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Abstract—One of the problems faced by soccer robots is how to find out the position of the robot itself and other robots on the field. A 

simple way to find out the robot's position is to use the odometry method. However, odometry is weak in accumulating position errors 

that reduce the accuracy of the moving robot's absolute position estimation and orientation. This paper presents a robot position data 

estimation system that is to be implemented on the ERSOW wheeled soccer robot. The robot can determine its position based on a 

unique landmark: an L-shaped line on the soccer robot field. We use a deep neural network method to recognize landmark L-shaped. 

Vision systems and deep learning inferences run on the Robot Operating System platform. After obtaining the distance of the robot to 

the L-shaped landmark, the robot's orientation and position relative to the field can be accurately determined based on the 

omnidirectional camera's perception. The results of the position estimation system in this study can be used to reduce position errors 

resulting from the odometry method. Based on the landmark L-shape recognition test results conducted on 641 datasets, the validation 

accuracy value is 0.806. The results of testing the robot position generated by vision obtained the largest error x about 2.32 cm and y 

about 1.99 cm. 
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I. INTRODUCTION

Robot soccer is one type of robot that has the task of 

playing football like humans [1]. There are two types of 
soccer robots, namely humanoid soccer and wheeled soccer. 

Soccer robots have basic abilities to find the ball, dribble, kick 

the ball, find the goal, recognize opponents and friends, avoid 

collisions, and coordinate with each other. The soccer robot 

also requires self-localization skills to determine its field 

position [2]. A reliable robot position and orientation 

estimation system is needed to support these basic abilities. 

Odometry is a technique that uses the robot's relative 

movement and the measurement of the angular rotational 

speed of its wheels to estimate the robot's position. 

Odometry's primary drawback is the accumulation of errors, 

which decreases the precision of estimates of the moving 
robot's absolute position and orientation [2].

The ERSOW robot is one of those wheeled soccer robots 

that has all the major individual skills. One of the most 

important skills is knowing the robot's orientation and 

position on the field [3]. ERSOW also uses the odometry 

method to assist the position estimation system. The 

orientation of the robot can be easily established using the 

IMU sensor or compass [4]. However, in the implementation 

in the field, there are many errors of angular drift in the IMU 

and also the bad influence of the magnetic field of the robot 

actuator itself. So that the robot often experiences orientation 

disturbances and the wrong position. The orientation of the 
robot affects the positioning of the robot [5]. For a long time, 

the ERSOW robot determines orientation using the IMU 

sensor. The ERSOW robot often has orientation problems 

because the IMU sensor has an accumulated drifting effect. 

So, it requires periodic orientation and position calibration 

[6]. The odometer calibration is done by detecting a line in the 

field using a line sensor placed under the robot. In research by 
Romadon [7] and Alatise and Hancke [8], Kalman Filter is 

used to estimate a robot's orientation and position. When the 

robot moves slowly with a fixed orientation, it will produce a 

good estimate of the position and orientation. However, when 
the robot has to move quickly above 110 cm/s with a rapid 

change in the robot's angle, it will result in a large orientation 
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and position estimation error. The ERSOW robot runs at 

speeds above 100cm/s, so this is considered insufficient. 

According to Luo et al. [9], to feed the ball to a friendly 

robot, a localization system is needed to determine the 

position and orientation of the robot itself and the friend robot 

in the field. Position localization is based on 3D positioning 

from the Kinect camera by processing the depth point cloud 

value[10]. The method used to identify other robots is 

Convolutional Neural Networks which run on the GPU. Point 

cloud depth is combined with 2D positioning to get real-time 
3D positioning. 

The study of Karkoub et al. [11] combines a conventional 

camera with a hyperbolic mirror. Thus, the vision becomes 

wide and looks omnidirectional. The final image quality is 

highly dependent on the shape of the mirror and the camera 

or mirror settings. To provide a 360° field of vision, mirror 

play a very important part in this vision system in the MSL 

RoboCup [12]. Omnidirectional robot often uses a 

catadioptric vision system. The camera module set consists of 

an upright camera facing a convex mirror. The mirror used, in 

general, is parabolic or hyperbolic. Engel et al. [13] study 
explains that a camera's RGB image can be regressed using a 

convolutional neural network. The deep learning approach 

promises better results in recognizing landmark objects. 

