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Abstract— Previous studies have suggested that the use of Artificial Neural Network (ANN) approach for trip distribution models
were unable to calibrate and generalize work trip numbers with the same level accuracy as the Doubly-Constrained Gravity models
(DCGM). This study presents some new ANN model forms aimed at overcoming these problems trained by using the Levenberg-
Marquardt algorithm. A further modification was applied to the model, namely transfor ming the input data nonlinearly by using
logistic functions (Sigmoid) in order to improve the testing/generalization of ANN models. This resulted in better performance of
ANN models, where the average Root Mean Square Error (RM SE) is statistically lower than the DCGM indicating the ANN models
could have higher generalization ability than DCGM.
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model results. Therefore, any efforts devoted to the
.  INTRODUCTION development of a framework that can help the modeller in
defining the required properties can avoid the

Unsuitable models applied in travel demand forecast . ; . X
PP aforementioned drawbacks. Thus, this study investigates the

would generate inaccurate outputs. Therefore having skills ¢ i d » ) ; . h
or talents in selecting and adopting a tool to develop modelgMPact of noniinear data transformations on improving the

is a necessity performance of ANN models for trip distribution estimation.
The gravity modelling approach has being used in travel 1h¢ usfe of thg ANN approach in mé)_de_lll?g act_|V|t||e§_ IS
demand model for at least half a century. Its widespread usd’owing fast and now covers many disciplines including
continues as there appears to be a lack of alternative"ansport planning. The "te“’%t“re suggests that A.NN were
practical ways to predict trip distribution more accurately. In US€d in at least 13 categories of transport studies where

the meantime, the adoption of the Artificial Neural Network driver behaviour ' simulation ~studies h_ad_ the highest
(ANN) approach for general modelling purposes has beenPercentage [3]. There has been less application of the ANN

increasing. This includes applications in the area of travel""ppro"’lch in trip distribution. Black [1] reported a study of

demand modelling. ANN is an intelligent computer system spatial Interaction _modellmg using ANN focusing on
that mimics the processing capabilities of the human brain. ltcommod|ty flows. H_'S model structure was based on that of
is a forecasting method that specifies output by minimizing the D,OUny_ Constr_a_urjed Gravity Model (DFGM) and named
an error term indicated by the deviation between input andthe Gravity Artificial _Neural N_etwork (GNN)' For
output through the use of a specific training algorithm and Passenger flow modelling, Mozolin et al. [4] is a good
random learning rate [1]. It is also frequently used for exar_nple_. The_y gsed the ANN _approach to model ftrip
modelling nonlinear statistical pattern [2] including trip diStribution which is also characterized by DCGM.
distribution modelling. However, there is still a lack of . The performance c.)f ANN models is influenced by the
guidelines for using this artificial intelligent approach. An mhergnt key properties 9f the models, such as learmning
approach must be supported by logic and sensiblealgor'thm’_ activation function, num.ber of layers, number of
underpinning theory, and without it ANN is just a naive nodes inside each I:?\yer, andllgarnmg rate [3, 5]. The amount
computational tool. of da_lta and the ratio for training, validating and testing is
The performance of ANN models depends on a set Ofalso important for the ANN fitting performance [6].

: P : . ; The Back-Propagation (BP) algorithm is mostly used in
properties and if inappropriately defined can then negatively \ . . . :
impact the model results, leading to inaccurate and impreciséo‘NN models as the learning algorithm while the Sigmoid
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function is commonly used as the activation function. Black case of work trip distribution-by analogy to the DCGM, the
[1] found that the ANN models with Sigmoid activation output Trip Flow (Tg) is a function of the inputs Trip
function and trained by using BP algorithm could Production (B), Trip Attraction (A) and Trip Length (Cost)
outperform the gravity models in calibrating trip distribution (Dyg) (as the deterrence factor). Therefore, there are three
numbers. However, a study by Mozolin et al. [4] illustrated nodes at the input layer, while output layer has only one
that ANN models with the Quickprop training algorithm, an node (see Figure 1).

extension of BP algorithm that can fasten the training speed,
actually had a higher error level than the DGCM. In addition,
the ANN models failed to satisfy the Production and
Attraction constraints required for estimating the work trip
numbers. This study used the double logistic function as the
activation function.

