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Abstract— Previous studies have suggested that the use of Artificial Neural Network (ANN) approach for trip distribution models 
were unable to calibrate and generalize work trip numbers with the same level accuracy as the Doubly-Constrained Gravity models 
(DCGM). This study presents some new ANN model forms aimed at overcoming these problems trained by using the Levenberg-
Marquardt algorithm. A further modification was applied to the model, namely transforming the input data nonlinearly by using 
logistic functions (Sigmoid) in order to improve the testing/generalization of ANN models. This resulted in better performance of 
ANN models, where the average Root Mean Square Error (RMSE) is statistically lower than the DCGM indicating the ANN models 
could have higher generalization ability than DCGM. 
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I. INTRODUCTION 

Unsuitable models applied in travel demand forecast 
would generate inaccurate outputs.  Therefore having skills 
or talents in selecting and adopting a tool to develop models 
is a necessity.  

The gravity modelling approach has being used in travel 
demand model for at least half a century. Its widespread use 
continues as there appears to be a lack of alternative 
practical ways to predict trip distribution more accurately. In 
the meantime, the adoption of the Artificial Neural Network 
(ANN) approach for general modelling purposes has been 
increasing. This includes applications in the area of travel 
demand modelling. ANN is an intelligent computer system 
that mimics the processing capabilities of the human brain. It 
is a forecasting method that specifies output by minimizing 
an error term indicated by the deviation between input and 
output through the use of a specific training algorithm and 
random learning rate [1]. It is also frequently used for 
modelling nonlinear statistical pattern [2] including trip 
distribution modelling. However, there is still a lack of 
guidelines for using this artificial intelligent approach. An 
approach must be supported by logic and sensible 
underpinning theory, and without it ANN is just a naive 
computational tool.  

The performance of ANN models depends on a set of 
properties and if inappropriately defined can then negatively 
impact the model results, leading to inaccurate and imprecise 

model results. Therefore, any efforts devoted to the 
development of a framework that can help the modeller in 
defining the required properties can avoid the 
aforementioned drawbacks. Thus, this study investigates the 
impact of nonlinear data transformations on improving the 
performance of ANN models for trip distribution estimation. 

The use of the ANN approach in modelling activities is 
growing fast and now covers many disciplines including 
transport planning. The literature suggests that ANN were 
used in at least 13 categories of transport studies where 
driver behaviour simulation studies had the highest 
percentage [3]. There has been less application of the ANN 
approach in trip distribution. Black [1] reported a study of 
spatial interaction modelling using ANN focusing on 
commodity flows. His model structure was based on that of 
the Doubly Constrained Gravity Model (DCGM) and named 
the ‘Gravity Artificial Neural Network’ (GNN). For 
passenger flow modelling, Mozolin et al. [4] is a good 
example. They used the ANN approach to model trip 
distribution which is also characterized by DCGM.  

The performance of ANN models is influenced by the 
inherent key properties of the models, such as learning 
algorithm, activation function, number of layers, number of 
nodes inside each layer, and learning rate [3, 5]. The amount 
of data and the ratio for training, validating and testing is 
also important for the ANN fitting performance [6].  

The Back-Propagation (BP) algorithm is mostly used in 
ANN models as the learning algorithm while the Sigmoid 
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function is commonly used as the activation function. Black 
[1] found that the ANN models with Sigmoid activation 
function and trained by using BP algorithm could 
outperform the  gravity models in calibrating trip distribution 
numbers. However, a study by Mozolin et al. [4] illustrated 
that ANN models with the Quickprop training algorithm, an 
extension of BP algorithm that can fasten the training speed, 
actually had a higher error level than the DGCM. In addition, 
the ANN models failed to satisfy the Production and 
Attraction constraints required for estimating the work trip 
numbers. This study used the double logistic function as the 
activation function.  