Landmarks can be used for localization, making it a useful 

map. One of the deep learning methods, DNN, can be trained 

quickly and give good test results [14], [15]. Research by 
Dwijayanto et al. [16] uses YOLO to detect landmarks on the 

soccer field in the Indonesian robot contest. However, not yet 

able to estimate the position. The fastest version of YOLOv3 

is YOLOv3-tiny. The basic difference from YOLOv3 is in the 

total layer used. To detect the system, YOLOv3-tiny uses 24 
layers. OpenCV is a framework developed for real-time 

computer vision programming [17]. In this regard, Google 

developed an end-to-end open-source machine learning 

platform using OpenCV called TensorFlow[18]. TensorFlow 

provides a deep neural network solution and can be 

considered as an advanced framework for object detection 

[19], [20], including robot application detection [21]. The 

training model greatly affects the detection test results. Large-

scale datasets are needed to get better training model results 

in learning visual features from images [22]. 

In this paper, we used L-shape line landmarks to assist the 

orientation estimation process in the ERSOW soccer robot. 
The L-shape line landmark is unique compared to other line 

shapes on the field, and this can reduce the potential for errors 

in landmark detection. The L-shape landmark is the outermost 

goal line located in front of the goal. Robots will often 

traverse the area, especially defender robots and goalkeepers. 

There are two L-shape landmarks in front of the goal. Camera 

with omnidirectional mirrors is used to take pictures of the 

field. The camera mounted on top of the ERSOW robot can 

see landmark lines up to 5 meters away. The recognition of L-

shape landmarks were carried out using the Deep Neural 

Network. 

II. MATERIALS AND METHOD 

This research was built in several stages, as shown in Fig. 

1. The vision system and artificial intelligence on the ERSOW 

robot are run using Robot Operating System (ROS). ROS 

manages all communication between the vision system, 

artificial intelligence, low-level control, and robot 

coordination [23]. The camera capture process and field 

landmark recognition are synchronized through ROS nodes 

so that the robot is able to respond to changes in the field in 

real-time [24]–[26]. 

 

 
Fig. 1  ERSOW Robot Vision System 

 

ERSOW vision system runs on a node in the ROS with a 

processing speed of 70 fps. Node vision manages several 

processes of taking pictures, pre-processing, landmark 

recognition using DNN, and calculating the distance of the 

landmark to the robot. 

A. Image Pre-processing  

At the publisher node, the camera captures the image with 

a resolution of 1280x720 pixels. The original image from the 

camera has an RGB color space.  

 

 
Fig. 2  Image cropping from 1280x720 to 640x640 pixel 

 

As shown in Fig. 2,  1280x720 pixels image is cropped into 

an 640x640 pixels image. Remove parts of the image that are 

unnecessary, such as images outside the soccer field that can 

become noise. 

 

 
Fig. 3 Image cropping results. (a).Original image captured by camera. 

(b).Cropped image 
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Image cropping is extracting certain segments of an image. 

The method is quite easy, namely by slicing the image array. 

According to Fig. 3 (a), the image is extracted at the center of 

the omnidirectional mirror image. The image cropping 

process removes the image as many as 330 pixels for the X 

axis and 80 pixels for Y axis. The image is cropped at 0 pixels 

to 330 pixels for X axis. For Y axis, the image is cropped from 

0 to 80 pixels. The cropped result is an image with a resolution 

of 640x640 pixels as shown in Fig. 3 (b). Thus, the remaining 

pieces are no longer needed. The publisher node sends the 
image to the vision localization node using image transport 

for further processing. 

B. Data Preparation  

The dataset was collected using image data in the PENS 

soccer robot field. The total number of landmark L-shape 

datasets is 641 images each, as shown in Fig. 4. Image 

resolution after going through the pre-processing stage is 

640x640 pixels. The dataset is split into 620 data for training 
data and 21 data for testing data. The collected datasets need 

to be labeled to create a high-quality dataset for model 

training [27]. Image labeling focuses on identifying and 

marking details where the L-shape line landmarks are in an 

image. The images were reviewed manually and labeled in the 

form of bounding boxes in the area of the L-shape line 

landmarks. 