Previous studies by Yaldi et al. [7, 8] suggested that ANN
models can satisfy both constraints. They used the algorithm
developed by Marquardt [9] embedded into the BP algorithm
[10]. The activation function in all nodes for both hidden and

Output layer

output layers was the Sigmoid function. Using the Marquadt Hidden layer
algorithm, training the ANN models was found to converge

in several cases where training by the use of other algorithms

had failed [10]. Another study by Yaldi et al. [11]

demonstrated that the ANN models trained with the Input layer

Marquardt algorithm can satisfy the Production and
Attraction constraints, yet the error level of model testing or
generalization performance was still statistically higher than
the DCGM. Testing or generalization means using the
calibrated and validated ANN model to forecast different or
future events by feeding new datasets. This new dataset can Fig. 1 Proposed neural network model structure

be drawn from the whole dataset, where a percentage of the

data was allocated for calibration, validation and testing. The This study used a constant number of nodes in hidden
new dataset can be also from other datasets from differentayer as a recent study by Yaldi et al. [12] indicated that the
year or surveys. number of nodes in that layer is not a significant factor in

A further modification was thus sought and applied to the ANN model performance, as tested over a range of 0-20
ANN models. All of the normalized input data were hodes. Sometimes it would increase the error level, as found
transformed nonlinearly by using the logistic function, which by Carvalho et al. [6]. Thus, in the present study the number
is the same as the Logsig transfer function used in the hidde®f nodes in the hidden layer was set to be a constant number
and output layer nodes. The purpose of this transformationof ten nodes.
was to convert the normalized data, including the observed The training process is started from summation in the
trip numbers so that these are in the same form as the outpdtidden layer nodes using the following general equation, for
of the ANN model, which are nonlinearly transformed. ANN node j receiving inputs from a set of nodes i.

Hence, the error calculation will be based on the deviation

Ph Ay (D

between estimated trip numbers and the observed ones 0; = Zixgwi_y 1)
where both are the output of Logsig transformation. The
transformation was conducted prior to the training process. where Qis an output value,Xs an input signal, and;w

The modification suggests promising results since theis a weighting value. Then, the 8 compressed according
ANN testing/generalization performance improved. They to the activation function used in the network structure, in
can satisfy both constraints and also have statisticallythis case Logsig. Thus, the transformed output in hidden
significant lower average error (RMSE) than the DCGM layer nodes (Q) is:
models. It is expected the finding from this study could
assist the travel demand modeller in using ANN approach as o R —
an alternative sound and robust modelling tool. The next part 1 1+Bxp-0j)
of the paper will present the model development, output
discussion and conclusions.

1

(2)

This is followed by the summation in the output layer
node (Q),
Il.  MATERIAL AND METHOD .
i i D'k = E] D] “‘rk—j (3)

The structure of the ANN model is one of its key
properties. The multilayer perceptron neural network is Since the same activation function is used in the output

E)rggoﬂlgmujeﬂnmutmiﬁ)f ziug:%s'h?(—g:nng rmeérilth;csh tlhar eeerlayer node, the summation result in this layer is squashed
Yers, y Input, P YErs. Y according to the following equation,

has a number of nodes or processing units. Except for hidden
layer nodes, the numbers of processing units are determined . 1
by the variables that construct the expected outputs. In the Gk{rhﬂ:] = T Emp—0y 4)
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The result (estimated trip numberg)Tis then compared 3. Purelin
with the target value (observed trip numbejg), tand the
difference (diff) computed as follow, X=Xy (8)

diff = tg — 0} (Tha® %)

The difference is then compared with the threshold value
(goal). If it is below the threshold value, than the training is ', ! !

stopped, otherwise the error (diff) is backpropagated to the ; - —’ln - 5
system in order to obtain the combination of connection -3
weights that can generate results with error below the @ (b) ©

threshold value. This recursive process is undertaken using
the procedure based on the Marquardt algorithm
incorporated in the BP and termed as the Levenberg-

