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Abstract—The utilization of artificial intelligence (AI) has become imperative across various domains, including the oil and gas industry, 

which covers several fields, including reservoirs, drilling, and production. In oil and gas production, conventional methods, such as 

reservoir simulation, are used to predict the oil production rate. This simulation requires comprehensive data, so each process step 

takes a long time and is expensive. AI is urgently needed and can be a solution in this case. This research aims to apply AI techniques 

to forecast oil production rates based on water injection rates from two injection wells. Three wells are connected with a direct line 

drive pattern. Three different AI methods were applied, including multiple linear polynomial regression (PR), multiple linear regression 

(MLR), and artificial neural networks (ANN) in constructing oil production rate prediction models. Actual field data of 1180 data are 

used, including water injection rate data from two injection wells and oil production history data from one production well. The dataset 

has been split randomly into 80% training and 20% allocated for testing subsets. The training data is used to build predictive models, 

while the testing data is used to validate model performance. Comparative analysis selects the model with the lowest root mean square 

error (RMSE) and the highest �� test value. Results demonstrate that the ANN model achieves the smallest Root Mean Square Error

(RMSE) of 0.142 and the highest �� test value of 16.2%, outperforming the PR and MLR methods. The ANN prediction model provides

a rapid and efficient approach to estimating oil production rates.  
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I. INTRODUCTION

AI has become a hot issue in its application in the current 
era. Nearly every field adopts this method, making it crucial 

[1]. Accelerated processing time and precise predictions are 

the prominent outcomes popularized by the utilization of AI 

compared to conventional methods [2]-[5]. The oil and gas 

sector, being a capital-intensive sector with technological 

advancements and inherent risks, necessitates the 

implementation of AI in all its domains. Various studies have 

demonstrated the application of AI in the petroleum industry 

to expedite operational processes [6]-[8].  

One such application of AI in the drilling field was 

conducted by Syah et al. [9]. Several AI methods utilized 
include PSO-ANFIS (particle swarm optimization-adaptive 

neuro-fuzzy inference system), ANFIS (adaptive neuro-fuzzy 

inference system), RBF (radial basis function) algorithm, and 

LSSVM-GA (least square support vector machine-genetics 

algorithm). These techniques are utilized for the purpose of 

forecasting drilling fluid density and choosing the most 

suitable model. The RBF model emerged as the most effective 

method in predicting the fluid, exhibiting validity and 

accuracy consistent with experimental data. Another 
researcher aimed to swiftly predict cutting settling velocity by 

developing a model using artificial neural networks (ANN). 

This model yielded accurate results, proving its practicality 

and potential implementation in the field [10]. 

In the reservoir domain, Artificial intelligence has been 

harnessed to attain remarkably precise forecasts of the 

compressibility factor (Z factor) in gas condensate reservoirs, 

specifically for two-phase conditions. [11]. The best AI model 

was developed using a feedforward neural network and 

Bayesian-Regularization algorithms. Rosiani et al. [12] 

employed principal component analysis and multivariate 
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quality control to construct a screening model for CO2-EOR, 

considering the interdependency of nine screening 

parameters. The resulting screening model expedited 

decision-making processes and was suitable for 

implementation in real-world field settings. 

In the production domain, reservoir simulation is one of the 

current conventional methods used to predict oil production 

rates, which requires a large amount of data and significant 

costs. Additionally, it involves a lengthy execution time for 

running each of the simulation steps [13],[14]. AI 
implementation can help solve this problem. 

Ghorbani et al. [15] have utilized AI for oil flow rate 

prediction by applying five machine learning methods: Radial 

Basis Function, Adaptive Neuro-Fuzzy Inference System, 

Multilayer Perceptron, Least Squares Support Vector 

Machine, and Gene Expression Programming. Multilayer 

Perceptron yielded a more accurate model for predicting oil 

flow rate based on 830 training data points. Another study 

used a high-level neural network (HONN) has been used in 

predicting cumulative oil production. This study results in 

good model forecasting with high accuracy [16]. ANN has 
proven useful in predicting hydrocarbon, liquid flow rates, 

and water from artificially lifted oil wells using electric 

submersible pumps (ESP) in Egypt. Four ANN models were 

developed using input parameters such as wellhead pressure, 

fluid properties, variable speed drive (VSD) sensor 

parameters, and downhole ESP sensor measurements. The 

ANN models demonstrated simplicity, efficiency, and cost-

effectiveness [17].  