Previous studies by Yaldi et al. [7, 8] suggested that ANN 
models can satisfy both constraints. They used the algorithm 
developed by Marquardt [9] embedded into the BP algorithm 
[10]. The activation function in all nodes for both hidden and 
output layers was the Sigmoid function. Using the Marquadt 
algorithm, training the ANN models was found to converge 
in several cases where training by the use of other algorithms 
had failed [10]. Another study by Yaldi et al. [11] 
demonstrated that the ANN models trained with the 
Marquardt algorithm can satisfy the Production and 
Attraction constraints, yet the error level of model testing or 
generalization performance was still statistically higher than 
the DCGM. Testing or generalization means using the 
calibrated and validated ANN model to forecast different or 
future events by feeding new datasets. This new dataset can 
be drawn from the whole dataset, where a percentage of the 
data was allocated for calibration, validation and testing. The 
new dataset can be also from other datasets from different 
year or surveys. 

A further modification was thus sought and applied to the 
ANN models. All of the normalized input data were 
transformed nonlinearly by using the logistic function, which 
is the same as the Logsig transfer function used in the hidden 
and output layer nodes. The purpose of this transformation 
was to convert the normalized data, including the observed 
trip numbers so that these are in the same form as the output 
of the ANN model, which are nonlinearly transformed. 
Hence, the error calculation will be based on the deviation 
between estimated trip numbers and the observed ones 
where both are the output of Logsig transformation. The 
transformation was conducted prior to the training process.  

The modification suggests promising results since the 
ANN testing/generalization performance improved. They 
can satisfy both constraints and also have statistically 
significant lower average error (RMSE) than the DCGM 
models. It is expected the finding from this study could 
assist the travel demand modeller in using ANN approach as 
an alternative sound and robust modelling tool. The next part 
of the paper will present the model development, output 
discussion and conclusions. 

II. MATERIAL AND METHOD 

The structure of the ANN model is one of its key 
properties. The multilayer perceptron neural network is 
commonly used in many studies. This normally has three 
layers, namely input, output and hidden layers. Each layer 
has a number of nodes or processing units. Except for hidden 
layer nodes, the numbers of processing units are determined 
by the variables that construct the expected outputs. In the 

case of work trip distribution-by analogy to the DCGM, the 
output Trip Flow (Thd) is a function of the inputs Trip 
Production (Ph), Trip Attraction (Ad) and Trip Length (Cost) 
(Dhd) (as the deterrence factor). Therefore, there are three 
nodes at the input layer, while output layer has only one 
node (see Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1  Proposed neural network model structure 
 

This study used a constant number of nodes in hidden 
layer as a recent study by Yaldi et al. [12] indicated that the 
number of nodes in that layer is not a significant factor in 
ANN model performance, as tested over a range of 0-20 
nodes. Sometimes it would increase the error level, as found 
by Carvalho et al. [6]. Thus, in the present study the number 
of nodes in the hidden layer was set to be a constant number 
of ten nodes. 

The training process is started from summation in the 
hidden layer nodes using the following general equation, for 
ANN node j receiving inputs from a set of nodes i. 

 
   (1) 

 
where Oj is an output value, xi is an input signal, and wj-i 

is a weighting value. Then, the Oj is compressed according 
to the activation function used in the network structure, in 
this case Logsig. Thus, the transformed output in hidden 
layer nodes (O’j) is: 

 
  (2) 

 
This is followed by the summation in the output layer 

node (Ok), 
 

  (3) 
 

Since the same activation function is used in the output 
layer node, the summation result in this layer is squashed 
according to the following equation, 

 

  (4) 
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The result (estimated trip numbers/Thd) is then compared 
with the target value (observed trip numbers, thd), and the 
difference (diff) computed as follow, 

 
  (5) 

 
The difference is then compared with the threshold value 

(goal). If it is below the threshold value, than the training is 
stopped, otherwise the error (diff) is backpropagated to the 
system in order to obtain the combination of connection 
weights that can generate results with error below the 
threshold value. This recursive process is undertaken using 
the procedure based on the Marquardt algorithm 
incorporated in the BP and termed as the Levenberg-
Marquardt algorithm (LM) [10]. This algorithm was used 
due to its ability to converge faster [11, 13] and generate 
more accurate results. 

The study used work trip data collected by the 
Transportation Agency of Padang City, West Sumatra, 
Indonesia. There are 36 traffic analysis zones covering the 
city, so that there are 1296 samples for all nodes in the input 
and output layers. The data are divided into training, 
validation and testing samples.  