Marquardt alg(_)rithm (LM) [10]. This algorithm was used The model was developed using the Neural Network Tool
due to its ability to converge faster [11, 13] and generate;, MATLAB. The initial weights for all layers were

more accurate results. _ randomly selected by MATLAB. The weights were updated
The study used work wip data collected by the aper 5) of the data were used in the training (batch mode).
Transportation Agency of Padang City, West Sumatra, \jqge| performance was measured using Root Mean Square

'f.‘dones'ﬁ- TEere are 3269'([3raﬁ|c alnaI¥S|s ﬁon%s cqveﬂng theError (RMSE) and correlation coefficient (r). To enable the
city, so that there are 1296 samples for all nodes in the Inpulyaiistical tests, the experiments were run for 30 times for
and output layers. The data are divided into training, each scenario

validation and testing samples. _ The tests and analysis were conducted at two levels,
Data for training, validation and testing were randomly namely the calibration and testing/generalization

selected. The data were then divided to three parts, name%erformances. The comparison involves t-test for RMSE

(1) 40% for training, (2) 30% for validation, and (3) 30% for while x? and Fisher's Z-transformation test for correlation
testing. The input data values were normalized in the range. officient %

[0, 1] according to the maximum value prior to the training.
If Xo is an observed input value then the input data valise x m
given by X = Xy / Xmax Where Xy is the maximum of the set " - .
of observed values {xfor the specific data set. In order to illustrate the ability of ANN approach in
There are three scenarios used in this study as shown istimating work trip distribution numbers, the experiment
Table 1. All properties for each scenario are the same, excep@s conducted and evaluated at two levels, namely
the activation functions used in the output layer node. All calibration and model testing (generalization). The DCGM
nodes in the hidden layer use the Logsig activation function.calibrated by Hyman's algorithm [14] is used to benchmark
The maximum epoch is limited to 100 iterations. The details the ANN model performance (see Table 2 for DCGM

Fig. 2 Common activation functions used in NN

RESULTS ANDDISCUSSIONS

of the scenarios are also reported in Table 1. calibration and testing performance details).
TABLE | TABLE Il
NEURAL NETWORK MODEL SCENARIO DouBLY CONSTRAINED GRAVITY MODEL PERFORMANCE
Data Activation function Deterrence function Exponential

#Scenario nor malization Hidden Output  #Exp Value of deterrence function parameter () 0.11

Layer L ayer RM SE-Calibration 168
1 X = XoXmay Logsig Purelin 30 timeg RM SE-Generalization 174
2 X = XofXmas Logsig Logsig 30 times Correlation coefficient-Calibration 0.82
3 X = Xo/Xmas Logsig Tansig 30 timeg Corrélation coefficient-Testing 0.82

The details of the ANN calibration results for different
The activation functions will squash the summation activation functions are reported in Tables 3 and 4. The
output in both hidden and output layers according to theresults for all scenarios suggest that the ANN approach can

following formulae and Figure 2: calibrate the work trip distribution with lower discrepancies
between estimated and observed trip numbgy T than
1. Tansig/double logistic (Figure 2a) the DCGM. The ANN models have significantly lower mean
of RMSE than the DCGM as suggested by the t-test results
Y —— (6) (See Table 3).
1+exp(—~2,) The x? test suggests that the variations between each

experiment within the same scenario are insignificant

suggesting training the ANN models by using Levenberg-

Marquardt algorithm with random initial connection weights

A= e ) generates a statistically similar performance. The statistical
' test for the correlation coefficient (r) which is transformed to

2. Logsig/logistic (Figure 2b)
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the Fisher's Z value indicates that ANN models can also When Logsig or Tansig functions are used to transform
distribute the trip numbers significantly closer to the original the ANN model outputs in both hidden and output layers that
distribution pattern than the DCGM model calibrated using means the results are nonlinearly normalized according to
maximum likelihood. However, the testing results where the Figure 2a and 2b. Thus, the difference is computed as the
data is randomly split to 40, 30 and 30% for training, gap between the nonlinearly transformed trip numbegg (T
validation and testing suggest that the generalizationand real trip numbersy(}, which is then linearly normalized
performance of ANN model is still significantly lower than to restore its value range. Thus the difference becomes the
DCGM. The ANN models generate higher discrepancies gap between nonlinear model output and the linear data
(RMSE) and lower correlation coefficients (r) than DCGM input, or:
(see Tables 5 and 6).
A = (Non-Linear) Tq— (Linear) {q (12)
TABLE IlI - unmatched (Systematic error)!
RMSEFOR TRIPYTHD) (CALIBRATION)

