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Abstract—Wooden houses can potentially contain high levels of Particulate Matter (PM), which can cause lung disease in residents. 

Wooden houses have advantages in terms of maintaining the sustainability of building materials. Building design needs to pay attention 

to PM predictions in residential homes to avoid sick building syndrome. This study aimed to investigate and find predictive models for 

PM 10, PM2.5, and PM1.0 in wooden houses based on PM content in outdoor spaces. The study used quantitative methods by measuring 

PM10, PM2.5, and PM1.0 indoors and outdoors in wooden houses in Wonosobo Regency. The number of samples is 100 wooden houses. 

Measurements were carried out for one full day for each residential house. Data recording is done every 15 minutes—prediction model 

development using linear regression test and structural equation modeling (SEM). The results obtained three equations based on PM10, 

PM2.5, and PM1.0. PM10indoor = 53.202 + 0.406 PM10outdoor; PM2.5indoor = 36.865 + 0.373 PM2.5outdoor; PM1.0indoor = 34.143 + 0.194 

PM1.0outdoor. The difference with the results from SEM is PM10indoor = 52.89 + 0.41 PM10outdoor, PM2.5indoor = 38.31 + 0.37 PM2.5outdoor, 

PM1.0indoor = 26.58 + 0.19.PM1.0outdoor. There is no significant difference in the prediction results, so it can be concluded that the 

Prediction Model is valid. The implications of this research can provide input for improving the standard of PM content in wooden 

houses. The study results become input for the government in monitoring PM content in simple houses.  
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I. INTRODUCTION

Energy saving and health are the main issues in realizing 
Indoor Air Quality (IAQ) [1]. Energy use in buildings is at an 
alarming stage. The use of clean technology in buildings is 
expected to be one solution to reducing energy wastage. Using 
clean technology will create security, a clean environment, 
and economic benefits [2]. Energy savings in buildings are 
related to the thermal discomfort factor of building occupants 
[3]. Architectural elements have a role in thermal dispersion 
in buildings [4].  

Thermal is one of the factors that cause energy wastage. 
Heat distribution can be a factor that is detrimental or 
beneficial for humans. To create good thermal performance, 
heat distribution in buildings needs to be considered. Building 
planning must be supported by predictions of human comfort 
in an area [5]. Thermal spread in urban areas makes the user 

community uncomfortable. The spread of heat in urban areas 
is increasing, giving rise to Urban Heat Islands [6]. Increasing 
Urban Heat Islands affects indoor air conditions. Indoor Air 
Quality (IAQ) will get worse.   

Indoor Air Quality (IAQ) is critical to the health and 
success of indoor activities. PM10 content is one of the factors 
that affect IAQ. PM10 prediction will help realize IAQ [7]. In 
addition to PM10, PM2.5 content is also a factor that affects 
IAQ. PM2.5 is a smaller particle than PM10. Highland areas 
can potentially have high PM2.5 content [8]. The relationship 
between PM2.5 with local environmental factors and viruses 
is very close. The greater the concentration of PM2.5, the 
greater the possibility of spreading the virus [9]. 
Environmental factors around the building are one of the 
factors that increase the PM2.5 content in the room. Areas 
with many industrial areas will increase the PM content in the 
room [10]. 
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PM10, PM2.5, and PM1.0 are the three particles 
significantly affecting the IAQ. The content of the three 
particles needs to be seen in the outdoor and indoor spaces of 
the building [11]. Prediction models are needed to estimate 
the success of planning conditions in buildings and land use 
[12]. Proper building planning will produce good building 
characteristics. Building characteristics can be disclosed in 
architecture with a narrative [13]. The characteristics of the 
building will affect the acceptance of the occupants of the 
thermal and air quality in the room [14]. Prediction of the 
relationship between surface temperature and air temperature 
in the architectural realm is still relevant using regression 
analysis [15]. There is a close relationship between indoor air 
quality variables.  

The relationship between PM10 and PM2.5 in outdoor and 
indoor spaces was also strong in a Krakow residential study. 
Indoor IAQ is cleaner than outdoor IAQ [16]. The PM2.5 
concentration in the indoor room is more influenced by the 
PM2.5 concentration outside the room [17]. Indoor activity 
can also cause particulate matter to form. The PM2.5 content 
in the classroom can be affected by the use of chalk to write 
on the blackboard [18]. Indoor pollutants were caused by 
activities in Hair care [19]. Activities in the house, especially 
cooking, cause an increase in the concentration of PM2.5 and 
PM1.0. The characteristics and types of cooking technology 
differ in the concentration of PM in the chamber [20]. 