In addition to ANN, regression methods are well-known 

and easy-to-apply prediction methods. Popular regression 

methods for multivariate data are MLR and PR [18]. Previous 
studies have used MLR as an effective prediction method for 

predicting the performance and quality of biodiesel [19]. 

MLR also performs well in predicting crude oil pricing 

variability [20]. Ajona et al. [21] used MLR and PR to develop 

a model for the sustainable biodegradation process of crude 

oil. MLR and PR are also used to model the cetane number of 

biodiesels [22]. 

This study aims to apply AI to predict the oil production 

rate in a single active well influenced by the water injection 

rates from two injection wells. Many previous studies have 

yet to perform this particular study. Actual field data, totaling 

1180, are used to construct a predictive model with two input 
variables (water injection rate from well 1 and water injection 

rate from well 2) and one output variable (oil production rate). 

The prediction methods are models that can cover linear and 

nonlinear relationships between input and output variables. 

This study uses ANN as a prediction method for nonlinear 

relationships and is widely applied in the petroleum industry. 

The MLR and PR methods are also used as practical and fast 

statistical prediction methods. MLR can establish a linear 

relationship between response variables and predictors. 

Meanwhile, PR is employed as a prediction method for data 

with nonlinear relationships. Each of these three methods has 
its limitations. Therefore, they are applied, and the method 

that yields a predictive model more aligned with actual 

conditions is selected. 

 

 

II. MATERIALS AND METHOD 

The data utilized in this study is the actual field data of oil 

sites located in South Sumatra, Indonesia. The field is 

operated by PT Pertamina Hulu Rokan Zone 4. Data collected 

from PT Pertamina Hulu Rokan Zone 4 daily production 

report 2021. The average daily oil production from the field 
is 7799 barrels of oil per day (BOPD), with a total gas 

production of 136.9 million standard cubic feet per day 

(MMSCFD) and a total water production of 65807 barrels of 

water per day (BWPD). The water produced from the well is 

reinjected into the reservoir through injection wells. When the 

water is injected into the reservoir, it provides two 

advantages: pressure maintenance and sweep improvement. 

These events collectively enhance oil recovery. The 

production wells used in this study employ an artificial lift 

method known as a gas lift. 

The flow diagram of this study can be seen in Figure 1. This 
study used actual data in the form of daily historical 

production data from a single production well and historical 

water injection rate data from two injection wells. These three 

wells are interconnected using a direct line drive pattern. A 

total of 1180 data points were gathered, spanning from 

February 2020 to May 2023. The independent variables 

consist of the rate of water injection from injection well 1 (x1) 

and the water injection rate from injection well 2 (x2). The 

dependent variable is the oil production rate from the single 

production well (y). An overview of the raw data is presented 

in Table 1. 

 
Fig. 1  Study Workflow 

 

Three methods were employed to predict the rate of oil 

production in the production well. The MLR method was used 

to model linear trends, while the PR and ANN methods were 

suitable for constructing prediction models for nonlinear 

cases. The prediction models of the three methods were 
developed using the Python programming language. A dataset 

of 1180 observations was divided randomly into 80% 

allocated for training and 20% for testing purposes.  
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TABLE I 

RAW DATA 

Daily 

Data 

Q_Oil, 

BOPD 

(y) 

Q_Inj1, 

BWPD 

(x1) 

Q_Inj2, 

BWPD 

(x2) 

1 35 2015 2765 

2 52 2043 2804 

3 52 1984 2723 

… … … … 

1180 35 1684 1286 

 

The prediction models were constructed based on the 

training data. These three methods resulted in three distinct 

prediction models. Subsequently, the models were compared, 

and the method that produced a highly accurate prediction 

model was selected based on the testing data. The accuracy of 

the prediction was evaluated using RMSE in equation (1) [23] 

and the �� value in equation (2) [24]. A lower RMSE value 

indicates better performance of the model in prediction. A 

higher �� value approaching 1.0 indicates a better model fit. 