 

 
Fig. 4  Landmark L-shape dataset 

C. Landmark Recognition Using Deep Neural Network 

After the pre-processing stage is complete, the vision 

system will recognize L-shape landmarks in real time using 

the Deep Neural Network. Based on the calculation of the 

distance between the robot and the L-shape landmark, the 

coordinates of the L-shape landmark and the robot's 

orientation to the field can be determined. 

 

 
Fig. 5  Model of SSD Algorithm 

SSD is an object detection algorithm created by Google 

with VGG16 (OxfordNet) as architecture. Fig. 5 shows the 

model of SSD Algorithm. SSD predicts objects using multiple 

prediction boundary boxes or often referred to as Multibox 

[28]–[31]. SSD speeds up the detection process by reducing 

the use of Region Proposal Network (RPN) 22. RPN is the 

backbone used to detect objects. SSD uses multi-scale 

features and default boxes to improve accuracy [11]. 

ERSOW robot applies machine learning algorithms to 

build models and predictions. The training involves using the 
deep learning framework that is SSD-MobileNet V2 with a 

tensor model. In the model training phase, entering large 

amounts of data into the DNN requires powerful 

computations. Here the role of the GPU is needed to shorten 

the training time. In the DNN training for ERSOW robot 

landmark recognition, three stages must be passed: loading 

the landmark dataset, training landmarks using DNN, and 

saving the training model. 2 data sets of L-shape line 

landmarks in front of the goal totaling 641 images each. 

Continued with the dataset training process using DNN with 

TensorFlow framework. Training a model requires specifying 
many parameters. But not all parameters will be used for 

inference. Tensorflow is able to identify the parameters 

needed for inference in the trained model. The output of the 

training results in the form of .pb and .config file models, 

which will then be run at the inference phase.  

After the training phase is complete and produces the best 

DNN model, the inference phase is next. Pre-trained models 

loaded using the DNN module of the Single Shot Detector 

(SSD-MobileNet V2) deep learning framework. Fig. 6 shows 

Landmark Detection Process in ERSOW robot inference. 

Camera-captured images are used as input for the inference 
system where the image display is a reflection of the field via 

an omnidirectional mirror. 

 

 
Fig. 6  Landmark Detection Process 

 
The vision-localization ROS node runs a landmark 

detection program. The program calculates the landmark 

image's blob value and displays the predicted result on the 

frame. The output of object detection is the object's pixel 

coordinates. An object detection method works to detect an 

object in an image. Next, the location of the object in the 

image frame can be detected. The bounding box determines 

the location of the object. Models can make live data-driven 
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predictions to produce actionable results. There is a challenge 

in minimizing latency issues during the inference process to 

make decisions in real-time. The landmarkRecognition 

function is executed based on a ROS::rate loop 

rate(frequency) of 5 Hz. 

 

 
DNN::blobFromImage will detect existing blobs in a 
'readyframe' image with a scale factor = 1.0, and a spatial size 

= {300x300} pixels. The spatial size is set equal to the spatial 

size of the completed training phase. 

Set input "blobimg" before passing to 'Recognize' image. 

The blob's threshold is set to 0.5; anything below that value 

will be disregarded. The program performs a scan along 

recognitionMat.rowsThis is repeated to determine the 

detected object's pixel coordinates for x, y, width, and height. 

At the x and y coordinates that have been found, a bounding 

box can be made based on the width and height of the 

recognized object. The recognized object is displayed on the 

readyframe with a delay in the form of a waitkey of 1 ms. The 
outcome of L-shaped landmark recognition is seen in Fig. 7. 

 

 
Fig. 7  Result of L-shaped Landmark Recognition 

D. Landmark coordinate 

The process to find the coordinates of the L-shape 

landmark begins with calculating the distance of the robot to 

the L-shape landmark. The distance between the landmarks to 

the robot can be calculated easily using mathematical 

equations. The values of X1, Y1, Width2, and Height2 are the 

inputs of the Rect function. Next, it would be pushed back to 

rect_det. The x, y, width, and height coordinates of a rectangle 

are handled by the Rect function. The formula center x + 

center w/2 may be used to determine the x-coordinate value 

for the Xpixel variable. While the Ypixel variable's y-

coordinate value is determined using the formula center y + 

center h/2.

 

The distance between the robot and the landmark point can 

be found using the Euclidean equation as shown in the Fig. 8. 

