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Abstract— Hand gesture recognition (HGR) is a primary mode of communication and human involvement. While HGR can be used to 

enhance user interaction in human-computer interaction (HCI), it can also be used to overcome language barriers. For example, HGR 

could be used to recognize sign language, which is a visual language expressed by hand movements, poses, and faces, and used as a basic 

communication mode by deaf people around the world. This research aims to create a new method to detect dynamic hand movements, 

poses, and faces in sign language translation systems. The Long Short-Term Memory Modification (LSTM) approach and the 

Mediapipe library are used to recognize dynamic hand movements. In this study, twenty dynamic movements that match the context 

were designed to solve the challenge of identifying dynamic signal movements. Sequences and image processing data are collected using 

MediaPipe Holistic, processed, and trained using the LSTM Modification method. This model is practiced using training and validation 

data and a test set to evaluate it. The training evaluation results using the confusion matrix achieved an average accuracy of twenty 

words trained, which was 99.4% with epoch 150. The results of experiments per word showed detection accurateness of 85%, while 

experiments using sentences only reached 80%. The research carried out is a significant step forward in advancing the accuracy and 

practice of the dynamic sign language recognition system, promising better communication and accessibility for deaf people.  
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I. INTRODUCTION

Humans use sign language as a means of communicating 
with normal people. Ordinary sign language combines face 
and hand movements [1]. Face expressions, motions of the 
lips, and head movements are examples of non-manual 
signals, while hand and finger movements, orientation of the 
hands, and movement of the body are examples of manual 
signals [2]. The use of sign language for communication 
varies from country to country and has no standardization. 
Unlike the oral language, where one word appears after 
another, the structure of sign language changes regarding 
geographical information [3]. However, as stated, a sign 
language phrase often comprises time, place, individual, and 
predicate. 

According to Tan et al. [4], hand gestures are considered a 
natural and fundamental human interaction and 
communication tool, as they have been used to send 
information even before the advent of language. With a series 

of hand gestures and finger placements, complicated tasks can 
be easily done, and information conveyed. As a result, hand 
gestures can be employed as a highly flexible interface for 
human-computer interaction (HCI), facilitating faster 
interaction by removing the need for users to contact the 
mechanical device physically. 

Furthermore, hand gestures are the primary way of 
communication for people who are deaf or have hearing loss 
[4], [5]. They were used as an implicit embodiment metric 
with communicative gestures [6]. In essence, hand 
movements serve as sign language [7]. Communication with 
the general populace can be difficult for those who are deaf or 
have hearing loss. One must learn sign language to 
comprehend the meaning of hand gestures used in both 
professional and informal communication. Because it may be 
utilized to overcome communication hurdles, developing a 
hand gesture detection system (SLR) is essential. 

Sign language prediction aims to provide an auxiliary 
system that automatically translates the input signal into the 
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correct text or pronunciation. The SLR system is highly 
helpful in bridging the communication gap between society 
and fools. As a result, the technology opens new possibilities 
for applications that rely on human-computer interaction 
(HCI). Several effective SLR techniques for words have been 
developed by researchers [5]. Although isolated, words 
cannot understand and convey the sequence of ongoing 
movements. A major challenge in developing an SLR system 
that can be sustained is finding a model paradigm that can 
capture the appropriate signals and language. This problem is 
solved with voice recognition [8]. 

Think about language modeling using phonetic units that 
appear in sequence. However, the same idea can be used in a 
continuous SLR approach, where the sequence of signals, not 
words or phonemes, is available. A continuous SLR system 
for American Sign Language (ASL) sentences was created, 
employing three orthogonally cameras to address the issues 
brought on by occlusion and unrestricted movement. The 
Hidden Markov Model, which has a treasury of 53 signals, is 
used in identification procedures. The system recognition rate 
on 97 sentence signals with and without bigram modeling was 
92.11%, respectively. A similar approach that uses a single 
camera and a 40-signal vocabulary was developed by 
Hinchcliffe et al. [9] for the word of the word. HMM 
classification is used in this situation to perform the 
identification process. However, SLR systems created using a 
single video camera have issues since (a) signature fingers 
and hand movements are obscured, (b) the signature is not 
always in front of the camera, and (c) there is a loss of depth 
due to the nature of a single 2D camera [10]. 