 RMSE 
 �� ∑ ��� � �������  (1) 

 �� 
 1 � ∑ �������������� ∑ ������������  (2) 

A. Multiple Linear Regression 

MLR is applied to establish a linear connection between 

multiple independent variables (x1, x2, ..., xn) and a 

dependent variable (y). The general form of MLR is given in 

equation (3) [25]-[28].  

 � 
 � ! ��"� ! ��"�+ …+�#"# (3) 

In this context, y represents the dependent variable, x1, 

x2, ..., xn are the independent variables, � , ��, … �#  are 

regression coefficients, and $ represents the number of 

variables [29]. Least-squares methods estimated the value of 

the parameters. 

B. Polynomial Regression 

Polynomial regression is a specific instance of multiple 

regression where there is only a single independent variable, 

denoted as X. The model of polynomial regression with one 
independent variable can be mathematically represented by 

the following equation (4) [30]. 

 � 
 � ! ��"� ! ��"�� ! �%"�% ! ⋯ ! �'"�( ! )�   (4) 

for i = 1, 2,…n, where g represents the polynomial degree. 

This corresponds to the order of the model. Effectively, it is 

equivalent to having multiple models with *� 
 *,  *� 
*�,  *% 
 *%, and so on [31]. The coefficients of the 

polynomial regression, β, as shown in equation (9), are 

operated in matrix form as present in equations (5), (6), (7), 

and (8) [32]. 

 ,�-� 

⎣⎢⎢
⎢⎡ $ ∑ "� … ∑ "�(∑ "� ∑ "�� … ∑ "�(2�⋮ ⋮ ⋮∑ "�' ∑ "�'2� … ∑ "��( ⎦⎥⎥

⎥⎤
   (5) 

 7 
 8� ��⋮�'
9  (6) 

 :�-� 
 8 ∑ ��∑ ��"�⋮∑ ��"�(
9 (7) 

PR equation in matrix form can be written as:  

 ,�-�7 
 :�-� (8) 

Therefore, 

  7 
 ,�-���:�-� (9) 
 

C. Artificial Neural Network  

ANN is an information processing system that 

demonstrates performance characteristics similar to 

biological neural networks [33], [34]. ANN consists of three 

elements: network architecture, weighting factor, and 

activation function. Figure 2, as a single-layer ANN consists 

of one input layer and one output layer. The input layer 

receives signals and comprises several neurons connected by 
weights (w), summed and fed to a nonlinear activation 

function to the output layer in a forward flow. 

    

 
Fig. 2  Single-layer ANN 

 

ANNs are predictive models that, learning from data, can 

identify complex nonlinear patterns without understanding 

how the variables are related. ANN can identify different 

patterns in nonlinear systems that cannot be resolved with 

general statistical methods. Different patterns adjusted 

parameters, namely synaptic weight and bias, during training 

[35], [36]. 

Typical neural networks are multi-layered systems with a 

sole input layer, one or more concealed layers, and a sole 

output layer. Most applications performed by ANN have been 

trained using supervised training techniques. During the 
training phase, the input layer receives input signals, which 

are processed through the hidden layers until they reach the 

output layer. This process is known as feedforward. The 

resulting output is compared to the desired output, allowing 

for the error calculation. The error information is then 

propagated backward (backpropagation), and the weights are 

adjusted to control the network. Adjust weight by minimizing 

the error function as a solution to learning problems. The 

training process is repeated until the desired level of accuracy 

is achieved. Subsequently, the network undergoes a testing 

phase to evaluate its designed capabilities. The trained 
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network is tested using data independent of the training data 

[37]-[42]. 