The air exchange rate is essential in reducing the room’s 
PM content. The results showed good ventilation could 
reduce PM content [21]. Windows are one of the architectural 
elements or tools that can be developed to reduce pollutant 
concentrations [22]. Filtration can also be a window 
companion tool to prevent the entry of pollutants into space 
[23]. Ventilation is challenging in soundproof buildings, so 
PM concentrations are high. Furniture in the room causes the 
addition of PM content [24].  

Poor indoor IAQ occurs in residential homes. A study in 
China of 117 residential houses showed that only 2% of 
residential houses had PM2.5 content below 75 μg/m3 [25]. 
Residential houses in Portugal showed that 75% had PM10 
concentrations above the threshold, and 41% had PM2.5 
concentrations above the required threshold [26]. Air 
containing high PM concentrations is not only in urban and 
rural areas [27]. High PM in the air makes indoor air quality 
worse in all areas.   

The composition of PM2.5 consists of various substances, 
including heavy metal compounds. Research results in 
Malaysian state kindergartens show that PM2.5 content 
worries children’s health [28]. Research on PM content in 
residential homes will add information on the health of 
children and babies who still spend much time in their homes. 
Information will help increase IAQ in space [29]. 

The fulfilment of clean indoor air quality (IAQ) is carried 
out in various ways. Sensors to monitor particles can be 
placed in residential homes to monitor indoor air quality 
(Wang et al., 2020). Data-based sensors can also predict 
indoor pollutant concentrations [30]. Data-based sensors can 
also predict indoor pollutant concentrations [31]. How to 
build a model to predict pollutant concentrations can be done 
using machine learning [32]. Some models are added with 
pollutant purification equipment as a tool used to create a 
good IAQ [33].  

Many people in Indonesia still belong to the lower class 
and live in wooden houses. Health factors often go unnoticed. 
IAQ in wooden houses is feared to have effective PM content. 
The community cannot afford to provide equipment to 
monitor PM concentrations. Research on PM content in 
wooden houses is still rarely done. A healthy home needs to 
pay attention to the maximum levels of PM10, PM2.5, and 
PM1.0. The residential design needs PM10, PM.2.5, and 
PM.1.0 predictions. This study aims to investigate and find 
predictive models for PM 10, PM2.5, and PM1.0 in wooden 
houses based on PM content in outdoor spaces. 

II. MATERIALS AND METHOD 

Climatic conditions in an area will also affect the 
concentration of pollutants in a particular area [34]. Highlands 
are areas with a certain height, so they have different climatic 
characteristics from the lowlands. Characteristics of the object 
of research affect the amount of a pollutant in the air [35]. PM 
content prediction research can be done by using linear 
regression statistical tests. Statistical tests are widely used to 
process data in indoor air quality (IAQ) research [36]. Linear 
regression analysis is relevant to be used as an analysis in 
making predictive models in indoor air quality research [37]. 
His study uses linear regression statistical test analysis using 
SPSS software. 

A. Characteristics of the Area and Research Object  

The research was conducted in Wonosobo Regency, 
Central Java, Indonesia. Wonosobo is an area with an altitude 
of 275-2250 meters above sea level. The location of 
Wonosobo Regency is shown in Figure 1. The air temperature 
in Wonosobo Regency is around 18-28oC, and the average 
humidity is 81%. Wonosobo Regency is located in a 
mountainous area. Some of the mountains in the Wonosobo 
area are Mount Sindoro, Mount Sumbing, Mount Pakuwojo, 
Mount Bismo, and several others. Wonosobo also has the 
Dieng plateau, which is famous for its temples. The average 
air temperature in the Dieng Plateau is relatively low at 6-20 

oC. Humidity is quite high at 80-100%. Wonosobo Regency 
has several industries engaged in the timber sector, which are 
significant. The Wonosobo area still has a reasonably large 
forest. Wonosobo City also has public spaces like squares and 
city parks. Currently, housing and homestays are developing 
due to the increasing number of immigrants who stay for long 
or short periods to travel. Building developments can make 
air conditions worse.   