 
Fig. 8 View of landmark from camera with omnidirectional mirror perception 

 

If the system can recognize the landmark and pass the 

validation, the landmark coordinates (��, ��) will be 

displayed, and a visual line will be drawn to the center point 

of the robot camera (�����	 , 
����	). 

 ���   ����� � �������� � ���� � ��������
 (1) 

Where � � is distance of landmark L-shape to camera center 

in pixel, (�!� , �!�) is coordinate of landmark L-shape. 

(�����	 , 
����	) is coordinate of center camera on image 

frame. The value of the "#  angle is obtained using equation 

(2). 

 $%   &�'(% )���( ������
���( ������* + %,-

.  (2) 
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Distances in pixels are converted to distances in 

centimeters using linier regression.  

 �  / � 0� (3) 

Linear regression output, which shows the real distance in cm 

is y. A is coefficient A, B is coefficient B and x is input 

distance in pixel unit. 

E. Estimation of Robot Position 

Estimating the robot's position begins with finding the 

robot's orientation. Fig. 9 shows an illustration of calculating 

the robot's orientation with camera perception. An auxiliary 

line ℎ2 is needed that connects point C to the center point of 

the robot. Point C is the midpoint of the line in front of the 

goal or the line connecting two L landmarks.  

 

 

Fig. 9  Illustration to get robot orientation 

 

Referring to the robot soccer field that has been 
determined, it is known that the length of line C is 300 cm. 

Line C is divided in half into c1 and c2. Both have the same 

length, which is 150 cm. The value of ℎ2 can be obtained 

using the equation (5). 

 3  456678 9�:�;��(<��
�:� = (4) 

 ><  ?<%� � �� � �@<% ∗ �B ∗ 678 @CB  (5) 

 C   456678 9�D�;��(:��
�D� = (6) 

Base on equation (4) - (6). line a is the distance between 

landmark L-shape 1 and robot. Line b connects landmark 2 

with the center of the robot. Lines a and b produce an angle 

called α.  EF is formed from the angle of ∠@H � IℎJKL1B →O → @�PQPRB. EF can be obtained through the equation (7). 

While "F angle is formed from angle of �PQPR →  ∠O →@H � IℎJKL2B. The addition of EF and "F angles produce a 

value of 180 as shown ini equation (8). 

 T�   456678 U9<%�;><�(��=
�@<%∗><B V (7) 

 $�  %,- � T� (8) 

To estimate the robot's orientation level, the 

omnidirectional mirror image is divided into areas 1 to 4. The 

angle is mapped to be positive with a value of 0° to 180° and 

negative with a range between 0° to -180° as shown in Fig. 

10. The positive corner is on the right and the negative corner 

is on the left. 

 
Fig. 10  Angle Mapping for Omnidirectional Images 

W angle is formed from line ℎ2 and robot orientation from 

camera perception or camera y axis. β value is provided via 

the equation (9). @�< , �< B is point C coordinate.  

 W   &�'(% )�<( ������
�<( ������*   (9) 

 Z�[:[&  W  (10) 

The orientation of the robot is made referring to point C. 

it's based on target kick on goal setting. So, the robot's 

orientation Z�[:[& is equal to W. If the robot is facing at point 

C, then it means the robot has an orientation of 0°. At this 

stage, the orientation of the robot has been brought to 

orientation to the field.  

Furthermore, the position of the robot can be calculated 
based on the known landmark distances. Fig. 11 show an 

illustration for calculating the robot's position based on the 

landmark in front of the goal. 

 
Fig. 11  Illustration of Robot Position Based on landmark 

 
Whereas a is the penalty line's length in front of the goal, 

which is equal to 300 cm, b is distance of L1 landmark with 

robot center point (cm), c is distance of L2 landmark with 

robot center point (cm), t is the height of the right triangle 

between the robot and the L2 landmark with respect to the 

field (cm) and r is length of line between the robot's center 

and the penalty line's center (cm). 

The robot's position must first be projected to calculate the 

robot's x-coordinate value and the robot's y-coordinate on the 
field. If Fig. 11 is projected on the x-axis and y-axis of the 

field, the results are shown in Fig. 12. 
 

