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Abstract—A bird recognition system identifies bird species by combining computer vision and machine learning techniques to categorize 

different bird species with high accuracy. Moreover, the bird species recognition system represents a significant advance in animal 

protection and zoological research, especially for the rare and elusive bird species living in the jungle. This work focuses on an image-

based system for bird species recognition. In bird species recognition, users input the bird images, and the system uses a deep learning 

model trained for optimal results in identifying different bird species from the images. We used fine-tuned deep learning models 

(Inception-V3 and EfficientNet-B4) to evaluate and determine which model can best perform image-based bird species recognition. 

Several unique datasets were used to evaluate and determine which model was best suited for image-based bird species recognition. 

These datasets consist of CUB -200-2011, Kaggle-510 bird species, 325 bird species, and a self-generated dataset (100 bird species from 

Malaysia). When applied to these four different datasets, the experimental results clearly show the advantage of fine-tuning the deep 

learning models. This study makes an important contribution to ornithology by providing a robust and trustworthy method for 

identifying and cataloging bird species, especially those that are rarely seen in the wild. Thus, the bird identification system is important 

for scientific research and animal welfare.  
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I. INTRODUCTION

The advent of artificial intelligence has changed the 

lifestyle of people, and it further enhanced the life quality of 

the people [1]–[3]. It enables individuals to alleviate their 

workload by imbuing machines with human-like capabilities 

and even surpassing human thinking abilities. For example, 
artificial technologies enable the identification of rare animal 

species, distinguishing between various individuals' voices, 

and much more. 

The world’s living species are impacted by environmental 

changes and climatic circumstances brought on by science 

and technical progress [4]–[6]. The most severely affected 

group is the birds, mainly living in the woods. Therefore, 

protecting small or rare bird species to prevent them from 

extinction is necessary [7]–[9]. To do this, classifying the bird 

species is the first and most crucial step, which helps animal 

protection experts and zoologists to know the different 
species of birds that live in the forest, especially the rare 

species, to advocate the conservation of rare birds and their 

habitats. 

Convolutional neural networks (CNNs) architecture 

exhibits a superior design for most computer vision 

applications [10]–[12]. The deep learning approach has the 

capability to perform the learning of high-level features from 

data gradually. Hence, the deep learning approach 

outperforms machine learning techniques in many domains 

when a large amount of data is provided [13], [14]. The 

present research only utilizes some bird species in the dataset 

for recognition such as in [15] and [16] resulting in an 

inability to accurately demonstrate its performance in 

recognition.  
Qiao et al. [15] proposed a Support Vector Machine (SVM) 

classifier mixed with a decision tree for bird recognition using 

feature extraction based on beak width and eye-beak root 

range shift. The decision tree grouped similar birds into a set 

of birds of the same theme. The classifier achieved 83.37% 

accuracy by incorporating all features such as color, beak, and 

head color for both SVM and decision tree. 

Gavali et al. [16] proposed using a deep convolutional 

neural network (DCNN) for bird species recognition with the 

CUB-200-2011 dataset. They pre-processed the data by 

creating a grayscale image dataset and reducing the image 

size. The DCNN consisted of different layers of convolutional 
neural networks, and the GoogLeNet framework was used for 

recognition. The dataset was retrained to maximize 
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classification accuracy. The input was compared with the 

trained dataset to classify the species, and the system achieved 

an accuracy of 88.33%. 

Jain et al. [17] presented using Convolutional Neural 

Networks (CNN) for bird species recognition using bird 

audio. They extracted acoustic features from bird sound files 

using Mel Frequency Cepstral Coefficients (MFCC) and 

created a dataset with these features and classes. Keras 

sequential model was used to predict the label belonging to 

the bird from the audio file. The model achieved 70% 
accuracy in detecting bird species, as confirmed by the 

evaluation of their model. 

