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Abstract—To overcome the long-term impact of stroke attacks on society, stroke rehabilitation is the only solution WHO and many 

healthcare organizations suggested. Until recently, stroke rehabilitation monitoring has been done using visual observation, which has 

several drawbacks. EEG is a new approach to understanding how the central nervous system controls motion. This study compares the 

motion pattern done by a group of 12 healthy subjects and nine stroke patients during the rehabilitation motion tasks using the 

OpenBCI system. Time-frequency domain features, namely PSD, MAV, and STD are used to explore how the patterns differ. Three 

rehabilitation motions are implemented: grasping, elbow flexion extension, and shoulder flexion-extension. The result shows that the 

healthy cross-brain correlation happens in healthy subjects. This means that when the left-side arm does the motion, the EEG feature 

values from the right hemisphere are higher, and vice versa. However, this healthy cross-brain correlation pattern did not happen 

within the stroke patient group. The overall value of PSD, MAV, and STD from both hemispheres during all motions is higher in the 

healthy group than in stroke patients. The type of motion also contributes to describing the time-frequency domain feature comparison. 

In conclusion, this gap value using time-frequency domain features can be used as a target for stroke rehabilitation programs by 

implementing the EEG technology to monitor it.  

Keywords—Stroke rehabilitation monitoring; EEG time-frequency domain; PSD; MAV; STD; home plasticity training; 

electroencephalogram. 
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I. INTRODUCTION

Stroke has been known as the second biggest cause of death 

among the world population. Billions of dollars have been 
spent not only on disease cure and prevention but also on 

patient rehabilitation. According to the world stroke 

organization, approximately 13 million people will have a 

stroke attack every year worldwide, and about 5.5 million 

people will die due to stroke disease. Many organizations that 

are concerned about stroke worldwide, such as the Center for 

Disease Control and Prevention in the United States, have 

reported that 1 in 6 deaths due to cardiovascular disease was 

caused by stroke. Every 40 seconds, one person in the United 

States suffers from a stroke. 

These facts have recently dominated discussions among 

clinicians, doctors, and the government. The only way to 

reduce the severity of a stroke is to run rehabilitation [1]–[3]. 

Several nations have developed several guidelines and scaling 

standards to provide and monitor the rehabilitation of stroke 
patients, such as Canada, New Zealand, The Netherlands, the 

United Kingdom, and Australia [4]–[9]. Moreover, several 

methods have also been made to support the rehabilitation 

process, such as robotic systems and virtual training [10]–

[15]. However, due to the complexity of performing the 

rehabilitation of stroke patients (because rehabilitation 

involves not only a physical condition but also psychological, 
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social, economic, and other aspects) [16], [17], several stroke 

patients reported that rehabilitation did not give any 

improvement or only give small improvement regarding their 

motor control [18], [19]. 

We also discovered that clinicians visually monitor the 

progression of the rehabilitation process in most techniques 

for rehabilitating stroke patients. Even though the national 

standard scale and operation for the stroke rehabilitation 

program have been implemented, visual observation by 

clinicians to evaluate rehabilitation progress is subject to 
many drawbacks and limitations, such as low accuracy, 

difficulty in precise quantification of progress, fatigue, and 

other human errors that can blur the evaluation result. EEG 

(electroencephalography) is a new approach to obtaining the 

electrical signal from the brain that has been used in several 

previous studies to evaluate the motor function and other 

related brain activities of healthy subjects or patients [20]. 

For example, some previous studies [21]–[23] explored the 

cortical oscillations behavior related to motor function in the 

brain. These studies explored motoric functions and post-

stroke rehabilitation [24]–[26]. Other studies regarding the 
use of EEG for exploring the science of human motor control 

in many fields have also been discussed by Soufineyestani et 

al. [20]. Since EEG technology can be used to understand the 

pattern of the human brain's electrical signals in controlling 

motion, we hypothesized that EEG could also be used to 

monitor the progressiveness of stroke rehabilitation. In our 

previous studies, we explored the EEG of stroke patients 

through time and frequency domain analysis [27]–[29], but 

the studies were done within one group of stroke patients. 