Data for training, validation and testing were randomly 
selected. The data were then divided to three parts, namely 
(1) 40% for training, (2) 30% for validation, and (3) 30% for 
testing.  The input data values were normalized in the range 
[0, 1] according to the maximum value prior to the training. 
If x0 is an observed input value then the input data value xi is 
given by xi = x0 / xmax where xmax is the maximum of the set 
of observed values (x0) for the specific data set. 

There are three scenarios used in this study as shown in 
Table 1. All properties for each scenario are the same, except 
the activation functions used in the output layer node. All 
nodes in the hidden layer use the Logsig activation function. 
The maximum epoch is limited to 100 iterations. The details 
of the scenarios are also reported in Table 1. 

 

TABLE I 
NEURAL NETWORK MODEL SCENARIO 

#Scenario Data 
normalization 

Activation function 
#Exp  Hidden 

Layer 
Output 
Layer 

1 xi = xo/xmax Logsig Purelin 30 times 
2 xi = xo/xmax Logsig Logsig 30 times 
3 xi = xo/xmax Logsig Tansig 30 times 

 
 
The activation functions will squash the summation 

output in both hidden and output layers according to the 
following formulae and Figure 2: 

 
1. Tansig/double logistic (Figure 2a) 
 
   (6) 

 
2. Logsig/logistic (Figure 2b) 
 
   (7) 

 

3. Purelin 
 

   (8) 
 

 
 
 
 
 
 
 

 
 

Fig. 2 Common activation functions used in NN 
 

The model was developed using the Neural Network Tool 
in MATLAB. The initial weights for all layers were 
randomly selected by MATLAB. The weights were updated 
after all of the data were used in the training (batch mode). 
Model performance was measured using Root Mean Square 
Error (RMSE) and correlation coefficient (r). To enable the 
statistical tests, the experiments were run for 30 times for 
each scenario.  

The tests and analysis were conducted at two levels, 
namely the calibration and testing/generalization 
performances. The comparison involves t-test for RMSE 
while χ2 and Fisher’s Z-transformation test for correlation 
coefficient (r).  

III.  RESULTS AND DISCUSSIONS 

In order to illustrate the ability of ANN approach in 
estimating work trip distribution numbers, the experiment 
was conducted and evaluated at two levels, namely 
calibration and model testing (generalization). The DCGM 
calibrated by Hyman’s algorithm [14] is used to benchmark 
the ANN model performance (see Table 2 for DCGM 
calibration and testing performance details). 

 

TABLE III 
DOUBLY CONSTRAINED GRAVITY MODEL PERFORMANCE 

Deterrence function Exponential 
Value of deterrence function parameter (ββββ) 0.11 
RMSE-Calibration 168 
RMSE-Generalization 174 
Correlation coefficient-Calibration 0.82 
Correlation coefficient-Testing 0.82 
 
The details of the ANN calibration results for different 

activation functions are reported in Tables 3 and 4. The 
results for all scenarios suggest that the ANN approach can 
calibrate the work trip distribution with lower discrepancies 
between estimated and observed trip number (Thd – thd) than 
the DCGM. The ANN models have significantly lower mean 
of RMSE than the DCGM as suggested by the t-test results 
(See Table 3). 

The χ2 test suggests that the variations between each 
experiment within the same scenario are insignificant 
suggesting training the ANN models by using Levenberg-
Marquardt algorithm with random initial connection weights 
generates a statistically similar performance. The statistical 
test for the correlation coefficient (r) which is transformed to 

(a) (b) (c) 
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the Fisher’s Z value indicates that ANN models can also 
distribute the trip numbers significantly closer to the original 
distribution pattern than the DCGM model calibrated using 
maximum likelihood. However, the testing results where the 
data is randomly split to 40, 30 and 30% for training, 
validation and testing suggest that the generalization 
performance of ANN model is still significantly lower than 
DCGM. The ANN models generate higher discrepancies 
(RMSE) and lower correlation coefficients (r) than DCGM 
(see Tables 5 and 6). 