The deviation between model output and observed trip

Trial RMS_E ) . . . . numbers is obtained by comparing Figure 2a and 2c, or
# Logsig-Tansig Logsig-L ogsig L ogsig-Purelin Fi b and 2¢. This is i t th ; hould

T 50 5o T igure 2b and 2c. This is incorrec as the comparison shou

2 164 153 161 be based on the same nature, nonlinear output data against

3 160 159 157 nonlinear input data.

4 161 159 157 TABLE IV

5 153 154 159

5 163 155 159 CORRELATION COEFFICIENTS(R) FOR TRIPSTHD) (CALIBRATION)

7 160 160 161 Trial  Corrélation Coefficient (r)

8 157 159 160 # Logsig-Tansig Logsig-Logsig  Logsig-Purelin

9 159 159 156 1 0.839 0.842 0.846

10 162 158 159 2 0.831 0.855 0.836

11 162 158 163 3 0.839 0.842 0.845

12 156 149 161 4 0.838 0.841 0.846

13 152 155 162 5 0.854 0.853 0.842

14 161 160 159 6 0.832 0.851 0.841

15 163 153 161 7 0.839 0.839 0.837

16 160 167 156 8 0.846 0.841 0.839

17 164 155 161 9 0.841 0.841 0.848

18 159 154 159 10 0.836 0.844 0.843

19 161 160 160 11 0.835 0.843 0.834

20 159 149 159 12 0.848 0.862 0.836

21 159 167 162 13 0.856 0.850 0.835

22 162 158 160 14 0.837 0.839 0.842

23 166 154 158 15 0.832 0.854 0.838

24 162 159 162 16 0.838 0.823 0.848

25 158 157 155 17 0.830 0.849 0.837

26 159 148 161 18 0.842 0.852 0.841

27 162 152 159 19 0.838 0.839 0.840

28 161 164 161 20 0.842 0.862 0.841

29 158 155 159 21 0.841 0.824 0.835

30 161 156 159 22 0.835 0.845 0.840
Mean 160 157 159 23 0.825 0.852 0.844
t-test* -12.593 (2.045) -12.252 (2.045) -21.377 (2.045) 24 0.835 0.842 0.835
*Based on paired two-tailed t-test, degree of freedomis 29 25 0.845 0.845 0.850

26 0.841 0.864 0.836

The drawback in the ANN models presented in Tables 5| 27 0.836 0.856 0.840
and 6 in terms of their testing performance may be| 28 0.837 0.831 0.838
influenced by two factors, namely (1) The activation 29 0.843 0.850 0.841
function used in the models, and (2) The nature of the inputf 30 0.838 0.848 0.841
data which is linearly normalized to its maximum value. Mean 0.839 0.846 0.840

To estimate trip number distribution by using NN [X2 0.399 (42.56) 0.929 (42.56)  0.167 (42.56)
approach, an iterative procedure is conducted to minimizelF-test 0.285(2.045)  0.415(2.045) 0.311 (2.045)

error (diff) between estimated and real trip numbers. The
difference is computed as:

diff = Network Output — Observed Trip (9)
A=Thg—ta (10)
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TABLE V Then, the difference becomes:
RMSEFOR TRIP{THD) (TESTING)