The employment of depth-supporting sensors, such as Leap 
Motion, improves the comprehension of input data [11] and 
Microsoft Kinect [12], which offers a 3D point cloud of the 
field seen. While Leap Motion tracks finger and hand 
movements in real-time, Kinect interprets body movements. 
This gadget helps solve problems with the SLR systems 
recorded by the previously mentioned 2D video cameras. In 
this work, we have developed continuous SLRs with 
independent modeling of each signal movement using 3D 
hand and finger movement data collected from the Leap 
motion sensor. In most continuous SLR systems, HMM 
implicitly segmented the signal sequence into the composer 
signal[13]. The Markov chain relies on a fixed window. This 
chain develops and recognizes characters from character 
history using cutting-edge machine learning techniques such 
as simulated neural networks (RNN) [14].  

However, no studies above show a method for detecting 
and deleting transition signals in dynamic signal languages. It 
can improve the accuracy of dynamic sign language detection. 
As a result, the main contribution of this research is as 
follows. 

 The Proposed method can detect and remove transition 
signals in dynamic sign language. 

 The proposed method can be applied to detect signals 
from hands, poses, and faces in dynamic signal 
language with high accuracy and a rapid data extraction 
process. 

In this study, MediaPipe Holistic uses hand, position, and 
face expression landmark models to generate 543 landmarks, 
including 33 pose landmarks, 42 hand landmarks, and 468 
face landmarks. The following section of this essay is 

organized as follows. Part I provides a broad overview of the 
most recent research on continuous SLR. Part II provides a 
detailed description of the pre-processing, feature extraction, 
training, and testing processes involved in the implementation 
method we provide for continuous SLR systems. In Part III, 
we discuss datasets and compile information from numerous 
studies. The part offers suggestions, findings, and possible 
areas for more study. 

II. MATERIAL AND METHOD 

The foundation of the current SLR approach includes 2D 
video cameras, color gloves, sensor gloves etc. [15]. SLR 
research has recently focused on new 3D environments that 
use cameras and deep sensors [12]. HMM, Hypothesis Neural 
Network (JST), RNN, and rule-based modeling techniques 
are the foundation of most signal recognition work. Anand et 
al. [16] developed a system that continuously used a single 
video camera for view-based methodology. In the first stage, 
a camera mounted on a disk views the signature, and in the 
second stage, a camera attached to the hat views the signature 
[17]. Hand segmentation and hand clamp extraction are 
performed using a vision-based skin color modeling 
technique. The authors utilized hand clump analysis to 
consolidate the position, angle, breadth, and length features 
into a 16-dimensional feature vector.  

For devices mounted on tables and systems attached to 
headgear, training is conducted on 384 and 400 ASL 
sentences, respectively. Using HMM and 40 signal words, the 
system was evaluated on 94 and 100 ASL phrases, with 
accuracy measured at 74.5% and 97.8% for table-based and 
heat-based systems, respectively. The authors of [18] have 
suggested a video camera-based continuous SLR For a signer-
independent approach for identifying single-handed static and 
dynamic gestures, double-handed static gestures, and finger-
spelled Indian Sign Language (ISL) phrases from live Video. 
Pre-processing, Feature Extraction, and Classification are the 
three critical phases of the gesture recognition module.  

Using skin color segmentation, the indicators are taken 
from a real-time video during the pre-processing stage. After 
the co-articulation removal phase, a suitable feature vector is 
extracted from the gesture sequence. Support Vector 
Machines (SVM) are then utilized to classify the retrieved 
features. The algorithm correctly identified single-handed 
dynamic words with 89% accuracy and finger spelling 
alphabets with 91% accuracy. Selfie-captured sign language 
video [19] is processed using only a smartphone's computer 
capability. A sign language feature space is created using 
video frames' pre-filtering, segmentation, and feature 
extraction. Repeatedly trained and tested classifiers on the 
sign feature spacing Minimum Distance and Artificial Neural 
Networks [20]. The power of the Sobel Edge Operator is 
increased by morphology and adaptive thresholding, resulting 
in nearly flawless segmentation of the hand and head sections 
that account for the minute vibrations of the selfie stick. The 
proposed technique performs well with an average Word 
Matching Score (WMS) of about 85.58% for MDC and 90% 
for ANN and a modest variance of 0.3 s in classification times. 