The research object is a wooden house with a tin roof. The 
house has various floors. Some of the houses have concrete 
floors. Some houses have tiled floors, and some have earth 
floors. The house has a size that is not too wide. All residential 
houses use natural ventilation. Some houses rarely open their 
windows because the climatic conditions in Wonosobo 
Regency tend to be cold, so residents rarely open windows. 
The house has a ceiling height of approximately 3 meters. The 
front view of the wooden dwelling house can be seen in Figure 
1a. Most houses have traditional fire stoves that use wood fuel 
to produce smoke when the stove is used for cooking. 
Furnaces are also sometimes used to warm the bodies of house 
residents. The traditional furnace can be seen in Figure 1b.  

The research object that was studied was 100 houses. The 
number of samples in statistical research is at least 30 data. 
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Some experts say that statistical tests will get good results 
with a more significant number of research objects. Research 
with the number of research objects of 100 houses has met the 
statistical requirements. 

 

  
Fig. 1 Characteristic of the object (a)Front view of a wooden house, 
(b)Traditional fire stove 

B. Data Collection 

PM10, PM2.5, and PM1.0 measurements were carried out 
in 100 residential houses for one day from 6 am to 9 pm every 
15 minutes. Measurements were carried out outside and inside 
the room using a measuring device with the Krisbow brand. 
The tool is placed using a tripod (Figure 2). The data that has 
been obtained is graphed to show the fluctuations of the 
existing data. 

 

 
Fig. 2  Measurement method 

C. Data Analysis and Validation 

Data analysis was using the statistical linear regression test 
with the PM as the variable. Three models are tested, namely 
PM10 outside and PM10 inside, PM2.5 outside and PM2.5 
inside, and PM1.0 outside and PM1.0 inside. Linear 
regression requires data validity, data reliability, and classical 
assumption tests. Equation model was based on a regression 
test (Equation 1,2,3). Another analysis was carried out using 
structural equation modelling (SEM). Analysis with SEM as 
a form of Validation of regression analysis using SPSS. SEM 
analysis using AMOS software.  

 PM10 indoor = a + b.PM10 outdoor  

 PM2.5 indoor = a + b.PM2.5 outdoor  

 PM1.0 indoor = a + b.PM1.0 outdoor  

III. RESULT AND DISCUSSION 

A. Description and Test Data 

The data obtained from one house are 61 data sets, so the 
data from 100 houses are 6100 data sets for one variable. The 
total data obtained from 6 variables (PM10 indoor, PM2.5 
indoor, PM1.0 indoor, PM10 outdoor, PM2.5 outdoor, PM1.0 
outdoor) is 18,300. The description of the data can be seen in 
Table 1. The minimum value is obtained from the indoor 
PM1.0 data and the maximum from the outdoor PM2.5. The 
average maximum value is obtained from the indoor PM10 
data. 

TABLE I 
DESCRIPTIVE STATISTICS 

 
N Range Min Max Mean Std. Deviation 

Statistic Statistic Statistic Statistic Statistic Std. Error Statistic 

Particulate Matter 10 
Indoor 

6100 430.00 4.00 434.00 83.8807 .87046 67,98536 

Particulate Matter 2.5 
Indoor 

6100 425.00 1.00 426.00 62.1143 .74268 58,00490 

Particulate Matter 1.0 
Indoor 

6100 345.00 .00 345.00 44.6987 .52780 41,22247 

Particulate Matter 10 
Outdoor 

6100 483.00 3.00 486.00 75.6557 .93132 72,73807 

Particulate Matter 2.5 
Outdoor 

6100 498.00 5.00 503.00 67.6430 .79262 61,90595 

Particulate Matter 1.0 
Outdoor 

6100 460.00 4.00 464.00 54.4467 .66020 51,56327 

Valid N (listwise) 6100       
 
Test the validity of the data using Bivariate Pearson. The 

results of the data validity test show that the data validity test 
has a significance value of 0.000 (Table 2). The required 

significance value should not be more than 0.05 so that the 
data results include valid data. The data reliability test uses 
Cronbach’s alpha value. The existing data has a Cronbach’s 

1630



alpha value of 0.876. The interpretation of Cronbach’s alpha 
value is that if the alpha value is more than 0.90, then the 
reliability of the data is perfect. The reliability is high if the 

alpha value is 0.70 to 0.90. If the alpha value is less than 0.50, 
the reliability is low. The results of the alpha value of the 
existing data are high, so it includes reliable data. 