 

 TABLE III   
RMSE FOR TRIPS (THD) (CALIBRATION ) 

Trial 
# 

RMSE  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 160 159 157 
2 164 153 161 
3 160 159 157 
4 161 159 157 
5 153 154 159 
6 163 155 159 
7 160 160 161 
8 157 159 160 
9 159 159 156 
10 162 158 159 
11 162 158 163 
12 156 149 161 
13 152 155 162 
14 161 160 159 
15 163 153 161 
16 160 167 156 
17 164 155 161 
18 159 154 159 
19 161 160 160 
20 159 149 159 
21 159 167 162 
22 162 158 160 
23 166 154 158 
24 162 159 162 
25 158 157 155 
26 159 148 161 
27 162 152 159 
28 161 164 161 
29 158 155 159 
30 161 156 159 

Mean 160 157 159 
t-test* -12.593 (2.045) -12.252 (2.045) -21.377 (2.045) 
*Based on paired two-tailed t-test, degree of freedom is 29 

 
The drawback in the ANN models presented in Tables 5 

and 6 in terms of their testing performance may be 
influenced by two factors, namely (1) The activation 
function used in the models, and (2) The nature of the input 
data which is linearly normalized to its maximum value. 

To estimate trip number distribution by using NN 
approach, an iterative procedure is conducted to minimize 
error (diff) between estimated and real trip numbers. The 
difference is computed as:  

 
 diff = Network Output – Observed Trip (9) 
 ∆ = Thd – thd  (10) 

 

When Logsig or Tansig functions are used to transform 
the ANN model outputs in both hidden and output layers that 
means the results are nonlinearly normalized according to 
Figure 2a and 2b. Thus, the difference is computed as the 
gap between the nonlinearly transformed trip numbers (Thd) 
and real trip numbers (thd), which is then linearly normalized 
to restore its value range. Thus the difference becomes the 
gap between nonlinear model output and the linear data 
input, or: 

 
 ∆ = (Non-Linear) Thd – (Linear) thd (11) 

→ unmatched (Systematic error)! 
 
The deviation between model output and observed trip 

numbers is obtained by comparing Figure 2a and 2c, or 
Figure 2b and 2c. This is incorrect as the comparison should 
be based on the same nature, nonlinear output data against 
nonlinear input data. 
 

TABLE IV 
CORRELATION COEFFICIENTS (R) FOR TRIPS (THD) (CALIBRATION ) 

Trial 
# 

Correlation Coefficient (r)  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 0.839 0.842 0.846 
2 0.831 0.855 0.836 
3 0.839 0.842 0.845 
4 0.838 0.841 0.846 
5 0.854 0.853 0.842 
6 0.832 0.851 0.841 
7 0.839 0.839 0.837 
8 0.846 0.841 0.839 
9 0.841 0.841 0.848 
10 0.836 0.844 0.843 
11 0.835 0.843 0.834 
12 0.848 0.862 0.836 
13 0.856 0.850 0.835 
14 0.837 0.839 0.842 
15 0.832 0.854 0.838 
16 0.838 0.823 0.848 
17 0.830 0.849 0.837 
18 0.842 0.852 0.841 
19 0.838 0.839 0.840 
20 0.842 0.862 0.841 
21 0.841 0.824 0.835 
22 0.835 0.845 0.840 
23 0.825 0.852 0.844 
24 0.835 0.842 0.835 
25 0.845 0.845 0.850 
26 0.841 0.864 0.836 
27 0.836 0.856 0.840 
28 0.837 0.831 0.838 
29 0.843 0.850 0.841 
30 0.838 0.848 0.841 

Mean 0.839 0.846 0.840 
χ2  0.399 (42.56) 0.929 (42.56) 0.167 (42.56) 
F-test  0.285 (2.045) 0.415 (2.045) 0.311 (2.045) 
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TABLE V 
RMSE FOR TRIPS (THD) (TESTING) 

Trial 
# 

RMSE  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 171 184 175 
2 204 183 174 
3 172 176 177 
4 175 176 194 
5 173 178 182 
6 181 180 177 
7 193 179 183 
8 172 176 175 
9 174 169 177 
10 179 173 174 
11 182 188 172 
12 177 174 179 
13 179 190 190 
14 177 182 258 
15 174 180 186 
16 237 180 179 
17 186 176 199 
18 183 178 192 
19 212 181 184 
20 179 179 231 
21 172 176 185 
22 187 176 183 
23 176 176 180 
24 180 178 174 
25 175 226 202 
26 178 172 174 
27 176 177 201 
28 174 168 178 
29 175 172 172 
30 179 172 179 

Mean 182 179 186 
t-test  3.171 (2.045) 3.050 (2.045) 3.758 (2.045) 

 
Thus there is a systematic mismatch in the difference 

computation in the above equation. Therefore, it needs to be 
corrected so that: 

 
Corrected diff= (Non-Linear) Thd - (Non-Linear) thd  (12) 
 →matched!   