For many years, Sreemathy et al. [21] have investigated the 
study of sign language recognition systems utilizing a variety 
of image processing and artificial intelligence approaches. 
However, the critical problem is to close the communication 
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gap between persons with disabilities and the general 
population. This study suggests a Python-based framework 
for classifying 80 sign language words. The models You Only 
Look Once version 4 (YOLOv4) and Support Vector Machine 
(SVM) with media-pipe have been proposed in this work. The 
linear, polynomial, and Radial Basis Function (RBF) kernels 
are all used in SVM. The system does not require additional 
pre-processing and image enhancement activities. The self-
created picture collection used in this study has a total of 676 
photos of 80 static signs. SVM with media-pipe has an 
accuracy of 98.62%, while YOLOv4 has an accuracy of 
98.8%, both higher than the current state-of-the-art 
techniques. 

A SLR system for Arabic Sign Language has been 
proposed by Almasre et al. [22]. It is not yet being done to 
examine how sensors can be used and how natural user 
interfaces can help with ArSL interpretation. Previous studies 
have demonstrated that a one-size-fits-all classifier modeling 
approach is unsuitable for all hand gesture recognition tasks. 
Therefore, this study investigated the optimal combination of 
algorithms with varying parameters and applied them 
alongside a sensor device to achieve the highest accuracy in 
recognizing American Sign Language (ArSL) gestures within 
a recognition system. The study proposed utilizing a dynamic 
prototype model (DPM) employing the Kinect sensor to 
identify specific dynamic ArSL gestures. The DPM applied 
eleven SVM, RF, and KNN predictive models with various 
parameter values. The study's results showed that the SVM 
models with a linear kernel and a cost parameter of 0.035 had 
the highest recognition accuracy rates for dynamically 
gestured words. 

The authors developed the Arabic Sign Language 
recognition system using a similar data-based, handle-based 
methodology for 40 signed sentences that were classified 
using a modified version of the k-NN algorithm [22]. 
However, the method of conducting the evaluation varies 
depending on the user. The authors suggest a scalable Hidden 
Markov Model (HMM) approach for continuous Sign 
Language Recognition (SLR), which involves training a 
single universal transition model and includes further 
investigations based on digital gloves [11]. Cerna et al. [12] 
suggested a Kinect-based continuous SLR framework. To 
calculate the likelihood of HMM, the authors have also 
suggested low-complexity development procedures. 

The Kinect SDK is used to extract six 3D frame features. 
When tested with HMM-based classification, the system had 
an error rate of 12.20% on 100 CSL sentences with 21 signal 
words. Recently, the authors of [10] suggested calibrating 
Kinect and Leap Motion sensors for ISL signal detection 
using CNN [23]. While capturing 50 separate ISL signals, 
they tracked the 3D positions of the fingers and hand 
movements. HMM classification is used to extract angle 
features for identification. Similar 3D text segmentation and 
recognition techniques were employed by [24] and [, who 
employed a Leap motion sensor. The authors captured 3D 
sentences above the Leap Motion Display Field in the air.  

This section outlines our LSTM-based neural network 
architecture for using a camera for continuous Sign Language 
Recognition (SLR). Figure 1 shows the flow diagram system 
SLR, where the camera is utilized to gather with Mediapipe 
for sign inputs. Then, the training process uses the Modified 

LSTM Method from vector data. This system's output is the 
word of the classification that will be combined into a 
sentence. 