Sharma et al. [18] used two pre-trained neural networks, 

ResNet50V2 and EfficientNetB0, for video-based bird 

species recognition with a dataset of 137 bird species. They 

extracted and pre-processed the image and audio from the 

input video, fed them to the respective networks, and obtained 

two outputs: image classification and audio classification. 

These outputs were compared to the dataset to determine the 

common bird species in the input video, achieving an 

accuracy score of 90%. 
Wang et al. [19] developed a bird species recognition 

system based on sound using Recurrent Neural Networks 

(RNN). They collected a dataset of 72,172 bird audio samples 

of 264 species and performed pre-processing steps such as 

high pass filtering and noise removal. The inputs to the RNN 

model were MFCCs and Mel-spectrograms, and LSTM was 

used as the baseline network to improve classification 

performance. They achieved an accuracy score of 74.94%. 

Pahuja et al. [20] developed a Multi-layer Perceptron 

Artificial Neural Network (MLP-NN) for recognizing bird 

species by analyzing bird sound spectrograms. They extracted 
Mean Instantaneous Frequency (MIF), Mean Instantaneous 

Bandwidth (MIB), and Group Delay (GD) features from the 

spectrum of eight different bird species. These features were 

then fed into the MLP-NN classifier, which is a multi-class 

classifier for layered neural networks trained using the feed-

forward and backpropagation approach. The researchers 

conducted several experiments to optimize the performance 

of the MLP-NN, such as changing the number of neurons in 

the hidden layers, epoch size, and learning rate. The best 

accuracy of 96.1% was achieved with 300 epochs, a batch size 

of nine, and 24 neurons in the hidden layers. 

Ragib et al. [21] proposed a deep-learning model and pre-
trained ResNet for image-based bird species recognition. 

They used both a model with randomly assigned weights and 

a pre-trained ResNet18 model, which was trained on the 

ImageNet dataset. The images were resized to 224x224x3 

before fitting into the model. The ResNet18 model achieved 

a top-5 accuracy of 96.71%, while the random weight model 

achieved 63.48%. The authors also evaluated the accuracy of 

different ResNet models and found that ResNet101 achieved 

the highest accuracy of 97.98%. 

Alswaitti et al. [22] evaluated bird recognition systems 

using three different approaches: traditional machine learning 
classifiers, CNNs, and transfer learning based CNNs. They 

found that traditional machine learning classifiers had lower 

accuracy when more bird species were added, ranging from 

6% to 50% accuracy for 20 species. CNNs like AlexNet, 

DenseNet-121, GoogLeNet, and ResNet-50 had better 

accuracy than traditional machine learning classifiers, but 

accuracy still dropped with more bird species added. Transfer 

learning based CNNs had the best accuracy, reaching up to 

98%. The authors suggested that transfer learning is effective 

for deep learning with limited data sets, as it allows the 

transfer of model parameters for image recognition. 

Jha et al. [23] developed a bird species recognition 

platform based on sequential neural networks and image 

processing. To improve classification accuracy, they trained 

and retrained a dataset, considering factors like beak shape 

and appearance. The system used a deep convolutional 
network to extract features and a pre-trained dataset for 

comparison. The workflow involved applying sequential-

based CNN, extracting features, comparing the input to 

trained data, and recognizing the bird species. Their model 

achieved 84.76% accuracy. 

Gómez-Gómez et al. [24] explored the performance of 

small-footprint deep neural networks (MobileNetV2) in 

classifying bird species based on audio and compared it with 

VGG16 and ResNet50. They collected 20 bird audio and used 

spectrograms generated from 1-second windows for feature 

extraction. Fine-tuning was done by freezing all layers in the 
network's body and training only the new fully connected 

head as a warm-up phase. The results showed that 

MobileNetV2 had similar or better accuracy than larger 

models. 