In time-domain analysis, we found that statistical 

parameters such as Standard Deviation (STD) and Mean 
Absolute Value (MAV) showed a high potential to be used as 

a parameter to describe the stroke condition. Another study by 

Setiawan et al. [28] discovered that PSD (Power Spectral 

Density) was the best feature for describing the difference 

between the healthy and affected hands in stroke patients 

when using frequency domain analysis. However, the study 

only compared EEG data from the healthy and affected hands 

of the same stroke patient.  

Previous studies have not seen a clear difference in EEG 

time-frequency domain patterns between healthy subjects and 

stroke patients. In some previous studies [27]–[29], a higher 

MAV value of a stroke patient's EEG indicates a better state 
of brain control. The same rule should apply if this is the case 

when discussing the PSD value. This means that the higher 

the PSD value of a stroke patient's EEG, the better the 

condition of their motor control (or simply healthier). Based 

on that analysis, in this study, we present the EEG of healthy 

subjects while performing the same motion tasks given to 

stroke patients during rehabilitation and compare them with 

the EEG from stroke patients in time-frequency domain 

analysis. In the time domain, we compare the healthy and 

stroke patient groups using MAV and Standard Deviation 

(STD) values. Meanwhile, we use PSD value in the frequency 
domain to distinguish between healthy subjects and stroke 

patients. We also discuss whether we can describe the severity 

level of stroke using time-frequency domain features (MAV, 

STD, and PSD), such as low, moderate, and severe stroke 

conditions. The results of this study will demonstrate the 

feasibility of using MAV, STD, and PSD as a new approach 

to monitoring stroke rehabilitation progress. 

II. MATERIALS AND METHOD 

This study is intended to compare the EEG pattern between 

healthy subjects and stroke patients using two domains of 

parameters, namely the time and frequency domain. Twelve 
healthy subjects are freely participating in this study (5 

females, 7 males, age of all genders: 30±5) and 12 stroke 

patients (age: 50±5.4 years old) who performed the same 

motion tasks for rehabilitation, such as grasping elbow 

flexion-extension and shoulder movement/upper limb 

flexion-extension. All volunteers were fully informed about 

the purpose of this study and the potential side effects of 

participating in the EEG measurement. Before participating in 

this experiment, each participant signed an informed consent 

form. The EEG of healthy subjects is used as the standard for 

comparing the EEG of stroke patients. Because we are 
comparing the severity level through EEG features, clinicians 

measured the level of stroke severity in the 12 stroke patients 

using the NIH Stroke Scale (National Institutes of Health 

Stroke Scale) [7], [30], [31]. These 12 stroke patients came 

from a public regional hospital in Kediri District, East Java, 

Indonesia. 

Based on their movement conditions, stroke patients can 

generally be classified into hemiparesis and hemiplegia. 

These two conditions indicate the severity of the patient's 

stroke. The patient has difficulty making hand movements 

(certain body parts) in hemiparesis. Meanwhile, in hemiplegic 

conditions, stroke patients experience total paralysis because 
all parts of their bodies are difficult to move. Therefore, a 

label is needed to determine the stroke severity level. This 

label consists of low, moderate, and severe stroke conditions. 

The most relevant forms of labeling are observation and direct 

measurement from doctors based on the NIHSS score. Table 

1 shows the 12 stroke patients in three categories, Low, 

Moderate, and Severe, based on NIHSS scored by the doctor, 

including their side of the affected hand. The assessment 

found 9 of the 12 stroke patients had a stroke that affected 

their left hand. To reduce the possibility of bias in data 

analysis, only stroke patients with an affected left hand will 
be included in the further data processing.  

In general, the methodology of this study consists of 4 main 

steps: data retrieval (EEG recording from all 9 stroke 

patients), EEG pre-processing, EEG feature extracting (STD, 

MAV, and Welch's PSD), and EEG features analysis. The 

EEG features of the healthy and stroke patient groups are 

compared in the analysis. There is also some discussion about 

the stroke severity level in those three EEG features during 

three motion tasks. Fig.1 depicts the flow of all processes. 

A. EEG Recording 

EEG is an electrical signal produced by the human brain 

during many activities. EEG wave is in the range 0-50 Hz, 

with a maximum amplitude of 100 microVolt. EEG has 

several sub-bands on different frequency ranges [20], [32]. 

