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Abstract— In the present paper, we introduce two new subclasses of the functions class Σ of bi-univalent functions involving double 

zeta functions in the open unit disc  1  : ,U z z z . The estimates on the coefficients 2a  and 3a  for functions in these new 

subclasses of the function class Σ are obtained in our investigation. 
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I. INTRODUCTION 

 
Let A be the class of the function of the form 
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which are analytic in the open unit disc  : 1U z z  . 

Further, by S  we shall denote the class of all functions in 
A which are univalent in .U By using the Hadamard product 

or the convolution product of generalized Hurwitz-Lerch 
zeta function given by [4], a function is defined as follows:  
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It is clear that  0 , , 1.y x a   Now consider the function   
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implies 
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Thus                 
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poses a linear operator 
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where    1, 1; 2, 1,0 , 0 ;y z           

  ,a m n      0nm   and  is defined in (2). 

It is clear that  , , , ( ) .I z y x a f z A
   It is based on result by 

Ibrahim and Darus. 
It is well known that every function f S  has inverse 

1f  , defined  by        1 ( ) ( )f f z z z U    

and                    11
4
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where 

   1 2 2 3 3 4
2 2 3 2 2 3 45 5 .f w a w a a w a a a a w              (7) 

A function  f A   is said to be bi-univalent in U  if both 

( )f z  and 1( )f z  are univalent in .U Let   denote the 

class of bi-univalent in U  given by the Taylor-Maclaurin 
series expansion (1). Examples of functions in the class    
are 
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and so on. However, the familiar Koebe function is not a 
member of .  Other common examples of functions in S 

such as   
2

2

z
z   and 
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z

z
 are also not members of   . 

Lewin [4] investigated the bi-univalent function class   

and showed that  2 1.51a  . Subsequently, Brannan and 
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Clunie [5] conjectured that 2 2.a   Netanyahu [6], on the 

other hand, showed that   2

4
max .

3f
a


  

The coefficient estimate problem for each of the 
following Taylor-Maclaurin coefficients: 

    \ 1,2 ; : 1,2,3, .na n    is presumably still an 

open problem.  
Brannan and Taha [7] (see also [8]) introduced certain 

subclasses of the bi-univalent function class    similar to 

the familiar subclasses  *S  and  K  are starlike and 

convex function of order  , (0 1),    respectively 

(see[9]). Thus, following Brannan and Taha [7] (see also [8]), 
a function f A  is in the class  *S   0 1  of 

strongly bi-starlike functions of order   if each of the 
following conditions is satisfied: 
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where g  is the extension of  1f   to .U  The classes * ( )S    

and ( )K   of bi-starlike functions of order and bi-convex 

functions of order ,corresponding (respectively) to the 

function classes  *S   and   K   were also introduced 

analogously. For each of the function classes * ( )S   and  

( )K  , they found non-sharp estimates on the first two 

Taylor-Maclaurin coefficients 2a and 3a  (for details, see 

[7,8]). 
    The object of the present paper is to introduce two new 
subclasses of the functions class   involving double zeta 

functions operator and find estimates of the coefficients 2a  

and 3a  for functions in these new subclasses of the function 

class .  The techniques of proofing used by Srivastava et. 
al [4].  

II. COEFFICIENT BOUNDS FOR THE FUNCTION CLASS 

H  

Definition 1.  A function f (z) given by (1.1) is said to be 
in the class 

H  0 1   if the following conditions are 

satisfied: f    and  
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( ;0 1)w U     where the function is given by 
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We first state and prove the following result. 

 
Theorem 1. Let f (z) given by (1) is said to be in the class 


H . Then 
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Proof. We  can write the argument inequalities in (11) and 
(12) equivalently as follows: 

    , , , ( ) ( )I z y x a f z Q z



            and 

    , , , ( ) ( )I z y x a g w L w



                            (15) 

respectively, where ( )Q z  and  ( )L w  satisfy the following 

inequalities:  ( ) 0, ( )Q z z U    and    ( ) 0, .Q z w U    

Furthermore, the functions  ( )Q z  and ( )L w  have the forms 
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Then, 
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From (19) and (21), we get 
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Also, from (20) and (22), we find that 
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A rearrangement together with the second identity in (23) 
yields 
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which, in conjunction with the following well-known 
inequalities (see [1, p. 41]): 2 2c     and 2 2,l  gives us the 

desired estimate on 2a  as asserted in (14). 

            Next, in order to find the bound on 3 ,a by 

subtracting (22) from (20), we get 
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Upon substituting the value of 2
2a  from (23) and observing 

that 2 2
1 1c l   it follows that    
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The familiar inequalities (see [1, p. 41]): 2 2c   and 2 2,l   

now yield 
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This completes the proof of theorem 1. 

III. COEFFICIENT BOUNDS FOR THE  CLASS ( )H  

 
The Definition 1.  A function ( )f z  given by (1) is said to 

be in the class ( )H    0 1   if the following 

conditions are satisfied:  

f    and       , , , ( )I z y x a f z
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Theorem 2. Let ( )f z  given by (1) is said to be in the 

class ( )H   0 1  .  Then  
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where 2p and 3p in (17) and (18), respectively. 

Proof. First of all, the argument inequalities in (24) and (25) 
can easily be rewritten in their equivalent forms: 
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respectively, where ( )Q z  and ( )L w  satisfy the following 

inequalities:  ( ) 0, ( )Q z z U    and    ( ) 0, .Q z w U    

Moreover, the functions ( )Q z  and ( )L w  have the forms 
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As in the proof of Theorem 1, by suitably comparing 
coefficients, we get 
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This gives the bound on 2a  as asserted in (26). 

            Next, in order to find the bound on 3a by subtracting 
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This last equation, together with the well-known estimates: 
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Lead us to the following inequality: 
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This completes the proof of Theorem 2. 
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