Kondaveeti et al. [25] proposed an Arduino-based bird 

species recognition system for automatic bird species 

recognition. This system was based on the Arduino Uno, ESP-

32 camera, and PIR Motion Sensor. The ESP-32 camera 

detected the motion in this system and uploaded the captured 

images to the drive. Then, the uploaded images fit into the 

trained deep-learning model. They used the ResNet101V2 
CNN to build their classification model. They set the epochs 

to 5, and the batch size was 276, which took 22 hours for 

training. As a result, they obtained 87% validation accuracy 

in the proposed system. 

Kumar et al. [26] experimented with a bird species 

recognition system using various deep learning networks such 

as MobileNet, AlexNet, InceptionResNet V2, InceptionV3, 

and EfficientNet. To conduct this experiment, they used a 

dataset from the Kaggle, which consists of 11488 images from 

200 species. Besides, they used the data augmentation method 

to increase the bird images to 40000. In the augmentation 

technique, they performed re-scaling, cropping, zooming, 
rotating, etc. The experiment used 10 to 50 epochs for training 

accuracy and 50 and 100 epochs for testing accuracy. 

Experiment results showed MobileNet and EfficientNet were 

the quickest models, and EfficientNet achieved the highest 

accuracy, 98.25%. 

Huang et al. [27] proposed a skip connection 

Convolutional Neural Network (CNN) to build a bird species 

recognition system which is able to recognise 27 bird species 

endemics to Taiwan. In their CNN model architecture, there 

were two fully connected layers and one softmax output layer. 

Besides, each convolutional layer used the 5x5 filter, and the 
batch normalisation layer included the ReLu activation 

function and the pooling layers. With the use of skip-

connection, the model improved the feature extraction 

through weighted summation of the corresponding layers. As 

a result, their proposed skin-connection CNN model reached 
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99% accuracy compared to 93.98% of the typical CNN 

model. 

This paper aims to examine and recognize bird species 

worldwide using deep learning approaches by involving all 

the bird species from the dataset. Besides, we also perform the 

model training in several new datasets such as Kaggle-510 

Bird Species, 325-Bird Species, and self-collected 100-

Malaysia-Birds dataset. Two deep learning algorithms, 

Inception-V3 and EfficientNet-B4, are employed to enable 

the system to classify bird species based on user input images. 
This paper analyses experiment results obtained from two 

algorithms in four bird datasets and explores the impact of 

fine-tuning a pre-trained CNN model. 

II. MATERIALS AND METHOD 

A. Bird Datasets 

The dataset known as Caltech-UCSD Birds-200-2011, also 

called CUB-200-2011 dataset, holds the reputation of being 

extensively employed in bird recognition systems. The 
dataset comprises 11,788 images of 200 bird species, with 

approximately 60 images captured for each species. Each 

image captures a single bird species in a single frame. The 

images have different sizes, necessitating image pre-

processing to achieve standardized image dimensions. While 

numerous papers have utilized this dataset, they have yet to 

formally report results involving all the bird species in the 

dataset. Consequently, this project aims to compute accurate 

results by considering all the bird species in the dataset when 

evaluating the performance.  

Additionally, this paper utilizes two other bird datasets, 

namely the Kaggle 510 Bird Species Dataset and the 325 Bird 
Species Dataset. The Kaggle 510 Bird Species Dataset 

encompasses 510 bird species, including 81,950 training 

images, 2,550 testing images, and 2,550 validation images. 

The bird occupies more than 50% of the total pixels in each 

image. 325 Bird Species Dataset contains 50591 images from 

325 different bird species. This dataset is split into 47341 

training images, 1625 testing, and 1625 validation images. In 

the testing and validation dataset, there are five images in each 

of the species. Both datasets are suitable for fine-tuning the 

deep learning model as they contain more than 30,000 images, 

and the model can learn enough features of each species. 

Data collecting is challenging in deep learning 

experiments, and this type of small dataset might make this 
experiment more accurate as the experiment can assess the 

different sizes of the datasets [28]. Hence, another bird 

dataset, the 100-Malaysia-Birds dataset, was created 

specifically for this study. This dataset comprises 100 bird 

species commonly found in Malaysia and was generated 

using the online crawl technique. This dataset contains 9,286 

images, making it the smallest dataset used in this paper. The 

purpose of including this dataset is to assess the model's 

performance when working with a smaller dataset. Table I 

exhibits the characteristics of each of the datasets. 