 
This correction is expressed through the nonlinear 

transformation of the input data including the Trip 
Production (Ph), Attraction (Ad), Distance (Dhd), and 
observed Trip numbers (thd). It can be made by using the 
following steps: 

 
1. Normalize the raw data by using the following 

formulae: 
 xi= xo/xmax  (13) 

 

2. Transform the normalized data to nonlinear 
numbers by using the following formulas:  
 

 xi’= (2/(1+exp(-2xi))-1 (14) 
 →if transformed nonlinearly to Tansig  

 
 xi’= 1/(1+exp(-xi)) (15) 
 → if transformed nonlinearly to Logsig  

 

Then, the difference becomes: 
 

 diff = Network Output – Observed Trip (16) 
 ∆ = Thd – thd  (17) 
 ∆ = (Non-Linear) Thd – (Non-Linear) thd (18) 
  →matched! 
 

 
TABLE VI 

CORRELATION COEFFICIENTS (R) FOR TRIPS (THD) (TESTING) 
Trial 
# 

Correlation Coefficient (r)  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 0.819 0.786 0.809 
2 0.772 0.796 0.811 
3 0.829 0.805 0.806 
4 0.809 0.807 0.758 
5 0.816 0.800 0.793 
6 0.794 0.801 0.804 
7 0.762 0.798 0.804 
8 0.814 0.816 0.807 
9 0.813 0.821 0.804 
10 0.809 0.812 0.813 
11 0.802 0.789 0.824 
12 0.803 0.821 0.801 
13 0.808 0.771 0.788 
14 0.806 0.793 0.634 
15 0.811 0.795 0.809 
16 0.651 0.797 0.800 
17 0.780 0.807 0.777 
18 0.789 0.800 0.782 
19 0.723 0.792 0.808 
20 0.801 0.804 0.689 
21 0.816 0.811 0.793 
22 0.790 0.816 0.808 
23 0.816 0.807 0.802 
24 0.807 0.802 0.817 
25 0.823 0.653 0.781 
26 0.817 0.818 0.811 
27 0.805 0.804 0.750 
28 0.811 0.833 0.810 
29 0.812 0.817 0.818 
30 0.805 0.815 0.799 

Mean 0.797 0.800 0.790 
χ2  5.124 (42.56) 3.853 (42.56) 6.215 (42.56) 
F-test  -0.434 (2.045) -0.407 (2.045) -0.524 (2.045) 

 
Then, the network can be trained, validated and tested 

based on the nonlinear transformed data. Before measuring 
the performance of the modified ANN models, return its 
outputs to the original form, according to the following steps:  

 
1. Return the results to linear form 

  
 xio = -0.5ln ((2/( xi+1))-1)  (19) 

→ if transformed to Tansig  
 

 xio= -ln ((1/( xi+1))-1) (20) 
 → if transformed to Logsig  
 

2. Return the results of previous step to the actual 
values 

 xi= xio * xmax  (21) 
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3. Measure the ANN model generalization 
performance (RMSE and r) for estimated trip 
numbers (Thd) 
 

The results of the modified ANN models are reported in 
Tables 7-11 and Figures 3-6. The results suggest that 
nonlinearly transformed data can improve the testing 
performance of the ANN models. For example is indicated 
by the performance comparison of average RMSE and 
correlation coefficient between the ANN model before and 
after modification as reported in Tables 7 & 8. It can be seen 
that the ANN model performance normalized with Sigmoid 
nonlinear transformation tends to generate significantly 
lower RMSE and better goodness-of-fit compared to before 
modification. 