TABLE II 
DATA VALIDITY TEST  

 PM10 Indoor 
PM2.5 

Indoor 
PM1.0 Indoor 

PM10 

Outdoor 

PM2.5 

Outdoor 
PM1.0 Outdoor 

PM 10 Indoor Pearson Correlation 1 .936** .868** .434** .402** .253**

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

PM 2.5 Indoor Pearson Correlation .936** 1 .873** .395** .398** .246**

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

PM 1.0 Indoor Pearson Correlation .868** .873** 1 .380** .363** .243**

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

PM 10 Outdoor Pearson Correlation .434** .395** .380** 1 .917** .732**

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

PM 2.5 
Outdoor 

Pearson Correlation .402** .398** .363** .917** 1 .859**

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

PM 1.0 
Outdoor 

Pearson Correlation .253** .246** .243** .732** .859** 1

Sig.  .000 .000 .000 .000 .000

N 6100 6100 6100 6100 6100 6100

**. Correlation is significant at the 0.01 level (2-tailed). 

B. Outdoor PM Regression Test against indoor PM 

A regression test can be done if the variables to be tested 
are successfully tested with classical assumptions consisting 
of normality, heteroscedasticity, autocorrelation, and 

multicollinearity tests. Normality tests can use normality 
histograms. Standard data can be seen from the perfect bell-
shaped histogram. The histogram results from the existing 
data show a perfect bell shape, so the existing data is classified 
as standard (Figure 3a, 3b, 3c).  

 

 
 

Fig. 3  Normality histogram, (a)outdoor PM10 to indoor PM10, (b)outdoor PM2.5 to indoor PM2.5, (c)outdoor PM1.0 to indoor PM1.0 
 
Heteroscedasticity test using scatterplot diagram. 

Scatterplot data can be read by looking at the spread of data 
points. If the data points are spread out and do not make a 
clear pattern, it can be concluded that the data does not have 
heteroscedasticity symptoms. From the scatterplot results, it 

can be seen that the data points do not have a specific pattern, 
so it can be concluded that the existing data do not have 
heteroscedasticity symptoms (Figure 4a, 4b, 4c). The data 
includes the effect of outdoor PM on indoor PM, both PM10, 
PM2.5, and PM1.0. 
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Fig. 4  Scatterplot, (a)outdoor PM10 against indoor PM10, (b)outdoor PM2.5 against indoor PM2.5, (c)outdoor PM1.0 against indoor PM1.0 

 
The autocorrelation test was carried out by looking at the 

Durbin-Watson value and the multicollinearity test using the 
Tolerance and VIF values. The Durbin-Watson values are 
compared with the table values, and the significance values 
indicate the results in SPSS. The results of calculating the DW 
values are all significant, so there is no autocorrelation 
between the variables tested. The multicollinearity test has a 
Tolerance value greater than 0.1 or a VIF value of less than 
10. The resulting Tolerance and VIF values are all the same, 
which is 1.00. The Tolerance value of 1.00 is higher than 0.1, 
and the VIF value of 1.00 is less than ten, so there is no 
multicollinearity of the independent variables. This result is 
consistent with the assumption that multicollinearity will 
likely occur when the independent variable is more than one. 
The equation used and tested uses only one independent 
variable. 

TABLE III 
AUTOCORRELATION AND MULTICOLLINEARITY TEST 

Equation D-W 

Value 

Significant 

level 
Tolerance  VIF 

PM10_Ind = a + 
b.PM10_Out 

0.751 0.000 1.00 1.00 

PM2.5_Ind = a + 
b.PM2.5_Out 

0.705 0.000 1.00 1.00 

PM1.0_Ind = a + 
b.PM1.0_Out 

0.828 0.000 1.00 1.00 

 
The regression coefficient was obtained from the 

unstandardized coefficient B value from the linear regression 
test. The results of the regression coefficients become the 
values used to predict the tested variables. The results of the 
significance of the regression test get a value of 0.000. The 
value obtained is smaller than 0.05, so the regression results 
indicate that the resulting value is significant, explaining the 
strong influence between the independent variables on the 
dependent variable. The value of R2 is also obtained from the 
linear regression test (Table 4).  