In this study, the backpropagation method of ANN was 

applied. The ANN utilized was a multilayer network in Figure 

3. The input layer consisted of two neurons (x1 and x2). 

Subsequently, the hidden layer, which could have more than 

one layer, was determined to achieve the optimal number of 

hidden neurons, thus ensuring optimal network performance. 

The layer output consisted of a single neuron (y). A nonlinear 

activation function, specifically the hyperbolic tangent (tanh) 
function in equation (10) [33], was utilized in the concealed 

layer, while a linear function was employed in the output 

layer. 

 f ��� 
 <��<=�<�2<=� (10) 

 
Fig. 3  Multilayer ANN structure 

III. RESULT AND DISCUSSION 

This research aims to create a predictive model for oil 

production rate using AI, with two independent variables, x1 

and x2, and one dependent variable, y. The descriptions of the 

three variables are provided in Table 2. The daily oil 

production average rate from a production well is 33.90 bbl, 

and the water injection rate in well 1 is lower than in well 2, 

which is 1339.78 bwpd. 

TABLE II 

DATA DESCRIPTION 

 Q_Oil, 

BOPD 

(y) 

Q_Inj1, 

BWPD 

(x1) 

Q_Inj2, 

BWPD 

(x2) 

Count 1180 1180 1180 

Mean 33.90 1339.78 1687.21 
Minimum 6 46.43 23.76 
Maximum 64 2826.35 4232.16 

 

Based on the 1180 data points for each variable, predictive 

models were developed using MLR, PR, and ANN. A 

nonlinear trend can be observed upon observing the scatter 

plot in Figure 4a. Additionally, the low correlation results 

among the variables in Figure 4b further support the initial 

indication of non-linearity in the data. However, in this study, 

both linear (MLR) and nonlinear methods (PR and ANN) 

were employed to forecast the oil production rate, allowing 

for a comparison of the results. 
 

 
(a) 

 
(b) 

Fig. 4  Trend of Data Description (a) Scatter Plot (b) Linear Correlation 

A. Model Prediction 

The study resulted in three different predictive models. The 

selected model is the one that best suits the actual conditions. 

The predictive model generated using the MLR method is as 

follows in equation (11). 

 � 
 19.012 ! �0.006 C "�� ! �0.004 C "�� (11) 

The predictive model using the PR method with a second 

order is as follows in equation (12). 

 � 
 22.33 ! �0.0012 C "�� ! �0.0031 C "��! �0.000002 C "���� �0.00000015 C "���! �0.0000003 C "� C "�� 

(12) 

 

The predictive model using the ANN method in this study 

was built using Python. It underwent training through a total 

of 50,000 iterations using a learning rate of 0.001. The ANN's 

peak performance was reached by iteratively training the 

network with varying combinations of hidden layers, hidden 
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neurons, and activation functions until the network weights 

reached the minimum acceptable error level. The ANN model 

produced several architecture models, as shown in Figures 5 

and 6. 

 

  �� test= 0.153,  �� train= 0.312 

��test= 0.116 ��train= 0.372 

(a) (b) 

  �� test= 0.136 �� train= 0.374 

�� test= 0.092 �� train= 0.384 

(c) (d) 

Fig. 5  ANN Model Architecture with a Single Hidden Layer. (a) 2-4-1 Model 

(b) 2-6-1 Model (c) 2-8-1 Model (d) 2-10-1 Model 
 

The selected model was obtained by trying out multiple 

architecture models of the ANN. The chosen model had the 

smallest RMSE value and the highest �� value on the testing 

dataset. In Figures 5a, 5b, 5c, and 5d, there are four ANN 

architectures with two neurons in the input layer, one hidden 

layer with varying numbers of hidden neurons, and one 

neuron in the output layer. An example of 2-4-1 model has 

ANN architectures with two neurons in the input layer, four 

in the second hidden layer, and one in the output layer. In 
Figures 6a, 6b, 6c, and 6d, there are two neurons in the input 

layer, two hidden layers with different numbers of hidden 

neurons, and one neuron in the output layer. An example of 

2-10-10-1 model has ANN architectures with two neurons in 

the input layer, ten neurons in the first hidden layer, ten 

neurons in the second hidden layer, and one neuron in the 

output layer.  