They are Delta (δ), Theta (θ), Alpha (α), Beta (β), and Gamma 

(γ). This experiment focuses on EEG subbands such as Alpha 

Low, Alpha High, Beta Low, and Beta High[28]. The 

UltraCortex Mark IV device (one of the OpenBCI products) 
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was chosen for EEG data recording because it is easier to use 

and more portable. The sampling rate is 256 Hz. 

 

 
Fig. 1  Methodology 

 

In addition, this device can also capture brain signals 

within the range of frequency 0 - 50 Hz. Another feature is 

that it has 16 electrodes installed. Thus, a maximum of 16 

channels can be used for EEG recording. The electrodes are 

also connected to a microcontroller device (Cyton Board) so 
that the EEG data from the measurement results can be sent 

to the receiving device (computer) via Bluetooth. The 

computer on the user's side must also be fitted with a receiving 

dongle to record and save the EEG data in a *.txt file. The 

data in this file is a numeric value that represents a human 

EEG signal. 

Although 16 channels can be used for recording EEG data, 

we only used four channels representing the brain's motor 

control to compare the EEG between the healthy subjects and 

the stroke patients. The four channels include F3, F4, C3, and 

C4. The frontal channels (F3 and F4) are located at the front 

of the human head, while the Cortex channel (C3 and C4) is 
the outer part of the cerebrum that plays a role in regulating 

the body's motor activities (related to the nervous system). 

Table 1 shows the details of the stroke patient group. Three of 

the 12 stroke patients were excluded from the study because 

their affected hand was on the right side. The total number of 

patients for further analysis in the stroke patient group was 

nine. 

TABLE I 

STROKE PATIENT DATA 

Patient Sex Age 
Affected 

Hand 
NIHSS 

Score 
Stroke 

Severity 

1 Male 52 Left 17 S 

2 Male 61 Left 16 S 
3 Male 66 Left 15 S 
4 Male 48 Left 15 S 
5 Male 60 Left 10 MD 
6 Male 58 Left 9 MD 
7 Female 56 Left 5 L 
8 Female 50 Left 3 L 
9 Male 58 Left 2 L 

*Note: S = Severe; MD = Moderate; L = Low 

 

The NIHSS score ranges from 1 to 24. Stroke patients with 

low severity have NIHSS scores ranging from 1 to 5, whereas 

those with moderate severity have NIHSS scores ranging 

from 6 to 14. Meanwhile, stroke patients with severe 
conditions are assigned scores ranging from 15 to 24. There 

are three patients with low severity (L), two with moderate 

severity (MD), and four with high severity (S) among the nine 

stroke patients. Every stroke patient has a left affected hand. 

The EEG feature of those patients is extracted based on the 

severity label assigned by doctors. Each patient was asked to 

perform several hand movements on their affected hand, 

including grasping (motion one), elbow flexion extension 

(motion two), and shoulder movement or upper-limb flexion-

extension (motion three). Each hand movement is performed 

for approximately 20 seconds. Therefore, each stroke patient 
required 60 seconds of EEG recording of the three motion 

tasks. A timer with an audio marker is applied to remind the 

patient to change movements from the first to the second and 

third movements. Of the recorded EEG data for each 

movement, only about 10 seconds were taken for EEG feature 

extraction. The overview of cutting the EEG data is shown in 

Fig. 2. 

 
Fig. 2  Data segmentation for the Pre-processing stage 

 
For feature extraction, 10 seconds of EEG data were 

extracted from each recorded EEG data during one specific 

motion (the middle portion). The main reason is to ensure that 

the EEG data accurately represents the motion state and not 

an intermediate state of changing the motion task. 

B. EEG Pre-Processing 

The raw EEG data tends to contain noise and artifacts. For 

this reason, the pre-processing stage aims to clean the EEG 
signal that has been exposed to artifacts. The pre-processing 

stages of EEG data consist of bandpass filtering, Automatic 

Artifact Removal (AAR), Artifact Subspace Reconstruction 

(ASR), and Independent Component Analysis (ICA). All pre-

processing stages are done using Matlab (EEGLab). The EEG 

bandpass filtering is carried out using an IIR bandpass filter 

with a frequency range of 0.5 Hz to 45 Hz. The lowpass filter 

was set to 0.5 Hz because, at that frequency, the signal artifact 

coming from the muscle tends to be lower than 0.5 Hz [33]. 