TABLE I 

CHARACTERISTICS OF EACH DATASET 

Dataset No. of Species Total Images 

CUB-200-2011 Dataset 200 11788 
Kaggle 510 Bird Species 
Dataset 

510 86950 

325 Bird Species Dataset 325 50591 

100-Malaysia-Birds 
Dataset 

100 9286 

B. The Proposed Method 

The proposed bird species recognition system consists of 
four phases: pre-processing, feature extraction, model 

training, and performance evaluation. Fig. 1 illustrates the 

proposed bird species recognition system.  

 

 

Fig. 1  The proposed bird species recognition system 

 

1721



C. Pre-processing 

In the pre-processing stage, all of the images in each dataset 

are different, so all images are resized into 224 x 224 for a 

standard setup. The resized images are then normalized and 

standardized to have a range of [0, 1]. The median filter is 

performed to reduce the noise from the images. The median 

filter processes the image pixel by pixel, and each pixel 
compares itself with the neighborhood pixel and replaces it 

with the median value of both pixels. Then, edge detection is 

used to perform the image segmentation, and the Sobel 

operator is used to calculate the intensity gradient at each 

pixel to estimate the direction and rate of change in darkness 

from light. 

D. Feature Extraction 

The feature extraction is used to leverage two pre-trained 
models, which are Inception-V3 and EfficientNet-B4. In this 

case, transfer learning is used to utilize the features extracted 

during previous training on a large-scale dataset and apply 

them to a specific task. These models serve as feature 

extractors by capturing high-level features from the input 

images. Then, these features are convolutional layers of 

representations that have been learned. Subsequent layers can 

then utilize these representations to extract features for 

categorization. The equation of the transfer learning feature 

extraction is shown below: 

 �������� =  
_����_
���� (������
���) (1) 

in which f_base_model is the feature extraction function 

performed by either EfficientNet-B4 or Inception-V3, and 

InputImage represents the input image that needs to be 

processed. Applying transfer learning allows for more 

effective and efficient analysis of the particular dataset due to 

the deep learning models' capacity to grasp intricate patterns 

and features. 

E. Inception-V3 

Inception-V3, a widely recognized pre-trained deep-
learning technique, is renowned for its effectiveness in image 

classification. Developed by the Google Research Team, it 

represents the third version of the Inception Network [29]. 

Inception-V3 incorporates numerous optimizations, including 

efficient grid size reduction, smaller convolutions, 

asymmetric components, and auxiliary classifiers. Compared 

to its predecessors, Inception-V3 boasts more layers, 

enhancing the performance and efficiency of image 

recognition tasks. 

Fig. 2 presents the flow of the Inception-V3. In the 

Inception-V3, the GlobalAveragePooling2D layer is added to 
take the averages of the feature maps. Then, two fully 

connected layers are added to classify the image based on the 

output from the previous convolutional layers. The first 

connected layer is activated by rectified linear activation 

named ReLU [30]. ReLu is one of the popular activation 

functions in the deep learning approach that produces zero if 

the inputs are negative and the input value if it is positive, 

assisting gradient flow and encouraging sparse activation. 

The last fully connected layer, also an output layer of the 

Inception-V3 model, uses the SoftMax activation function.  

 

 
Fig. 2  The process flow of Inception-V3 

 

SoftMax is an activation function for multiclass 

classification that converts input values into a probability 

distribution over several classes [31]. The next step is to 

freeze the first 249 layers from the Inception-V3 for training 

to adopt the new feature obtained from the dataset. Another 

reason for freezing the first 249 layers is that it yields optimal 

results during training. Lastly, all layers are unfrozen for 

retraining purposes with the new features obtained and 

evaluate the performance. 