The modification results also demonstrate the RMSE is 
now statistically different and lower than the DCGM once 
transformed to Logsig (see Table 9). The variations between 
each experiment within the same scenario are still 
insignificant and it is even lower than before as suggested by 
the results of χ2 test. The difference between the correlation 
coefficient of ANN models is now statistically insignificant 
compared to the DCGM as reported in Table 10. 

 
 

TABLE VII 
AVERAGE RMSE FOR TRIPS (THD) (TESTING- BEFORE AND AFTER 

TRANSFORMATION) 

 
RMSE  
Logsig-
Tansig  Logsig-Logsig  Logsig-Purelin  

Before 182 179 186 
After 174 172 182 
t-test 0.56 (2.045) 0.70 (2.045) 0.15 (2.045) 
 

 
TABLE VIII 

  AVERAGE CORRELATION COEFFICIENTS (R) FOR TRIPS (THD) (TESTING-
BEFORE AND AFTER TRANSFORMATION) 

 
Correlation Coefficient (r)  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

Before 0.797 0.800 0.790 
After 0.824 0.825 0.815 
t-test -0.745 (2.045) -0.767 (2.045) -0.541 (2.045) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 NN Model testing performance/RMSE (Sigmoid nonlinear data 
transformation) compared with DCGM 

 
 

 

TABLE IX 
RMSE FOR TRIPS (THD) (TESTING-SIGMOID NONLINEAR DATA 

TRANSFORMATION) 
Trial 
# 

RMSE  
Logsig-Tansig  Logsig-Logsig  Logsig-Purelin  

1 169 175 201 
2 172 171 169 
3 176 170 169 
4 172 171 189 
5 169 169 174 
6 169 172 172 
7 171 179 175 
8 175 168 242 
9 170 165 210 
10 172 171 172 
11 181 189 172 
12 175 172 173 
13 181 175 174 
14 171 171 172 
15 187 175 182 
16 187 175 192 
17 167 169 169 
18 173 172 169 
19 176 170 167 
20 182 169 169 
21 178 173 231 
22 171 170 172 
23 171 168 216 
24 173 172 169 
25 171 173 181 
26 169 173 174 
27 169 169 177 
28 171 169 176 
29 175 185 172 
30 187 169 175 

Mean 174 172 182 
t-test  0.613 (2.045) -1.536 (2.045) 2.334 (2.045) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4 NN Model testing performance/Correlation Coefficient (r) (Sigmoid 
nonlinear data transformation) compared with DCGM 
 

Although the Logsig-Purelin scenario performance is also 
improved, it is still below the DCGM. In addition, there is a 
significantly different RMSE and correlation coefficient 
between each experiment within this scenario (see also 
Figures 3 and 4). This is because the data in the ANN model 
outputs are not transformed to nonlinear form during the 
iteration process as it used linear transfer function (Purelin). 

Transforming input data according to double logistic 
function also improved the ANN model performance; 
however, this improvement is not as much as for the Logsig. 
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The RMSE and correlation coefficient are statistically the 
same as DCGM. However, this model has a higher RMSE 
and a lower correlation coefficient than DCGM and Logsig 
transformed data. Further, the performance fluctuation of the 
ANN models whithin this scenario is more obvious than the 
Logsig-logsig scenario (see Figures 5 and 6).  

 
TABLE X 

  CORRELATION COEFFICIENTS (R) FOR TRIPS (THD) (TESTING-SIGMOID 

NONLINEAR DATA TRANSFORMATION) 

Trial 
# 

Correlation Coefficient (r)  

Logsig-Tansig  Logsig-Logsig  Logsig-
Purelin  

1 0.829 0.830 0.817 
2 0.832 0.836 0.824 
3 0.808 0.829 0.823 
4 0.815 0.827 0.824 
5 0.824 0.825 0.819 
6 0.830 0.824 0.815 
7 0.819 0.817 0.819 
8 0.831 0.837 0.720 
9 0.821 0.832 0.806 
10 0.831 0.818 0.814 
11 0.831 0.828 0.828 
12 0.827 0.829 0.833 
13 0.810 0.818 0.811 
14 0.822 0.823 0.816 
15 0.806 0.807 0.812 
16 0.822 0.824 0.785 
17 0.842 0.842 0.830 
18 0.821 0.820 0.822 
19 0.820 0.830 0.827 
20 0.812 0.832 0.830 
21 0.817 0.815 0.792 
22 0.837 0.826 0.817 
23 0.832 0.831 0.814 
24 0.837 0.829 0.831 
25 0.838 0.831 0.826 
26 0.825 0.814 0.828 
27 0.822 0.821 0.819 
28 0.822 0.823 0.806 
29 0.826 0.784 0.819 
30 0.800 0.838 0.829 