 
Fig. 1  Proposed diagram system for continuous SLR using Mediapipe and 
Modified LSTM  

A. Pre-processing 

Pre-processing is correcting images from camera detection 
results and performing feature extraction. All pre-processing 
processes were carried out in this study using the Mediapipe 
library. In the process, five stages must be passed: video 
conversion to frame, changing color transformation from 
BGR to RGB, Pose Detection, C cropping, and feature 
extraction[25]. 

1) Converting Video to frames: The conversion of Video 
to frames is a stage for creating a new image from the video 
data already taken. Each Video produces 30 frames according 
to the number of loops that have been determined. 

2) Color Transfer from BGR to RGB: OpenCV detects 
images in the BGR format, so before pre-processing images, 
it is necessary to convert from the type of BGR to RGB using 
the functions of the OpenCV library. 

3) Detection of poses: Figure 2 shows the Mediapipe 

model performing the first position prediction with the 
BlazePose detector and the following Landmark Models. 
After pose detection, three areas of Rest of Interest (ROI) 
plants were obtained - for two hands and faces, respectively. 

 

 
 

Fig. 2  Position hands, Pose, and face detection display. 
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For cases where the accuracy of the pose model is sufficiently 
low that the ROI generated for the hand is inaccurate, then the 
cropping model is run for the hands as a spatial transformation 
and only spends 10% of the hand model inference time. 

4) Cropping: Figure 3 shows the cropping process carried 
out by the Mediapipe model by cropping against the ROI of 
the face and hand so that the model is more focused on the 
object of his face and hands. 

 
Fig. 3  Re-crop hands and face 

B. Feature Extraction 

The final step is to extract features from poses with 33 
landmarks or keypoints and hands with 21 keypoints per hand. 
The result of the feature extraction from the pose is the 
amount of data obtained, which is as many as 33 keypoints 
multiplied by 4, which is as much as 132 data points [26]. 

 x and y express width and height 
 z represents depth. (deep) 
 Visibility has values [0,0 and 0,1] used to indicate 

whether the image is visible or not. 
To extract the hand features, 21 key points were multiplied 

by 3 variables to produce 63 data points per hand. So, for two 
hands, generate as much as 126 data output extractions. While 
extracting features from the face produces keypoints of 468 
with 3 dimensions: x, y, and z, the total data obtained is 1404 
[27]. 

For a system design that uses input data poses and hand 
data extraction results, these are made into one dimension 
using the flat function on Tensorflow so that the extraction 
output is one-dimensional data. After extracting the feature 
data, the keypoints pose and hand are merged using the String 
Concatenate function in the Python library. The combination 
of poses and hands has 258 key points. 

For a system design that uses input data such as poses, 
hands, and faces, 1662 keypoints were obtained from 132 
poses, 126 hands, and 1404 faces. This number of keypoints 
will later be used as input into the LSTM network for the 
training process [28]. 

C. Modified LSTM  

A modified LSTM is shown below. That is expected to 
reset the memory in the memory cell. The idea comes from 
the method, variant of the LSTM [28], [29], the GRU. Gate 
Recurrent Unit [30] has two gates: a reset gate and an update 
gate. This reset gate removes the influence of the previous 
time so that it will not affect the output in the future [31]. 

 
Fig. 4  Architecture Modified LSTM 

 

Figure 4 shows the addition of the variable Rt, which is the 
reset variable at a certain time interval; the value of this 
variable is only two, 0 and 1. If the value is sent as a number 
zero, then the Cell state (Ct) and Hidden State (ht) values 
become zero with the addition of a multiplication function 
like in the formula Ct_new=C_t*R_t. If the value R_t = 0, then 
the value Ct_new becomes zero. Thus, Ct value becomes zero 
so that Ct memory value does not influence the next LSTM 
unit. The process of making zero hidden state values can be 
seen in the complete formula below. 

