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Abstract— A new swarm intelligence-based metaheuristic optimizer, namely Partial Leader Optimizer (PLO), is presented. PLO 

contains several autonomous agents that represent the solution. The best solution represents collective intelligence, i.e., the leader. PLO 

has distinct mechanics in finding the acceptable solution during the given iteration. Every agent moves to a specified target in every 

iteration. Two options can be chosen to determine the target. First, the target is calculated by pushing the virtual best solution away 

from the corresponding agent. Second, the target is randomly chosen within the solution space. This target selection is conducted 

stochastically based on the threshold that is set manually before the iteration. Then, several candidates are generated between the target 

and the agent's current location. The distance between adjacent candidates is the same. The agent moves to the best candidate and 

updates the best solution. Simulation is implemented to observe and analyze the PLO’s performance. The well-known 23 benchmark 

functions are used as the optimization problems. In this simulation, PLO is benchmarked with marine predator algorithm (MPA), 

particle swarm optimization (PSO), average subtraction-based optimizer (ASBO), slime mold algorithm (SMA), and pelican 

optimization algorithm (POA). The result shows that PLO is competitive compared to these algorithms, especially in solving fixed-

dimension multimodal functions. PLO is better than PSO, MPA, SMA, ASBO, and POA in optimizing 22, 19, 18, 9, and 20 functions 

out of 23, respectively. 
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I. INTRODUCTION

Optimization is a broad subject that spreads widely in many 

areas, such as operations research, engineering, finance, 

computation, telecommunication, and many others. Its 

popularity comes from its primary characteristic of achieving 

optimal results within limited resources. The optimal result 

can be considered as minimizing cost or maximizing 

revenue/profit. The examples are as follows. Wu et al. [1] 

proposed an optimization model for inventory routing 
problems to minimize transportation costs, i.e., fuel 

consumption. Miyata and Nagano [2] proposed an 

optimization model for the distributed flow shop to minimize 

the make-span. This model is optimized using the variable 

neighborhood search (VNS) and iterated greedy algorithm 

[2]. Othman et al. [3] proposed a new method by hybridizing 

the water flow algorithm and VNS to solve the classic 

traveling salesman problem. Fathollahi-Fard et al. [4] 

proposed an optimization model in the home healthcare 

system to optimize the total cost and unemployment time and 

maintain continuity. Mokhtari et al. [5] proposed an 
optimization model to solve the university course timetabling 

problem in the postgraduate course. Shi [6] optimized the 5G 
network using Viterbi and Bayesian algorithms to meet the 

increasing network demand within the given bandwidth. Zhao 

et al. [7] proposed an optimized urban rail transit using a 

genetic algorithm for passengers’ travel time and cost and 

operational cost. 

Swarm intelligence is a popular method used extensively 

in many optimization studies. Swarm intelligence is part of a 

metaheuristic algorithm. As a metaheuristic algorithm, swarm 

intelligence uses a stochastic approach so that it tries to find 

an acceptable or high-quality solution without guaranteeing 

the optimal global solution [8]. In general, swarm intelligence 

consists of several autonomous and distributed agents that 
work independently to find the best solution without 

centralized coordination [9]. PSO and ant colony optimization 

(ACO) are popular swarm intelligence algorithms. 

Many shortcoming metaheuristics algorithms were 

developed based on the swarm intelligence mechanism. In 

general, these shortcoming algorithms use a leader or several 

leaders as a reference to improve the solution. PSO becomes 

the early algorithm that adopts this mechanism by using the 

global and local best solutions as references. Marine predator 
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algorithm (MPA) and grey wolf optimizer (GWO) are popular 

algorithms adopting the leader concept. In MPA, the predator 

represents the local leader and interacts with its corresponding 

prey [10]. In GWO, the three best solutions represent the 

leaders so that the entire wolves move toward the resultant of 

these leaders [11]. 