F. EfficientNet-B4 

EfficientNet-B4, a convolutional neural network model, 

was introduced by Mingxing Tan and Quoc Le of Google 

Research [32]. It belongs to the EfficientNet model family, 

renowned for its high accuracy and computational efficiency. 

With its 157 layers, this model is particularly suitable for 

computationally intensive tasks that demand exceptional 

accuracy. The architecture employs depth-wise convolutions, 

squeeze-and-excitation modules, and other techniques to 
optimize the trade-off between size and accuracy. 

EfficientNet-B4 utilizes a compound scaling method that 

adjusts the model's depth, width, and resolution to achieve a 

desirable balance. This model has showcased remarkable 

performance across various computer vision applications, 

including image classification, object detection, and 

segmentation. Same with the Inception-V3, the 

GlobalAveragePooling2D layer and two fully connected 

layers are added into EfficientNet-B4. However, the 

EfficientNet-B4 is a bigger model than the Inception-V3 

model, so more layers are frozen for the train to adopt new 
features from the dataset. In this experiment, the adoption of 

new features involved freezing 469 layers, and it was found 

that this specific number of frozen layers produced optimal 

results. After that, all layers are unfrozen and retrained to 

evaluate the performance. 
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Fig. 3  The process flow of EfficientNet-B4 

III. RESULT AND DISCUSSION 

A. Experimental Measure 

There are four metrics used to evaluate the performance of 

the proposed system. There is an accuracy score, precision 

score, recall score, F1-score, as listed in Table II. 

TABLE II 

PERFORMANCE METRICS 

Metrics Description 

Accuracy score It refers to the proportion of accurate 
predictions to all input samples. 

�������� =  
(�� + ��)

(�� + �� + �� + ��)
 

 
TP and TN represent the true positive and 

true negative while FP and FN represent the 
false positive and false negative. 

Precision score It refers to the proportion of the successfully 
identified positive position in the confusion 
matrix that was forecasted. 

��������� =  
��

(�� + ��)
 

Recall score It calculates the ratio of the projected 
favorable findings to all the actual label 
observations. 

������ =  
��

(�� + ��)
 

F1-score It takes the precision score and recall score 

to calculate the harmonic mean. 

�1 − ����� =  
"∗($%&'()(*+∗,&'-..)

($%&'()(*+/,&'-..)
  

B. Experimental Setup 

The data augmentation process is applied to increase the 

number of images in the dataset to ensure the algorithms have 

enough samples for training. Hence, the rotated, zoomed, and 

horizontally flipped images have been added to the dataset 

before training. Experiments involve four bird species 

datasets (CUB-200-2011, Kaggle 510 Bird Species Dataset, 

325 Bird Species Dataset, and 100-Malaysia-Birds Dataset). 

Several parameters must be set before fitting the dataset in 

the training process. The optimizer of the model is Stochastic 

Gradient Descent (SGD), a popular optimizer in the deep 

learning model. It iteratively changes the model’s parameters 

depending on the gradient of the loss function concerning the 

parameters by using small batches of training samples. 

Although it may necessitate the careful selection of the 
learning rate and can profit from alternative methods for 

enhanced convergence and stability, SGD is computationally 

efficient and ideal for large datasets. Hence, the learning rate 

is 0.0001, and the momentum is 0.9. 

In the Inception-V3 algorithm, there is a fine-tuned process 

that freezes the first 249 layers in the model and sets them 

with low epoch numbers which are 3, to make the algorithm 

adapt to the features in the dataset. After finishing with 3 

epochs, all of the layers from the model are unfrozen and 

trained with the larger epochs, 10, to train more accurately. 

For the EfficientNet-B4 model, there is also a fine-tuned 
process that freezes the first 469 layers and trains with 3 

epochs. After that, the remaining layers are unfreezing and 

retrained with new features obtained in 10 epochs. 

The early stop is also included in both deep learning 

algorithms to prevent overfitting and monitor validation loss. 