Eight architecture models of the ANN were compared 

RMSE (Figure 7) and �� test values (Figure 5 and Figure 6). 

The model with the lowest RMSE and highest �� test on the 

testing dataset was selected. The chosen model exhibited an 

RMSE of 0.142 and an �� test value of 0.162. This model, 

characterized by the architecture (2-4-4-1), features two 

neurons in the input layer, four neurons in the first hidden 

layer, four neurons in the second hidden layer, and one neuron 

in the output layer.  

  �� test= 0.162 �� train= 0.357 

�� test= 0.076 �� train= 0.444 

(a) (b) 

  �� test= 0.094 �� train= 0.443 

�� test= 0.098 �� train= 0.481 

(c) (d) 

Fig. 6  ANN model architecture with two hidden layer. (a) 2-4-4-1 model (b) 

2-6-6-1 model (c) 2-8-8-1 model (d) 2-10-10-1 Model. 

 

 
Fig. 7  RMSE for ANN Models 

B. Model Selection 

The predictive models generated using the ANN, MLR, 

and PR methods were compared. The RMSE and �� test 

values obtained from the three methods are presented in 

Figure 6. The model that will be chosen as the predictive 

model is the one with a small RMSE value and a large �� test 

value. From Figure 8, it can be observed that the RMSE value 

of the ANN model is the smallest, at 0.142, followed by the 

PR model at 8.407, and the MLR model has the largest RMSE 

value of 8.422. A smaller RMSE value indicates a lower error, 

making the ANN model the best among the three. 

 
Fig. 8  RMSE of MLR, PR, and ANN (2-4-4-1) models 
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Additionally, in terms of ��  test values, the ANN method 

achieved the highest score at 16.2%, surpassing the PR model 

with 12.8% and the MLR model with 12.5%. The highest �� 

value of the ANN method underscores its better-fitting 

capability. A visual examination of the scatter plot comparing 

the predicted oil production values to the actual data from the 

testing set reveals that the ANN model's predictions closely 

follow the purple line, signifying a closer match to the actual 

values.(Figure 9). 

 

 �� test= 0.125, �� train= 0.201 
(a) 

 �� test= 0.128, �� train= 0.206 
(b) 

 

 �� test= 0.162,  �� train= 0.358 

(c) 

Fig. 9  Comparison of models (a) MLR (b) PR (c) ANN (2-4-4-1) 

 

Based on these comparison results, the ANN method 

outperforms the MLR and PR methods in predicting oil 
production rates. The MLR and PR are general statistical 

methods with linear and nonlinear model limitations. On the 

contrary, ANN has shown its power in this study, which can 

build a nonlinear model with complex patterns and generate 

less error. In oil and gas production, ANN can predict the oil 

production rate in South Sumatra fields quickly and 

effectively compared to conventional methods, which require 

a lot of time and costs. The prediction model obtained is a fast 

method that can be implemented later in estimating oil 

production rates in fields in South Sumatra.  

IV. CONCLUSION 

One of the conventional methods of predicting oil 

production from a production well is reservoir simulation. 

The need for many data and running in conducting reservoir 

simulations is a problem because it requires time and cost. 

The implementation of AI in predicting oil production rates 

was carried out in this study using different methods, namely 

MLR, PR, and ANN. The ANN model yielded the smallest 

RMSE value and the largest �� test value, indicating that the 

ANN model is the most suitable predictive model. Future 

studies can explore other AI methods to improve predictive 

models further. Additionally, incorporating other influential 

variables besides the water injection rate could enhance the 

accuracy of oil production predictions. 
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