In addition, to avoid artifacts or noise from the electrical 

signal (50/60 Hz), the high pass filter was set to 45 Hz. During 

the EEG recording process, the most prominent artifact is the 
electrical signal frequency. 

EEG Recording of healthy and stroke 
patient groups

EEG pre-processing

Time-Frequency Domain feature extraction 
in Alpha and Beta EEG sub-band

Comparing the EEG Time-Frequency 
domain features between the healthy and 

stroke patient group

10 second of 
Grasp 

Movement

10 second of 
Elbow 

Flexion-
Extension

10 second of 
Shoulder 
Flexion-

Extension
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After performing bandpass filtering for the signal, the next 

process is artifact cleaning using Automatic Artifact Removal 

(AAR). The EEG signal is very vulnerable to artifacts in the 

form of other signals (EOG, EMG, and ECG). In order to 

separate or eliminate EOG signals (signals arising from the 

eye muscles), the Blind Source Separation (BSS) method is 

used. This method is already included in the Automatic 

Artifact Removal (AAR) process. Not only EOG signals, 

EMG signals (signals arising from muscle movement), and 

ECG signals (signals arising from the heart muscle) are also 
cleared out or separated from EEG signals. Meanwhile, the 

Independent Component Analysis (ICA) process is an 

advanced stage of cleaning artifacts in the EEG signal. The 

ICA process will maintain the main independent components 

of the signal. These independent components must also 

describe the EEG signal's characteristics clearly. 

C. Time Domain Features Extraction 

In this study, statistical parameters such as Mean Absolute 
Value (MAV) and Standard Deviation (STD) were extracted 

from the EEG data [27]–[29], [34], [35]. Statistical 

parameters show the relative amplitude (power) of EEG data. 

Within 10 seconds duration of EEG data, there will be 10x256 

data points. These 2560 data points were then cut into 20 

chunks. Each chunk consists of 128 data points. The MAV 

and STD are then calculated from each chunk. The MAV and 

STD features are then calculated as the average value of those 

20 chunks. Below is the formulation for calculating the Mean 

Absolute Value (MAV) and Standard Deviation (STD) 

features. 

 Mean Absolute Value:  

��� = ∑ |��|	�
��  (1) 

 Standard Deviation:  


�� = �∑(�� − �̅)�� − 1  (2) 

D. Welch’s PSD Feature Extraction 

In the frequency domain, PSD (Power Spectral Density) is 

one of the features of the EEG signal for further analysis [28], 

[33], [36]. PSD represents the power distribution at a certain 
frequency or frequency range[37]. The calculation of the PSD 

utilizes Fourier Transform. Meanwhile, Welch's method is a 

form of approach to calculating the PSD value of an EEG 

signal. Welch's method has become very popular in 

calculating PSD values because it can reduce noise in the 

frequency spectrum compared to conventional PSD or other 

PSD methods. This study calculated the Welch's PSD feature 

extraction using Python programming. The following are the 

formulas for calculating Welch's PSD[37]. 


�(�) = 1����(�)
�
�
�

 (3) 

where: 
�(�) = periodogram value for Welch’s PSD 
 

��(�) = 1� |��(�)|� (4) 

where: 
 

� = �  �["]$
%
&

 (5) 

and,  ��(�) is the DFT for each window 
 

E. Data Presentation 

For data analysis, we present the MAV, STD, and PSD 

values from both groups of healthy subjects and stroke 

patients when performing the rehabilitation motion tasks such 

as grasping, elbow flexion-extension, and upper-limb flexion-
extension. The features were extracted from 10 seconds of 

EEG data. The features calculation was obtained from the 

average of all four EEG sub-bands, namely Alpha High, 

Alpha Low, Beta High, and Beta Low, and was presented 

based on the same hemisphere (for example, F4 is presented 

with C4, and F3 is with C3). The EEG features for the healthy 

group are presented in two types of motions: the left upper 

limb and the motion from the right upper-limb, whereas the 

EEG features for the stroke patients group are extracted from 

only the left upper limb. Furthermore, we present EEG 

features from all three types of low, moderate, and severe 
stroke severity levels to see if our three chosen features can 

differentiate the stroke severity levels. 