 
Fig. 12  The results of the projection of the robot's position on the field  
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 _   �;:;<
�   (11) 

 
%
� �&   ?_ @_ � �B@_ � :B@_ � <B (12) 

 `   √:� �  &� (13) 

s is half the perimeter of the triangle. t is the height of the right 

triangle between the robot and the L2 landmark. So, to get the 

coordinates of the y_robot above the field: 

 ��[:[&  ��� � & (14) 

 ��[:[&  ��% � `  (15) 


�F is y-coordinate landmark L-shape L2 and ��# is x-

coordinate landmark L-shape L1. K is the length of the 

triangular base line between land mark L and the robot. 

III. RESULT AND DISCUSSION 

A. Model Performance Evaluation 

The model was trained in Google Colab with Laptop Core 

i7 Gen 8 CPU @1.80GHz (8 core), 8GB RAM, OS Ubuntu 
20.04 LTS 64 bit version, OpenCV library version 4.4.5. 

Inference run on ROS Noetic with same spec CPU. The 

distribution of training data and testing is 620 data for training 

data (include for validation) and 21 data for testing data. Data 

Validation, is used to validate the model and prevent 

overfitting. This strategy will combine training data with 

validation data. Validation dataset is data that has never been 

"seen" from the model. The training and validation process 

are carried out consecutively for each epoch or learning 

iteration. A validation procedure follows each training 

session. 

 

 
Fig. 13  Model and validation accuracy 

 
Fig. 13 shows the results of the accuracy and validation 

accuracy of the resulting model. The horizontal axis 

represents the completed epoch. It can be seen that in the first 

epoch, the accuracy is less than 0.50 and so is the accuracy 

validation. The longer the training process, the fluctuations in 

accuracy and accuracy validation occur. However, the 

direction tends to increase closer to the value of 1. When the 

epoch is at the value of 60, the accuracy increases but the 

accuracy validation starts to lag behind. The train process is 

stopped at the 100th epoch to prevent overfitting. The 

accuracy value is 0.838 and the validation accuracy is 0.806. 

The results of the loss value and loss validation are shown in 
Fig. 14. 

 
Fig. 14  Loss and validation loss from model 

 

The presence of a loss value can make the model "learn" 

until the loss is reduced. The horizontal axis shows the 

running epoch. At the start of training, the loss value is 0.70 

and the loss validation is 0.698. After the epoch increases, the 

loss value and validation loss tend to decrease. However, 

there are times when it increases, as in the 33rd epoch 

validation loss towards the 35th epoch, which increased in 

value from 0.461 to 0.516. The increase in the loss value also 

occurs at certain epochs. After the epoch reaches 100, the 

result is a loss value of 0.352 and a validation loss value of 
0.35. Contrary to accuracy validation, if the loss value of the 

validation process increases, the training model is stopped to 

prevent overfitting. 

B. Landmark L-shape Detection Result 

This test is carried out to find out how far the landmark 

object can be detected. The results of the landmark detection 

test by the robot are shown in Table I. dLR is distance of 

landmark L-shape to robot (cm). At a distance of 40-60 cm, 

the robot can detect both landmarks L-shape well. At a 
distance of 80 cm, the landmark L-shape 2 was recognized, 

but the landmark L-shape 1 was not. Up to a distance of 240 

cm from the robot, the two landmarks L-shape are still easy 

to detect. Above that distance, L-shape landmarks are difficult 

to detect. According to visual observation, the white line 

looks small at distances above 240 cm. The further away, the 

smaller it looks. So, this reduces detection accuracy. In the 

field there are several robots that can communicate with each 

other. The robot closest to the landmark can share landmark 

detection information with other robots. Thus, detection 

results will be obtained that maintain the level of accuracy. 

TABLE I 

TESTING OF LANDMARK L-SHAPE DETECTION IN VARIOUS DISTANCES 

dLR (cm) L-shape1  L-shape2 

40 detected detected 
60 detected detected 
80 not detected detected 

100 detected detected 

120 detected detected 
140 detected detected 
160 detected not detected 
180 detected detected 
200 detected detected 
220 not detected detected 
240 detected not detected 
260 not detected detected 
280 not detected not detected 

300 not detected not detected 
320 not detected not detected 
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The distance data in pixels have been converted into actual 

distance units using linear regression. The results of the 

conversion error are presented in Table II. dLRV is distance of 

landmark L-shape to robot calculated by vision. 