TABLE IV 
REGRESSION TEST 

Equation R2 value a value 
b 

value 

Significant 

level 

PM10 Indoor = a + 
b.PM10 Outdoor 

0.434 53.202 0.406 0.000 

PM2.5 Indoor = a + 
b.PM2.5 Outdoor 

0.398 36.865 0.373 0.000 

PM1.0 Indoor = a + 
b.PM1.0 Outdoor 

0.243 34.143 0.194 0.000 

 
The regression coefficients' results can be written as an 

equation (Equation 4,5,6). 

 PM10 indoor = 53.202 + 0.406 PM10 outdoor  

 PM2.5 indoor = 36.865 + 0.373 PM2.5 outdoor  

 PM1.0 indoor = 34.143 + 0.194 PM1.0 outdoor  (6) 

C. Structural Equation Modeling (SEM) 

Model development using SEM as a form of Validation of 
the linear regression test using SPSS. SEM has been used to 
create a predictive indoor air quality model and shows valid 
results as a decision support system [38]. The model 
development results using SEM are not much different from 
the prediction model made by regression analysis using SPSS 
software (Figure 5).  

 

 
Fig. 5  Amos model, (a)outdoor PM10 against indoor PM10, (b) outdoor 
PM2.5 against indoor PM2.5, (c) outdoor PM1.0 against indoor PM1.0 

 PM10 indoor = 52.89 + 0.41 PM10 outdoor  

 PM2.5 indoor = 38.31 + 0.37 PM2.5 outdoor  

 PM1.0 indoor = 26.58 + 0.19.PM1.0 outdoor  (9) 

The resulting mathematical equations are three according 
to the PM10, PM2.5, and PM1.0. The influence of outdoor 
PM on indoor PM is not absolute. This result is because 
factors within the room cause the amount of PM, such as 
smoke from cooking or smoking activities [39]. Residential 
houses in rural areas have a higher PM value than the required 
threshold, even though rural areas are believed to have less air 
pollution. Residential houses in the Qiqihar area have a high 
PM value that endangers elderly residents [40]. 

a 

b 

c 
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Fig. 6  Differences in the results of field data (PM2.5 Ind), the results of 
calculations using the SPSS model and the results of calculations using the 
SEM model, (a) outdoor PM10 against indoor PM10, (b) outdoor PM2.5 
against indoor PM2.5, (c) outdoor PM1.0 against indoor PM1.0 

 
Seasons also affect PM concentrations. Different seasons 

will create different PM concentrations. PM concentrations 
are more significant in summer than spring or winter [41]. The 
PM concentration does not affect the air conditioning in the 
room that uses air conditioning equipment. PM10 has a 4% 
impact, while PM2.5 has a 19% impact on poor indoor air 
quality. The impact caused by PM is considered insignificant 
in indoor air quality [42]. Research in China states that indoor 
PM concentrations can mediate the spread of the COVID-19 
virus [43]. The concentration of PM in the room is still 
necessary to pay attention so that it does not exceed the 
required threshold. In addition, the construction of residential 
houses needs to pay attention to materials that can cause a 
large concentration of PM in the room. Human activities that 
cause PM must also be reduced and anticipated with healthy 
equipment. The accuracy of a predictive model needs to be 
compared with data from the field. Not all models can predict 

accurately according to the data in the field. A valid model 
can be similar to the data in the field [44].  

Comparing the results obtained from calculations using the 
SPSS and SEM models is not much different. The prediction 
calculations for PM10 and PM2.5 are almost 
indistinguishable. Judging from the value of PM1.0, the 
calculation result using SPSS is slightly higher than the 
calculation from the SPSS model. The two predictions 
obtained by the SPSS model and the SEM model are quite 
different from the data from the field. The difference in data 
between SEM and SPSS predictions in the field is seen in the 
PM value above 200. The PM value above 200 from the field 
data includes anomaly values due to house factors. The PM 
prediction inside the room is calculated based on PM data 
from outside.  

IV. CONCLUSION 

Prediction of indoor PM concentration can be formed 
using linear regression test. Model validation is done by using 
a structural equation modeling model. The results of the two 
models built from SPSS or SEM show similar results. Slightly 
different results are seen in the formulation of the PM1.0 
model. The calculation of data using SEM and SPSS has 
differences from field data. The data reference is a PM from 
outside the room. Factors causing the high PM concentration 
also come from inside the house, with activities that cause 
smoke. The model made to predict the PM concentration 
needs to be added to the factors causing the high PM from 
inside the room.  
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