU power while SAX and
StAX take more time to parse XML document. From figure
13, we can conclude that SAX and StAX are appropriate for
applications with extremely restrictive memory but not for
backend- forth access or modification.

CPU performance
(millions of cycle)

0 F T T T T T T T T

195

39

SAX StAX nom

Fig.12. CPU performance diagram

Memory usage
(MBytes)

1.9

0.493
0.477

SAX StAX DOM

Fig.13. Memory usage diagram



For our mobile application we used DOM parsing
technique, because of the need for fast CPU response. Even
if it consumes a lot of memory, it is worth to say that
mobile phone holders are keen to be impatient when it
comes to fast response of the application. As in our
application we are not using large file to parse, the memory
concerns should not be so restrictive.

As for the searching algorithm, DFS algorithm
implemented based on graph data structures were chosen.
This choice was made because user would prefer faster
output than memory usage amount.
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