 �� �  ���� . 
ℎ��,��� � ��� (1) 

 �� �  ���� . 
ℎ��,��� � ��� (2) 

 ��� �  ���ℎ���. 
ℎ��,��� � ��� (3) 

 �� �  ��� ∗ ��� � �� ∗ ���� (4) 

 ����� � �� ∗  � (5) 

 !� �  ���". 
ℎ��,��� � �"� (6) 

 ℎ� �  !� ∗  ���ℎ #�����$ (7) 

The addition of the multiplication function above is 
intended to make changes in the value of the cell state at the 
time (t), so that the value from ht becomes zero with the 
formula ht, which is to multiply the output gate Ot value by 
tanh Ct new. The value of Ct is equal to zero, so tanh (0) is zero, 
and the value of ht is also zero because the combination of the 
output gate value with the number zero will produce a zero. 
By making the values of Ct and ht zero so that the influence 
of the value does not exist on the next LSTM unit and by 
giving good accuracy to the output of the nerve network. 

For the entire system process, parameters are added using 
the LSTM method, i.e., the parameters r and t. The parameter 
r is used to send the value of the output of the SoftMax layer, 
which is zero or one. The t value is the time during which the 
process occurs in the nerve network. The t value plays a very 
important role because of the cell state and hidden state values 
in time-based reset (t). Then add the formula to find the new 
Ct value in the LSTM method that uses the function of the 
TensorFlow Hard Framework. 

By modifying the LSTM method and the output value of 
the SoftMax activation function, the influence of the 
transition movement, which previously became noise, can be 
eliminated and can increase the accuracy of the signal 
language translation. In addition to the above modification, 
the next challenge is detecting the precise transition 
movement so that it can remove the cell state value at the 
correct time (t). 
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D. Training and Testing 

Our model is composed of three layers of modified LSTM 
units with Rectified Linear Unit (ReLU) activation, followed 
by a dense layer, and culminating in a SoftMax layer for 
classifying into multiple categories. We employed the 
Adadelta optimizer, known for its resilience against noisy 
gradients and its avoidance of the need for manual learning 
rate adjustments. The model is initially trained using discrete 
sign motions for effective framework modeling and then 
polished with continuous gestures. Continuous signs are 
produced from discrete motions by adding a variable length 
transition between states or gestures.  

 
Fig. 5  Modification diagram of output Softmax 

 

Figure 5 describes the output of the SoftMax activation 
function where this activation functions all the values to the 
existing target class with the sum of the probability values for 
all classes up to one. Each output of a vector number is 
translated into a target class in the form of a string. The output 
layer SoftMax as the activation function of the output Layer 
issues or distributes probability values to all existing target 
classes. For example, if the target class has 20 words/label, 
then will be 20 values removed from this activation function 
with the total of the total values being one. The process often 
done on the previous research is that each output of the 
SoftMax is directly translated to the respective target class to 
be stored in the form of a model. 

In this study, modifications or additions of algorithms 
were made to the output of SoftMax or output from a nerve 
network containing several layers of LSTM and Dense. This 
modification is used to detect features that do not influence 
the output or other words that do not affect the output value. 
Each feature that passes through the network and the C value 
that comes out of the SoftMax layer and is not part of the 
transition label will then be forwarded to the word storage in 
the form of a string that will subsequently become a model. If 
the C value that comes out of the SoftMax activation function 
is a part or association of the transition label with a probability 
value C > 0.5 then it will call the reset function to perform the 
removal of the value on the LSTM memory so as not to affect 
the next frame that will enter the network. For more clarity 
you can see the algorithm of the modification of the output 
layer SoftMax below: 

 The target class has 20 words/label. 
 On the output layer SoftMax distributes values into 20 

target classes. 

 Value C is the value of the distribution result for the 
entire target class. 

 If the value C = tr and C > 0,5, then it is categorized as 
a transition label; otherwise, its value will be forwarded 
to be stored as a target label. 

The above stages describe the process of training using six 
layers with the activation function of SoftMax on the output 
layer. The variable value C is the probability value of 
SoftMax against the existing target class. If the value C is 
equal to or associated with the transition label (tr) and the 
probability value C > 0.5, then the system categorizes it as a 
transition feature that will subsequently call the reset function 
on the LSTM. A value of 0.5 is the minimum value used as a 
threshold to determine whether a feature is categorized as a 
transition or not. Previous experiments have also been 
conducted at the thresholds of 0.2, 0.3, and 0.4, showing 
results that are too sensitive to transition feature readings. 
This is influenced by the presence of several word signal 
frames that are like transition signal frames. The same 
experiment was once conducted experiments on the 
probability values of 0.6 and 0.7. The result obtained was less 
sensitive reading features of the signal, even more so with the 
number of target classes, so the probabilities to each target 
class were small. 