III. RESULTS AND DISCUSSION 

A. PSD Feature 

The Power Spectral Density (PSD) from the healthy 

subjects is used to compare stroke patients' PSD. This result 

presentation follows how the brain controls the motions [38]. 

The right hemisphere controls the motion of the left-side 

upper limb, while the left hemisphere controls the right-side 
upper limb. When we adopt this concept, we should find that 

when the left-side arm makes the motion, the PSD value made 

by the right hemisphere should be higher, and vice versa. 

Fig. 3 shows that the right-left hemisphere theory [38] 

works well in this result. When the right upper limb was 

moved, the PSD of the left hemisphere was greater than the 

PSD of the right hemisphere. When the left-side upper limb 

was moved, the right hemisphere displayed a higher value of 

averaged-PSD (see Fig. 3). PSD, or Power Spectral Density, 

represents brain power distribution. PSD is proportional to the 

amount of electrical activity in the brain.
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Fig. 3  The PSD value of the healthy subjects in three motion task 

 

Meanwhile, Fig. 4 depicts the PSD value of stroke patients. 

Fig. 4 shows the PSD only from the right hemisphere because 

all of the patients' motions were performed by the affected 

hand, the upper left limb. Fig. 4 shows that stroke patients' 

movement patterns differ from those of the healthy groups. 

 

 
Fig. 4  The PSD value of stroke patients based on the severity level 

B. Mean Absolute Value (MAV) and Standard Deviation (STD) Feature 

 
Fig. 5  The average MAV and STD values from all healthy subjects (a-b: the right upper limb motion, c-d: the left upper limb motion) 
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Fig. 6  The average MAV and STD values from all stroke patients in all three motion tasks 

 

Similar to the PSD value, in time-domain features, MAV 
and STD are also presented in the average value per healthy 

subject from all 4 EEG sub-bands, and then the mean value of 

MAV and STD of all healthy subjects was calculated and 

presented in Fig. 5 based on the hemisphere. Meanwhile, the 

average MAV and STD values from all stroke patients in all 

three motion tasks are presented in Fig. 6. 

C. Discussion 

The results are presented in three ways in this section. The 

first is a comparison of each PSD, MAV, and STD value per 
hemisphere between the healthy group and the stroke patients 

to see how the hemisphere and the sidearm are related. The 

second is a more general comparison of the PSD, MAV, and 

STD values between the two groups. The third step is to see 

if the different stroke severity levels cause a significant 

difference in PSD, MAV, and STD values, particularly when 

performing the three different motion tasks. 

According to the nature of how the brain should work [32], 

[38], [39], in this experiment, we use the EEG pattern from 

the healthy group as a ground truth. When we look at Fig. 3, 

especially on the average bars, we can see that the PSD value 
on the right hemisphere is higher when the left arm makes the 

motion. We call this condition a healthy brain cross-

correlation (HBCC). When we compare it to the motion of the 

right arm, we see a similar HBCC condition. The difference 

between these two HBCC conditions is the average PSD value 

produced by each hemisphere. When the motion is performed 

with the right hand, and the subject is also right-handed, the 

PSD value from both hemispheres appears to be lower than 

when the motion is performed with the left-side arm. 

This could be explained by healthy subjects requiring less 

effort to perform the right-side arm motion. Simply put, the 

brain requires less electrical stimulation. When the left arm 
makes the motion, when the subjects are right-handed, they 

will require more attention and effort in the brain to control 

the motion done by the left arm. This asymmetric condition 

confirms well with the analysis done by Lukoyanov et al. [40], 

even though it compared two groups of stroke patients with 

different brain injury conditions. 

