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Abstract— In this work, we obtain the order of convexity of the integral operator which is a generalization to Ces´aro integral 
operator.  Furthermore, some other properties of the integral operator by using the concept of the norm and pre-Schwarzian 
derivatives are obtained. 
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I. INTRODUCTION 
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the classical Ces´aro means play an important role in 
geometric function theory (see [2], [3],[4],[5]). 
Let H denote the class of all analytic functions in the 
open unit disk  U {z  :  z  1}      o f  complex 

plane. 
Let A  denote the class of functions   
f  H    normalized by     f 0   0,  f ' 0   1 .   

Also, let S denote the class of all univalent functions 
in A .  
A function f belonging to A is said to be starlike of 

order   in U if it satisfies 
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for some (0 1)    

Further, a function f belonging to A is said to be 

convex in U if it satisfies 
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A function f belonging to A is said to be the class 

( )R   iff 

  { } ,      (z U),'( )f z     

for some (0 1).    

Very recently, Frasin and Jahangiri [6] defined the 
family B( ,  ),µ     for some (  0,0   1),µ     so that 

it consists of functions f A  satisfying the 
condition 
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The family B( ,  )µ   is a comprehensive class of 

analytic functions which includes various new classes 
of analytic univalent functions as well as some very well 
known ones. For example,  

B(1,  )  S ( ),   and   B(0,  )  R( ).      

Another interesting subclass is the special case 
B(2,  )  B( ),    which has been introduced by Frasin 

and Darus [7] . 
Let : U Cf   be analytic and locally univalent. The 

pre-Schwarzian derivative 
 (or nonlinearity) fT  to f  is defined by 
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Also, with respect to the Hornich operation, the 
quantity 
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can be regarded as a norm on the space of uniformly 
locally univalent analytic functions   f U.  

It is known that T  f      if and only if f is 

uniformly locally univalent. 
It is well-known that from Becker’s univalence 
criterion [8]: every analytic function f in U with 

T 1f    is in fact univalent in U .Conversely, 

T 6f    holds if f univalent. 

Consider the general integral operator defined by the 
formula: 
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where  {0}, i  1,  ...,  m  ,i     and the functions 

f (z)i   are in B( ,  ).µ    It is clear that when 

1  1   and    0,  j  2,  ...,  mj    the integral operator 

(1.3)  reduces to Ces´aro integral operator (1.1). 
In this paper we will study some general properties  for  
function 
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For the purpose this work, we shall make use of the 
following lemmas. 
Lemma 1.1 [1]  
Let the analytic function f be regular in the disk 
with  f 0  0 . If | f (z) |  1, for all (z U)  then 

| f (z)   z |,     (z U).   

The equality can hold only if   f (z) z,  

where     1.   

Lemma 1.2   Let the analytic and locally univalent f  
in  U . Then 

  ( )   If    T  1fi  , then f is univalent ,  and 

 ( )   If    T  2fii  , then f  is bounded . 

The part (i) is due to Becker [8] and sharpness of the 
constant 1 is due to Becker and Pommerenke [9]. The 
part (ii) is obvious (see [10], Corollary 2.4). Note also that, 
recently, Kari and Per Hag [12] gave a necessary and 
sufficient condition for f  ∈  S  to have a John disk as 
the image in terms of the preSchwarzian derivative of  
f . 
Also, the norm estimates for typical subclasses of 
univalent functions are investigated by many authors . 
See for example ([10], and so on). 

Lemma 1.3 [11]  
Let 0   1    and f S.  

(i) If f is starlike of order , then T  6 4 ,f     and 

( )  If     is convex of  order   ,ii f then

 T  4(1 ).f    

The constants are   sharp. 

II. MAIN RESULTS 

Theorem 2.1 
 Let f A,i   be in the class B(µ, α),  µ ≥  0, 0 ≤  α  < 

1, for all  i = 1, 2, ..., m. If 
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is convex of order δ, 
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For   all i=1,2,…,m. 
 
Proof: 
From the definition of the operator (1.3) ,we  have 
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For   ( , ).if B    It is easy to see that 
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Differentiating both sides of (2.1)  logarithmically, we 
obtain 
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which readily shows that 
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Since    | f (z) |   M,(z U,  i {1,2,  ...,  m}),i     

applying the Schwarz lemma, we obtain 
f (z)

| |   M, (z U,  i {1,2,  ...,  m}).i
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From (2.3) and (1.2), we see that 
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 This completes the proof. 
Theorem 2.2  
Let if A, for all  i = 1, 2, ..., m. Suppose that 

1 21 2 , ,...,[ , ,..., ] ( )
mmzC f f f z   is locally univalent in 

U. 

i(1)  If       2   .              (2.4)
if

T      

Then  

1 21 2 , ,...,[ , ,..., ] ( ), is univalent in U.
mmzC f f f z    

i(2)   If       2  2 .         (2.5)
if

T       

Then  

1 21 2 , ,...,[ , ,..., ] ( ), is univalent in U.
mmzC f f f z    

Proof: 

Since  
1 2 , ,...,1 2

[ , ,..., ] ( )m m
zC f f f zT

  
  

1 2 , ,...,1 2

2
[ , ,..., ] ( )(1 We obtain) .   sup m m

zC f f f z
z U

z T
  




 

1 2 , ,...,1 2
[ , ,..., ] ( )m m

zC f f f zT
  

 

1 2

1 2

2 1 2 , ,...,

1 2 , ,...,

(1
( [ , ,..., ] ( )) ''

) .sup
( [ , ,..., ] ( )) '

m

m

m

mz U

z zC f f f z
z

zC f f f z
  

  



  

 

2

1

(1
'( )1

) ( ) sup
( ) 1

m
i

i iiz U

zf z z
z

f z z




   

 

i1

1
    2   .       

i

m

f
i

T


     

From (2.4),and applying Lemma 1.2 we get 
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Proof: The results follow from (2.6) and by using Lemma 
1.3. 
Corollary 2.1  
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III. CONCLUSIONS 

We conclude this study with some suggestions for future 
research; one direction is to obtain the order of convexity of 
the integral operator. Another direction would be studying 
other properties of the integral operator. 
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