III. RESULTS AND DISCUSSION 

Here, we give specifics on the datasets that were captured 
using the suggested SLR methodology. The continual 
identification of sign language has then been given. The 
outcomes of the word recognition of solitary signs have 
finally been presented. Four people have signed up to 
participate in the collection of sign language data. Two of the 
participants were young people who attended a hearing-
impaired school in Gowa, Indonesia. They are from the 
Indonesian city of Makassar's Community Deaf. 20 solitary 
signs in words make up the dataset. Each signatory has said 
each sign word at least 30 times. As a result, 2400 sign words 
(20*30*4) in all are noted. In Table I, you'll find a 
comprehensive description of all the sign words, with the '$' 
sign indicating transitional movements, representing the 
switch between two continuous letters within a sign sentence. 
Twenty examples of dynamic gesture visualization are 
presented to justify this model. They were selected based on 
the words most frequently used by deaf people, namely: 
"Love", "Everything", "Ball", "Rice", "There", "Remember", 
"They"," Market"," You"," Hear"," Play"," Go"," See"," 
Laugh"," We"," Honestly"," Cry"," Sleep"," Cook" and "$". 
Table I shows visualizations of the selected words. 

TABLE I 
WORDS SIGN LANGUAGE IN THE DATASET 

Love Everything Ball Rice 
There Remember They Market 
You Hear Play Go 
See Laugh We Honestly 
Cry Sleep Cook $ 

 

In Table 1, twenty words in the dataset represent the 
categories of nouns, verbs, adjectives, and adverbs. In 
addition, the words selected in the data set are the most 
frequently used words by deaf people in their daily activities. 
The purpose of the word selection is to be able to make a 
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sentence that is intact for the deaf at the time of the test. In 
Figure 6, an illustration of a dynamic signal on a sentence 
sample is provided. 

 

 
(a) 

 
(b) 

Fig. 6  Example signals in the form of a sentence (a) we go to the market (b) 
we play the ball. 

Figure (a) shows the word "Go", depicted using one hand 
as if throwing something away, then shows the word 
"Market", where the movement of the right hand gives a 
movement as if holding money and then depicts the word 
"We", this is shown by the right hand pointing at the person. 
Picture (b) depicts the word "We". This is shown by the right 
hand pointing at the person and then depicting the "Play" 
word, where the left and right hands movements are rotated 
together, and then the word "Ball". The word ball is described 
using two hands as if holding a round object.  

The results of the analysis of the 20 classes in the dataset 
will be displayed in Figure 7, which displays the confusion 
matrix. The analysis of 20 classes based on the TP, TN, FP, 
and FN confusion matrix data will produce each class's 
accuracy, sensitivity, and specificity using the LSTM model. 

 

Fig. 7  Confusion Matrix Modified LSTM 
 

TABLE II 
AVERAGE ACC, SE AND SP FOR 20-CLASES 

Words Accuracy (%) Sensitivity (%) Specificity (%)

Love 100 100 100 
There 100 100 100 
You 99 89 100 
See 99 100 99 
Cry 98 60 100 
Everything 98 100 98 
Remember 99 100 99 
Hear 99 100 99 
Laugh 100 100 100 
Sleep 100 100 100 
Ball 100 100 100 
They 99 75 100 
Play 99 80 100 
We 100 100 100 
Cook 100 100 100 
Rice 100 100 100 
Market 99 100 99 
Go 100 100 100 
Honestly 99 86 100 
$ 100 100 100 

 

To display the analysis results of twenty classes in the 
dataset, calculate each class's accuracy, sensitivity, and 
specificity values. Table II shows the calculations for twenty 
different classes' accuracy, sensitivity, and specificity value 
calculations. Based on the confusion matrix analysis, the 
accuracy results are quite impressive. Out of a total of 20 
words, ten words achieved a perfect 100 percent accuracy 
rate. These words are Love, there, Laugh, Sleep, Ball, We, 
Cook, Rise, Go, and the special character "$" (transition sign). 
In addition, eight words reached accuracy 98: You, See, 
Remember, Hear, They, Play, Market, and Honestly. Among 
the words analyzed, Cry, and Everything had the lowest 
accuracy values, both performing at a commendable 98 
percent accuracy rate. The challenges these words face in 
achieving perfection may be attributed to the quality of the 
training data, as suboptimal data often impact lower-
performing words during the training process.  