Mean 0.824 0.825 0.815 
χ2  0.752 (42.56) 0.851 (42.56) 2.374 (42.56) 
F-test  -0.056 (2.045) -0.039 (2.045) -0.182 (2.045) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 NN Model testing performance/RMSE (Sigmoid and Tansig 
nonlinear data transformation) compared with DCGM 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6 NN Model testing performance/Correlation Coefficient (r) (Sigmoid 
and Tansig nonlinear data transformation) compared with DCGM 

 
TABLE XI 

RMSE AND CORRELATION COEFFICIENTS (R) FOR TRIPS (TIJ)  (NONLINEAR 

TRANSFORMATION-LOGSIG &  TANSIG) 

Trial 
# 

RMSE  Correlation Coefficient (r)  
Logsig-
Tansig  

Logsig
-Logsig  Logsig-Tansig  Logsig-Logsig  

1 169 175 0.825 0.830 
2 172 171 0.817 0.836 
3 197 170 0.776 0.829 
4 176 171 0.817 0.827 
5 182 169 0.793 0.825 
6 198 172 0.773 0.824 
7 177 179 0.805 0.817 
8 178 168 0.816 0.837 
9 195 165 0.780 0.832 
10 169 171 0.826 0.818 
11 209 189 0.781 0.828 
12 178 172 0.817 0.829 
13 179 175 0.815 0.818 
14 186 171 0.785 0.823 
15 182 175 0.815 0.807 
16 184 171 0.791 0.817 
17 198 175 0.762 0.824 
18 175 169 0.821 0.842 
19 202 172 0.767 0.820 
20 187 170 0.789 0.830 
21 184 173 0.800 0.815 
22 179 170 0.820 0.826 
23 183 168 0.803 0.831 
24 191 172 0.779 0.829 
25 170 173 0.831 0.831 
26 173 173 0.830 0.814 
27 196 169 0.771 0.821 
28 192 169 0.783 0.823 
29 177 185 0.815 0.784 
30 200 173 0.761 0.813 

Mean 185 172 0.799 0.823 
t-test 5.534 

(2.045) 
-1.336 
(2.045)   

χ2    2.877 (42.56) 0.823 (42.56) 
F-test    -0.023 (2.045) -0.061 (2.045) 

IV.  CONCLUSIONS 

The important finding from this study is that, under the 
regime of non-linear modelling transformations as described 
in this paper, the ANN approach has a higher ability to 
calibrate the work trip number distribution than the gravity 
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approach. The testing results suggest that the ANN models 
can significantly outperform the equivalent gravity models, 
after the input data is transformed by logistic function. 
Hence, nonlinearly transformed data can improve the testing 
performance of the ANN model.  

The Logistic transfer function is found to be the most 
appropriate transformation function in both hidden and 
output layers for work trip number distribution. Finally, the 
ANN models can be used as a potential alternative method in 
calibrating and estimating the work trip number distribution 
with a higher accuracy than the well-established technique of 
the doubly constrained gravity model. 

NOMENCLATURE 

A Trip Attraction     Trip 
D Deterrence factor    Km 
diff Difference 
Exp Exponential  
ln Natural logarithm 
o  ANN Output value    
P Trip Production    Trip 
r Correlation coefficient 
RMSE Root Mean Square Error  Trip 
t Observed trip number    Trip 
T Estimated trip number    Trip 
x ANN input signal    
w Connection weight    

  
Greek letters 
∆ Delta  Trip 
′ squashed summation value 
χ2 Chi square   
 
Subscripts 
d zone d 
0 original value  
h zone h 
i input layer 
j hidden layer  
k output layer 
max maximum value 
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