TABLE II 

TESTING OF DISTANCE LANDMARK L-SHAPE TO ROBOT ESTIMATION  

dLR (cm) dLRV (cm) Error (cm) 

40 49 9 
60 57 3 
80 81 1 
100 103 3 
120 125 5 
140 143 3 
160 161 1 
180 180 0 

200 199 1 
220 218 2 
240 242 2 
260 256 4 

Error average 2.83 

 

In this test, the image used is a sample image that 

successfully detects the L line landmark every 20 cm taken at 

a distance of 40 cm to 260 cm as much as 12 data. There is a 

difference in value between the actual distance and the 

distance measured by the robot using vision. The largest error 

value obtained is 9 cm, and the average error is 2.83 cm. In 

addition to the linear regression formula, which cannot 
produce 100% accuracy values, the results of the reflection of 

the hyperbolic omnidirectional mirror, and the added lens on 

the camera, most likely affect the accuracy of the conversion 

of pixel distances to actual distances. 

C. Robot Position Data Estimation Result 

Testing the position coordinates of the robot based on the 

localization of the sight using the L-shape reference of the 

landmark. The test location is in the penalty area field in front 
of the goal. The test results at this stage only use image data 

that has successfully detected two landmarks simultaneously. 

This is to find out how accurate the calculation results of the 

robot's coordinates are from the sight, because if the test 

includes image data that fails to detect two landmark lines, it 

will damage the data analysis. 

 

 
Fig. 15  Testing the robot's position at (350,716) 

 

Fig. 15 presents a test of the robot's position at (350,716) 

cm. According to the estimation results made by the robot, the 

robot is at (348.25,718.68) cm. So, there is an error x of 2 cm 

and an error of y of 3 cm. Table III contains all of the test 

results in their entirety. 

TABLE III 

POSITION DATA ESTIMATION TESTING 

Data 

No. 

Position 

Estimation by 
vision (cm) 

Real Position 

(cm) 

Error (cm) 

��[:[& ��[:[& ����b ����b Err x Err y 

1 249.63 731.63 250 733 0.37 1.37 

2 256.75 780.26 250 784 6.75 3.74 

3 269.27 724.44 268 725 1.27 0.56 

4 273.78 738.12 275 740 1.22 1.88 
5 285.45 716.49 285 715 0.45 1.49 
6 307.86 793.01 305 790 2.86 3.01 
7 325.64 794.23 325 795 0.64 0.77 
8 338.65 745.08 340 745 1.35 0.08 
9 344.50 762.67 345 760 0.5 2.67 

10 352.25 711.68 360 716 7.75 4.32 

Error average (Err x, Err y): 2.32 1.99 

 

The outcomes of evaluating the robot coordinates based on 
the computation of vision with reference to the detection of 

L-shape markers are shown in Table III. The test was carried 

out 10 times. The position of the x robot coordinates is set in 

a position range of 250 to 340 cm. The largest error value of 

the robot's x coordinate error generated by vision is 7.75 cm 

with an average error of 2.32 cm. The robot's Y coordinate 

test results are set in the 700 to 800 cm range. With an average 

error of 1.99 cm, the largest robot x coordinate error value 

produced by vision is 4.32 cm. 

IV. CONCLUSION 

From the results of the tests that have been carried out, 

there is an error in the estimation of the robot position data 

based on the landmark L-shape reference using vision. The 

biggest error in the estimation of the x position is 7.75 cm with 

an average error of 2.31 cm. While the biggest error in the 

estimation of the y position is 4.32 cm with an average error 

of 1.9 cm. The estimation of robot position data using rotary 

encoder-based odometry resulted in an average error of 22.07 

cm for x and 20 cm for y [7]. Compared to this, the results of 
the estimation of robot position data based on landmark 

references using vision are considered more accurate. 

Conversion of pixels into real distances using linear 

regression still produces quite large errors. Where this 

conversion error will also affect the results on the estimation 

of the robot position data. 

Testing and analyzing position estimation when the robot 

moved is recommended for further work. How is the accuracy 

of the robot position data estimation system based on 

landmark references using vision when robot moved. In 

addition, it is also necessary to try using other regression 

methods, such as Ab-Exponential regression or a fusion of 
linear regression and ab-exponential regression. To reduce 

pixel conversion error to real distance. 
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