The graphical representation of accuracy and loss for a 
dataset comprising 20 different classes is visually depicted in 
Figure 8. This training process, conducted over 150 epochs, 
demonstrates impressive efficiency, with completion times as 
short as 10 minutes when employing the LSTM and 
Mediapipe methods. 
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(a) 

 
(b) 

 

Fig. 8  Accuracy (a) and Loss (b) Model on Epoch 150 

A. Evaluations using Signed Sentences 

To demonstrate its ability to recognize signed sentences, 
the enhanced LSTM model was trained on sign language 
words. The network was trained using a categorical cross-
entropy loss function, incorporating 256 hidden states within 
each LSTM layer, a batch size of 256, an adaptive learning 
rate initialized at 0.001, and these specified parameters. 
Training took place over 150 epochs, and the entire process 
was completed within 10 minutes using an NVIDIA Intel 
GPU workstation, with a RESET LSTM state condition 
applied for transition gestures ($).  

Based on the results of testing 320 sentences, which consist 
of 6 categories of sentences containing two to six phrases 
each, drawn from 8 sources, the highest average accuracy 
achieved was 84%, while the lowest was 77%. The highest 
accuracy was obtained in the category of 2 phrases, and the 
lowest accuracy was observed in the category of 6 phrases 
within each sentence. In Figure 9, a graph displaying the 
accuracy of sentences in each category is presented. It is 
evident that sentences with fewer phrases have higher 
accuracy compared to sentences with a greater number of 
phrases. 

 
Fig. 9  Recognition accuracies of signed sentences 

 

The reason for reduced accuracy in sentences with many 
phrases is the presence of transition signals. The more words 
in each sentence practiced, the higher the likelihood of 
numerous transition signals being created, which is highly 
relevant to time. Each signal has a different time delay, and as 
a result, the system developed has not yet demonstrated strong 
detection capabilities in the presence of time delays. Figure 
10 is the following illustration correlates words in sentences 
with time. The "Tr" code in between words serves as a label 
for transitions represented by the character "$" in the dataset. 

 

 
Fig. 10  Segmentation of sentences into words in sign language 

 

Based on the illustration in Figure 10, we show the 
difference in accuracy between two words and four words in 
a sentence. The accuracy obtained in two words is better than 
that obtained in four words because they are closely related to 
time. (t). The duration of the training data and the real-time 
testing time are very influential. The duration of the training 
data should be the same as the real-time testing time, but the 
duration generated by each word will be different if the 
number of word transitions increases. The duration of the 
inter-word transition is indefinite, depending on the transition 
signal performed by the deaf. In Figure 10 (b) above, you can 
clearly see the frame shift towards time after performing the 
four-word signal. GT is the frame time according to the 
training data, while OT is the output at the time of the test. If 
the GT frame time differs from the OT, then it is likely to 
cause a detection error. Therefore, the removal of transition 
signals is highly recommended to remove noise from word 
movements in sentence signals. 