Trial  RMSE _ _ _ _ _ diff = Network Output — Observed Trip (16)
# Logsig-Tansig Logsig-L ogsig L ogsig-Purelin A=To— 17
1 171 184 175 . hd = o . (17)
5 204 183 174 A = (Non-Linear) Tq— (Non-Linear) 4y (18)
3 172 176 177 —matched!
4 175 176 194
5 173 178 182 TABLE VI
6 181 180 177 CORRELATION COEFFICIENTS(R) FOR TRIPSTHD) (TESTING)
! 193 179 183 Trial Correlation Coefficient (r)
8 172 176 175 . . . . . .
9 174 169 177 # Logsig-Tansig Logsig-Logsig L ogsig-Purelin
10 179 173 174 1 0.819 0.786 0.809
11 182 188 172 2 0.772 0.796 0.811
12 177 174 179 3 0.829 0.805 0.806
13 179 190 190 4 0.809 0.807 0.758
14 177 182 258 5 0.816 0.800 0.793
15 174 180 186 6 0.794 0.801 0.804
16 237 180 179 7 0.762 0.798 0.804
17 186 176 199 8 0.814 0.816 0.807
18 183 178 192 9 0.813 0.821 0.804
19 212 181 184 10 0.809 0.812 0.813
20 179 179 231 11 0.802 0.789 0.824
21 172 176 185 12 0.803 0.821 0.801
22 187 176 183 13 0.808 0.771 0.788
23 176 176 180 14 0.806 0.793 0.634
24 180 178 174 15 0.811 0.795 0.809
25 175 226 202 16 0.651 0.797 0.800
26 178 172 174 17 0.780 0.807 0.777
27 176 177 201 18 0.789 0.800 0.782
28 174 168 178 19 0.723 0.792 0.808
29 175 172 172 20 0.801 0.804 0.689
30 179 172 179 21 0.816 0.811 0.793
t-test 3.171 (2.045) 3.050 (2.045) 3.758 (2.045) 54 0.807 0.802 0817
Thus there is a systematic mismatch in the difference gg 82?3 8'2?3 8;?1
computation in the above equation. Therefore, it needs to be ,- 0.805 0.804 0.750
corrected so that: 28 0.811 0.833 0.810
29 0.812 0.817 0.818
Corrected diff= (Non-Linear) i - (Non-Linear) {4 (12) 30 0.805 0.815 0.799
— matched! Mean 0.797 0.800 0.790
X2 5.124 (42.56)  3.853 (42.56)  6.215 (42.56)
This correction is expressed through the nonlinealF-test  -0.434 (2.045)  -0.407 (2.045)  -0.524 (2.045)

transformation of the input data including the Trip

Production (F), Attraction (Ay), Distance (ly), and Then, the network can be trained, validated and tested
observed Trip numbersyl. It can be made by using the based on the nonlinear transformed data. Before measuring
following steps: the performance of the modified ANN models, return its

outputs to the original form, according to the following steps:
1. Normalize the raw data by using the following

formulae: 1. Return the results to linear form
Xi= Xof Xmax (13)
Xio = -0.5In ((2/( x+1))-1) (19)
2. Transform the normalized data to nonlinear - if transformed to Tansig
numbers by using the following formulas:
Xio= -In ((1/( %+1))-1) (20)
x'= (2/(1+exp(-2x))-1 (14) - if transformed to Logsig

- if transformed nonlinearly to Tansig
2. Return the results of previous step to the actual
xi'= 1/(1+exp(-x)) (15) values
— if transformed nonlinearly to Logsig Xi= Xio * Xmax (21)
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3. Measure the ANN model generalization
performance (RMSE and r) for estimated trip
numbers (Fq)

The results of the modified ANN models are reported in

Tables 7-11 and Figures 3-6. The results suggest thal

nonlinearly transformed data can improve the testing
performance of the ANN models. For example is indicated

by the performance comparison of average RMSE and

correlation coefficient between the ANN model before and

after modification as reported in Tables 7 & 8. It can be seen

that the ANN model performance normalized with Sigmoid
nonlinear transformation tends to generate significantly

lower RMSE and better goodness-of-fit compared to before

modification.

The modification results also demonstrate the RMSE is

now statistically different and lower than the DCGM once

transformed to Logsig (see Table 9). The variations betweer

each experiment within the same scenario are still

insignificant and it is even lower than before as suggested by

the results of?test. The difference between the correlation
coefficient of ANN models is now statistically insignificant
compared to the DCGM as reported in Table 10.