The training progress will be stopped if the validation loss is 

not decreased. All the training process is performed using the 

Kaggle notebook under the GPU-100. The models used are 

implemented using Keras, and the batch size is set to 32, 

image size is 224x224. 

C. Results and Analysis 

Performance of Inception-V3 model for four different bird 

species dataset is displayed in Table III. Based on Table III, 

the best performance is obtained using 325 Birds Species 

Dataset, followed by the Kaggle 510 Bird Species Dataset and 

100-Malaysia-Birds Dataset. These three datasets have 

achieved more than 90% accuracy as they have enough 

training samples for the model. CUB-200-2011 gets the 

poorest accuracy due to the small training samples, where it 

only consists of a maximum of 60 images per species. 

TABLE III 

THE PERFORMANCE OF THE INCEPTION-V3 MODEL 

Dataset 
Accuracy 

(%) 

Precision  

(%) 

Recall  

(%) 

F1-score 

(%) 

Time per 

epochs(s) 

CUB-200-
2011 Dataset 

69 70 69 69 110 

Kaggle 510 
Bird Species 
Dataset 

96 97 96 96 664 

325 Bird 
Species 
Dataset 

98 98 98 98 224 

100-
Malaysia-
Birds 

Dataset 

91 92 91 91 234 

 

Meanwhile, in Table III, the execution time increases when 

the dataset’s size increases. For instance, the time per epoch 
in the Kaggle 510 Bird Species Dataset is 664s, and it takes 
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1.8 hours to finish the training. Besides, the 325 Birds Species 

Dataset and 100-Malaysia-Birds Dataset have the same 

execution time in each of the epochs. However, the execution 

time of the CUB-200-2011 is the least as it only provides 40 

images for the model training in each epoch. 

TABLE IV 

THE PERFORMANCE OF THE EFFICIENTNET-B4 MODEL 

Dataset Accuracy 

(%) 

Precision  

(%) 

Recall  

(%) 

F1-score 

(%) 

Time per 

epochs(s) 

CUB-200-
2011 Dataset 

74 74 74 73 134 

Kaggle 510 
Bird Species 
Dataset 

99 99 99 99 1229 

325 Bird 
Species 
Dataset 

99 99 99 99 719 

100-
Malaysia-
Birds 
Dataset 

92 92 92 92 265 

 

Table IV presents the performance of the EfficientNet-B4 

model on four distinct bird species datasets. The accuracy 

achieved by the EfficientNet-B4 model on the Kaggle 510 

Bird Species Dataset and the 325 Birds Species Dataset is 

99% across four evaluation metrics. This high accuracy can 

be attributed to the larger model size, which allows for more 

layers and enhanced training capabilities. Furthermore, the 

results demonstrate that larger datasets lead to optimal 

performance in deep learning models. Similarly, the 

Inception-V3 model shows a similar trend, with the CUB-
200-2011 dataset exhibiting poorer performance but a 5% 

increase in accuracy when using a larger model. Moreover, 

employing a larger model also improves the overall 

performance of the 100-Malaysia-Birds Dataset. 

The execution time for all datasets increases due to the 

larger network model (EfficientNet-B4) in Table IV 

compared to Inception-V3 in Table III. The Kaggle 510 Birds 

Species Dataset exhibits the longest execution time, with each 

epoch taking 1229 seconds and 34 hours for 10 epochs. This 

dataset's larger number of images contributes to the longer 

execution time. Similarly, the second largest dataset, the 325 
Birds Species Dataset, requires 719 seconds per epoch for 

training, which is a substantial increase compared to the 

Inception-V3 model. In summary, the larger neural network 

model requires a longer training time than the smaller deep 

learning model. 
 

 
Fig. 4  Overall performance of algorithms in the experiment 

Fig. 4 illustrates the comprehensive performance of four 

datasets in the experiment, comparing accuracy scores 

between machine learning techniques (K-Nearest Neighbor 

and Decision Tree) and deep learning approaches (Inception-

V3 and EfficientNet-B4). The reason for performing this 

comparison is to prove that deep learning is better than the 

traditional machine learning approaches. The results in Fig. 4 

indicate that deep learning approaches perform excellently, 

whereas machine learning techniques necessitate extensive 

pre-processing techniques [33]. 