B. Evaluations using Signed word.   

Here, we show how well the improved LSTM model 
recognizes single sign words. An average recognition rate of 
85% from 20 different sign terms has been noted.  
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TABLE III 

WORD DETECTION USING LSTM MODIFIED 

NO Sign Word Detected 

1 

 

Love Love 

2 

 

There There 

3 

 

You You 

4 

 

See Two 

5 

 

Cry Cry 

6 

 
Everything Ever 

7 

 

Remember Remember 

8 

 

Hear Hear 

9 

 

Laugh Laugh 

10 

 

Sleep Sleep 

11 

 

Ball We 

12 

 

They There 

13 

 

Play Play 

14 

 

We We 

15 

 

Cook Cook 

NO Sign Word Detected 

16 

 

Rice Rice 

17 

 

Market Market 

18 

 

Go Go 

19 

 

Honestly Honestly 

20 

 

$ $ 

 
Table III shows data that there were 3 words that were 

incorrectly detected out of 20 words that were tested on 3 deaf 
people. This detection error can be influenced by training data 
or testing data that does not comply with the rules. Based on 
a direct test by the author against a fool then there are some 
gestures that are difficult to detect by the system and have less 
or less probability of detection. This is because the gestures 
of the vocabulary have similarities with the gestures of the 
other vocabularies, positions that are not identical to the 
positions at the time of the training data. Besides, what can 
cause a misdetection is an error at the time of taking the 
training data or even a difference in the light intensity when 
taking training data with the test data. 

C. Comparative Analysis 

The research conducted by Putra et al. [26] combines 
Mediapipe as a feature extraction tool and the Long Short-
Term Memory (LSTM) method for training and validating the 
model. In this research, the input data consists of videos 
extracted using MediaPipe. To evaluate the performance of 
the LSTM model, the study employs a confusion matrix as 
one of its methods. This research indicates that the LSTM 
model achieved the highest accuracy rate of 82% in 
recognizing individual words within gestures, while the 
accuracy rate in sentence recognition reached 48%. The 
training process for the LSTM model required a total time of 
10 minutes and 50 seconds. 

In another study by Agrawal et al. [32], a folder was created 
for each of the ten moves, and every 80 subfolder moves were 
created. The subfolder can be considered a video folder; 
within each subfolder, there are 30 frames, each in the form 
of a NumPy array containing landmark values that are 
detected and extracted using Mediapipe Holistic Solution. 
LSTM networks are trained to use data and provide 90% 
accuracy on test data. Finally, the system is tested using real-
time data that is directly inserted into the model, and the 
results are displayed on the screen for each movement. Some 
delays were observed when recognizing movements in real-
time: the test per word reached 65%, while the test per 
sentence reached only 43% accuracy. 
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The same research was conducted in this study, where real-
time video input was used, employing Mediapipe as the 
feature extraction tool. However, the difference here lies in 
the modified LSTM method used. The modification aimed to 
reduce detection errors in sentences involving transitions 
between words. The results of this research, using the 
modified LSTM, demonstrated superior performance 
compared to the previous study. Accuracy was measured 
using confusion matrices and direct testing, revealing an 
accuracy of 80% in sentence detection and 85% in word 
detection. The training time for the data was reduced to just 9 
minutes and 45 seconds, respectively, according to the 
presentation of Table IV on identification accuracy. 

TABEL IV 

COMPARATIVE LSTM AND MODIFIED LSTM ACCURACY 

Author Model 
Sign Word 

Recognition 

Sign Sentence 

Recognition 

Training 

Time 

Putra et 

al 
LSTM 82% 48% 650 s 

Agrawal 
et al. 

LSTM 65% 45% - 

Ridwang 
et al. 

Modified 
LSTM 

85% 80% 585 s 

 
This research makes a valuable contribution to the Human 

Action Recognition (HAR) field, showcasing the potential of 
utilizing MediaPipe and modified LSTM for feature 
extraction and model training. The obtained accuracy levels, 
particularly in word recognition, underscore the success of 
this method in addressing HAR challenges. 

IV. CONCLUSION 

In this study, we have developed a novel framework for 
sustainable SLR employing Mediapipe and cameras. The 
addition of sign and sentence words has also been suggested 
for the modified LSTM architecture. A data set of 20 distinct 
sign words was utilized to train the model. Our assessment of 
the technique is based on 320 signed sentences written by four 
signatories. On signed sentences and isolated marked words, 
average accuracy levels of 80.0% and 85% have been noted. 
In the future, additional training data for greater model 
learning can enhance introduction performance and get a new 
method for the detection transition sign. 
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