TABLE VI
AVERAGE RMSEFOR TRIPYTHD) (TESTING- BEFORE ANDAFTER
TRANSFORMATION)
RM SE
Logsig- - . . .
Tansig Logsig-Logsig Logsig-Purdin
Before 182 179 186
After 174 172 182
t-test 0.56 (2.045) 0.70 (2.045) 0.15 (2.045)
TABLE VIl

AVERAGE CORRELATION COEFFICIENTS(R) FOR TRIPYTHD) (TESTING-
BEFORE ANDAFTER TRANSFORMATION)

Correélation Coefficient (r)
Logsig-Tansig Logsig-Logsig

Logsig-Purelin

Before 0.797 0.800 0.790
After 0.824 0.825 0.815
t-test -0.745 (2.045) -0.767 (2.045) -0.541 (2.045)

13 16 19 22 25
Experiment #

10

—|0g-Tan =—log-log

Log-Pur Gravity

Fig. 3 NN Model testing performance/RMSE (Sigmoid nonlinear data
transformation) compared with DCGM

1400

TABLE IX
RMSEFOR TRIP{THD) (TESTING-SIGMOID NONLINEAR DATA
TRANSFORMATION)

Trial RMSE
# Logsig-Tansig  Logsig-Logsig L ogsig-Purelin
1 169 175 201
2 172 171 169
3 176 170 169
4 172 171 189
5 169 169 174
6 169 172 172
7 171 179 175
8 175 168 242
9 170 165 210
10 172 171 172
11 181 189 172
12 175 172 173
13 181 175 174
14 171 171 172
15 187 175 182
16 187 175 192
17 167 169 169
18 173 172 169
19 176 170 167
20 182 169 169
21 178 173 231
22 171 170 172
23 171 168 216
24 173 172 169
25 171 173 181
26 169 173 174
27 169 169 177
28 171 169 176
29 175 185 172
30 187 169 175
Mean 174 172 182
t-test 0.613 (2.045) -1.536 (2.045) 2.334 (2.045)
1.000 -
AU.ESU
EDQGCI =
£
Eo.ssu
2
EGEGG =
8
0.750 -
0700 — T — g O e it e S S I (s R i A LA |
1 4 7 10 13 16 1s 22 25 28
Experiment #
=———log-Tan =—log-log Log-Pur  =——Gravity

Fig. 4 NN Model testing performance/Correlation Coefficient (r) (Sigmoid
nonlinear data transformation) compared with DCGM

Although the Logsig-Purelin scenario performance is also
improved, it is still below the DCGM. In addition, there is a
significantly different RMSE and correlation coefficient
between each experiment within this scenario (see also
Figures 3 and 4). This is because the data in the ANN model
outputs are not transformed to nonlinear form during the
iteration process as it used linear transfer function (Purelin).

Transforming input data according to double logistic
function also improved the ANN model performance;
however, this improvement is not as much as for the Logsig.



The RMSE and correlation coefficient are statistically the
same as DCGM. However, this model has a higher RMSE
and a lower correlation coefficient than DCGM and Logsig
transformed data. Further, the performance fluctuation of the
ANN models whithin this scenario is more obvious than the

Logsig-logsig scenario (see Figures 5 and 6).

TABLE X

CORRELATION COEFFICIENTS(R) FOR TRIPTHD) (TESTING SIGMOID

NONLINEAR DATA TRANSFORMATION)

1.000 -

0.950

=}
o
=1
a

Correaltion coefficient (r)