Furthermore, the HBCC condition did not occur in the 

stroke patient group (see Fig. 4). The left arm performs all 

motions in the stroke patient group, and all stroke patients are 

right-handed. According to Min et al. [38], the PSD of the 

right hemisphere (F4 and C4) should be higher than the PSD 
of the left hemisphere (F3 and C3), but the stroke patients 

show a different pattern in this experiment. When we compare 
the overall PSD value between the two groups in all tasks, we 

can see the result in Fig. 7 below. 

 

 
Fig. 7  PSD value comparison from the same hemisphere and the same arm-

side between the healthy subject and the stroke patient groups during three 

motion tasks 

 

Fig. 7 shows that the PSD value from stroke patients in the 

same hemisphere is generally lower than that of healthy 

subjects. In the healthy subject group, we discovered that 

when the left-side arm makes the motion, and the subjects are 

all right-handed, the brain requires more attention and effort 

to perform the motion, resulting in a higher PSD value. 

However, the PSD value from the stroke patient group (from 

the same hemisphere) appears insufficient (see Fig. 7). 
Using MAV and STD features, we can see that the HBCC 

condition occurs in healthy subjects in time-domain analysis 

(see Fig. 5). When the left arm performs the motion, the MAV 

and STD values from the right hemisphere tend to be higher. 

However, the average value from each hemisphere differs. 

However, overall, when we compared the value of MAV 

and STD from the same hemisphere between the healthy 

subjects and the stroke patients, we found that the average 

MAV and STD from the healthy subjects showed a higher 

value (see Fig. 8). This suggests that the amount of brain 

electricity activated by stroke patients has decreased as a 
result of some damage to the patient's brain network [41]. 

From the standpoint of stroke patient rehabilitation, we 

believe that this gap value can be used as a target that must be 

met when stroke patients perform plasticity training or 

rehabilitation toward the value of the healthy subject. 
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Fig. 8  The comparison of MAV and STD value from the right hemisphere 

from all motion tasks between the two groups 

 

The type of motion appears to be important as well [39], 

[42]. When we look at Fig. 4, we can see that with a simpler 

motion task, the stroke patients show a similar HBCC pattern 

to the healthy group. We hypothesize that this is because the 

grasping motion is so simple that the level of difficulty cannot 

clearly distinguish between the stroke patient group and the 
healthy group. However, when we examine the shoulder 

motion task, we can see a significant difference between the 

two. We could not find clear evidence that stroke severity 

levels can be differentiated using the PSD, MAV, and STD 

within the stroke patient group. This result showed that this 

method of comparing several parameters such as MAV, STD, 

and PSD between the healthy subjects and the stroke patients 

has a high potential to be used as a tool for monitoring stroke 

patients at home. The stroke patients can perform the 

rehabilitation motion at home, then the EEG system records 

each parameter during the rehabilitation, and the parameter 
data are saved to a database. For the next rehabilitation 

schedule, these two results can then be compared to see the 

progress of the rehabilitation process. We call this system 

home plasticity training. In terms of applicability, this system 

can ease stroke patients in reaching the hospital and avoid 

them from the traffic jam, stress during the queue line in the 

hospital, and other difficulties when stroke patients have to go 

to the hospital.  

IV. CONCLUSION 

We can conclude from this experiment that EEG in the 

healthy group using time-frequency domain analysis (PSD, 

MAV, and STD) shows that the HBCC condition occurs as 

described in McManus et al [33]. When the left arm moves, 

the EEG in the right hemisphere rises, and vice versa when 

the right arm moves. However, this pattern in the stroke 

patient group did not occur. PSD, MAV, and STD values from 

the healthy group are generally higher than those from the 

stroke patient group. This implies that the electrical signal 

activated by the brain hemisphere in stroke patients was 
reduced by brain damage. There is a gap value in PSD, MAV, 

and STD parameters between the healthy and stroke patient 

groups, which can be used as a standard for a stroke 

rehabilitation program. The comparison, however, must be 

calculated within the same stroke patient. Overall, this study 

demonstrates the utility of using PSD, MAV, and STD as 

distinct parameters for monitoring stroke rehabilitation. 

However, more patients, particularly those with varying 

severity levels, should be included in future work so that we 

can gain a better understanding of the severity levels when 

described using PSD, MAV, and STD. 
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