D. Comparison Results 

The comparison of the proposed method with other models 

is depicted in Table V. In Table V, Ragib et al. [21] used the 

pre-trained deep learning models, ResNet-18 and ResNet-101 

for bird species recognition and achieved 96.71% and 97.98% 

accuracy for both methods, respectively. However, they only 

used the dataset's 15 out of 200 species to calculate the 

performance. This made the results not accurate. Alswaitti et 
al. [22] used the pre-trained network, AlexNet, DenseNet-

121, GoogLeNet, and ResNet-50, and obtained the results up 

to 98% accuracy. They only used 180 bird species and 20000 

images from the dataset, where the model might not recognize 

most birds. Furthermore, Jha et al. [23] received 84.76% 

accuracy score using sequential CNN to perform the bird 

recognition. This author did not mention how many classes 

were used in the proposed bird species recognition system.  

TABLE V 

COMPARISON WITH PREVIOUS WORKS 

 Model Accuracy (%) 

Ragib et al. [21] ResNet-18 
ResNet-101 

96.71 
97.98 

Alswaitti et al. [22]  AlexNet 
DenseNet-121 
ResNet-50 

93.40 
98.60 
97.70 

Jha et al. [23] Sequential CNN 84.76 

The proposed method InceptionV3 
EfficientNetB4 

98 
99 

 

In Table V, the proposed method demonstrated outstanding 

performance compared to previous works. While Ragib et al. 

[21] and Alswaitti et al. [22] also employed pre-trained deep 

learning models, they did not undergo fine-tuning, potentially 

leading to imperfect feature extraction from the dataset. The 
poorest result was obtained by Jha et al. [23], who solely 

utilized a sequential CNN model for training. This model 

begins with random weights, and the training process focuses 

on the convolutional layers the users set. The drawback of this 

model is that there is no ultimate answer on how many layers 

need to be set, and it depends on the dataset's quality. In 

summary, fine-tuned deep learning models have the potential 

to achieve superior performance compared to both pre-trained 

models without fine-tuning and sequential CNN models.  

E. Bird-predicted System with Graphical User Interface 

(GUI) 

Upon completing the training process, the model exhibiting 

the highest accuracy (EfficientNet-B4) is chosen to be 

integrated into the bird-predicted system with Graphical User 

Interface (GUI), enabling users to predict the bird species 

based on input images. The system can pre-process the input 
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image and pass it through the model for prediction. The 

system then presents the predicted bird species' names and the 

corresponding confidence score. Furthermore, the system can 

predict the bird species' name even when the uploaded bird 

image is rotated or blurred format. The system output and 

testing results are depicted in Fig. 5 through Fig. 7. 

 

 
Fig. 5  Bird-predicted system with Graphical User Interface (GUI) 

 

 

Fig. 6  Bird-predicted system using rotated image 

 

 
Fig. 7   Bird-predicted system using blur image 

IV. CONCLUSION 

This paper has employed two fine-tuned deep learning 

algorithms, demonstrating superior performance in large 

datasets. An adequate number of images per label is crucial 

for the model to learn the features in the images effectively. 

The more features the model learns, the higher accuracy it 

achieves. For instance, the Kaggle 510 Birds Species Dataset 

and the 325 Birds Species Dataset achieve over 90% accuracy 

thanks to their extensive collection of over 50,000 images 

evenly distributed across bird species. Besides, the size of the 

deep learning model is another factor influencing 

performance in this task. Increasing the number of layers in 

the network allows more features to be learned at different 

levels. Moreover, the developed GUI facilitates the prediction 

of various bird species, including rare ones not commonly 
encountered in daily life, and provides users with confidence 

scores for each predicted image. 
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