=] =l
5 B
g 8

0.750 -

Experiment #

——Lozloz ——Tan-tan Grawity

Fig. 5 NN Model testing performance/RMSE (Sigmoid and

nonlinear data transformation) compared with DCGM

. Correlation Coefficient (r) 2700 +—+———————————————————
Trial . ) . . LOgSI - 1 4 7 10 13 16 19 22 25 8
# Logsig-Tansig Logsig-Logsig purdin Expetiment &
1 0.829 0.830 0.817 —— e T .
2 0.832 0.836 0.824 Fig. 6 NN Model testing performance/Correlation Coefficient (r) (Sigmoid
3 0.808 0.829 0.823 and Tansig nonlinear data transformation) compared with DCGM
4 0.815 0.827 0.824
5 0.824 0.825 0.819 TABLE XI
6 0.830 0.824 0.815 RMSEAND CORRELATION COEFFICIENTS(R) FORTRIPS(T1J) (NONLINEAR
7 0.819 0.817 0.819 TRANSFORMATION-LOGSIG& TANSIG)
8 0.831 0.837 0.720 Trial RM SE Corrélation Coefficient (r)
9 0.821 0.832 0.806 # Logsig- Logsig Loasig-Tans L oasic-L 0osi
10 0.831 0.818 0.814 Tansg -Logsg 999 'ansg LOgSG-Logsg
11 0.831 0.828 0.828 1 169 175 0.825 0.830
12 0.827 0.829 0.833 2 172 171 0.817 0.836
13 0.810 0.818 0.811 3 197 170 0.776 0.829
14 0.822 0.823 0.816 4 176 171 0.817 0.827
15 0.806 0.807 0.812 5 182 169 0.793 0.825
16 0.822 0.824 0.785 6 198 172 0.773 0.824
17 0.842 0.842 0.830 7 177 179 0.805 0.817
18 0.821 0.820 0.822 8 178 168 0.816 0.837
19 0.820 0.830 0.827 9 195 165 0.780 0.832
20 0.812 0.832 0.830 10 169 171 0.826 0.818
21 0.817 0.815 0.792 11 209 189 0.781 0.828
22 0.837 0.826 0.817 12 178 172 0.817 0.829
23 0.832 0.831 0.814 13 179 175 0.815 0.818
24 0.837 0.829 0.831 14 186 171 0.785 0.823
25 0.838 0.831 0.826 15 182 175 0.815 0.807
26 0.825 0.814 0.828 16 184 171 0.791 0.817
27 0.822 0.821 0.819 17 198 175 0.762 0.824
28 0.822 0.823 0.806 18 175 169 0.821 0.842
29 0.826 0.784 0.819 19 202 172 0.767 0.820
30 0.800 0.838 0.829 20 187 170 0.789 0.830
Mean 0.824 0.825 0.815 21 184 173 0.800 0.815
X2 0.752 (42.56) 0.851 (42.56) 2.374 (42.56) 22 179 170 0.820 0.826
F-test -0.056 (2.045) -0.039 (2.045) -0.182 (2.045) 23 183 168 0.803 0.831
24 191 172 0.779 0.829
25 170 173 0.831 0.831
250 - 26 173 173 0.830 0.814
240 - 27 196 169 0.771 0.821
230 - 28 192 169 0.783 0.823
220 - 29 177 185 0.815 0.784
g 2 30 200 173 0.761 0.813
& 200 - Mean 185 172 0.799 0.823
/\M M\ N ttest 5534 -1.336
180 - (2.045) (2.045)
o e N, AT NP AT, X2 2.877 (42.56) 0.823 (42.56)
T S e o F-test -0.023 (2.045) -0.061 (2.045
1 4 7 10 13 16 19 22 25 28

V. CONCLUSIONS

Tansig  1he important finding from this study is that, under the
regime of non-linear modelling transformations as described
in this paper, the ANN approach has a higher ability to
calibrate the work trip number distribution than the gravity
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approach. The testing results suggest that the ANN models
can significantly outperform the equivalent gravity models,
after the input data is transformed by logistic function. [
Hence, nonlinearly transformed data can improve the testing

performance of the ANN model.

The Logistic transfer function is found to be the most [21
appropriate transformation function in both hidden and
output layers for work trip number distribution. Finally, the
ANN models can be used as a potential alternative method irl3l
calibrating and estimating the work trip number distribution
with a higher accuracy than the well-established technique of{4;

the doubly constrained gravity model.

NOMENCLATURE
A Trip Attraction
D Deterrence factor
diff Difference
Exp Exponential

Natural logarithm

ANN Output value

Trip Production
Correlation coefficient
Root Mean Square Error
Observed trip number
Estimated trip number
ANN input signal
Connection weight

sx-H~"xy-Tvos
<
n
m

Greek letters

A Delta

' squashed summation value
X Chi square
Subscripts

d zone d

0 original value

h zone h

[ input layer

j hidden layer

k output layer
max maximum value

Trip
Km

Trip
Trip

Trip
Trip

Trip
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