Many shortcoming algorithms adopt the leader concepts in 

many ways. Several algorithms, such as Komodo Mlipir and 

Red Deer Algorithms (RDA), combine the leader concept and 

cross-over. In KMA, the male dragons represent the leaders 
[12]. The big male dragons crawl toward the better big male 

dragons and avoid the worse big male dragons [12]. The 

female dragons cross over with the highest quality male 

dragon [12]. The small male dragons follow the big male 

dragons [12]. In RDA, the male commanders represent the 

leaders, creating a group of harems [13]. Several other 

shortcoming algorithms are northern goshawk optimization 

(NGO) [9], golden search optimization algorithm (GSOA) 

[14], pelican optimization algorithm (POA) [15], hybrid 

leader-based optimization (HLBO) [16], three influential 

members-based optimizer (TIMBO) [17], tunicate swarm 
algorithm (TSA) [18], squirrel search optimizer (SSO) [19], 

butterfly optimization algorithm (BOA) [20], multi leader 

optimizer (MLO) [21], and so on. In POA, every iteration 

generates a randomized leader, and entire agents try to follow 

this leader [15]. In NGO, the leader is selected randomly from 

the population [NGO]. This concept is like MPA during the 

eddy formation [10]. In GSOA, the best solution becomes the 

leader, and the agent moves toward this leader based on 

sinusoid calculation [14]. In MLO, several best agents 

become the leaders, and the number of leaders is set manually 

[21]. This mechanism can be seen as a dynamic version of 
GWO. 

All agents will generally follow the leader in the swarm 

intelligence-based metaheuristic algorithms. This leader can 

be a single global leader, a single local leader, a combination 

between the global leader and local leader, or several global 

leaders. In some algorithms, random movement within the 

solution space is conducted only if the leader-guided 

movement fails to improve the agent's current solution. On the 

other hand, swarm intelligence-based algorithms where not all 

agents follow the leader are hard to find. 

There are also various stochastic mechanisms when 

moving toward a leader. Many algorithms work uniformly 
and randomly. Some other algorithms choose a normal 

distribution. There are few algorithms to choose Levy Flight 

or Brownian motion. Most algorithms generate only one 

replacement candidate. 

Based on this circumstance, this work presents a novel 

leader-based metaheuristic algorithm, a Partial Leader 

Optimizer (PLO). The concept is that not all agents refer to 

the leader, i.e., the best solution, to improve their current 

solution. Meanwhile, some agents refer to specific 

randomized solutions within the solution space. Moreover, 

this work proposes multiple solution candidates rather than 
single or static candidates for each agent, like in most 

metaheuristic algorithms. 

The main contribution of this work is that in PLO, only 

several agents will conduct the leader-guided movement. 

Meanwhile, the other ones will conduct randomized 

movements. Due to the stochastic mechanism, this role will 

be shuffled in every iteration.  

This paper is organized as follows. Section one presents the 

background; review of swarm intelligence, especially the 

shortcoming metaheuristic algorithms; the research objective; 

and the contribution of this work. Section two presents the 

proposed model, which consists of the concept, algorithm, 

and mathematical model of PLO and the simulation scenario. 

Section three presents the simulation result and discusses the 

in-depth analysis and findings regarding the result. Finally, 
section four summarizes the conclusion and future research 

potential. 

II. MATERIAL AND METHOD 

A. Proposed Model 

The model of PLO is presented in three parts: concept, 

algorithm, and mathematical model. The concept represents 

the mechanics of the exploration-exploitation strategy and its 

reasoning. The algorithm represents procedural formalization 
and is presented in pseudocode form. The mathematical 

model represents the more detailed formalization of each 

process conducted in the algorithm. 

Swarm intelligence is the basis of the PLO algorithm. 

There are a specific number of autonomous agents in it. These 

agents stand in for the solution. Its main purpose is to find the 

most optimal solution within the solution space. Due to its 

autonomy, each agent moves within the solution space 

independently based on its perception of its environment. 

Each agent tries to find a better solution in every iteration. 

Besides, there is collective intelligence, namely, the best 

solution. The best solution is the solution whose fitness is the 
best among agents. This best solution becomes the final at the 

end of the iteration. As a metaheuristic algorithm, PLO is 

divided into two phases. Phase one is initialization. Phase two 

is iteration. In the initialization, all agents are randomized 

within the solution space. This distribution follows a uniform 

distribution. In the iteration, each agent tries to improve its 

solution quality. 

This algorithm is called a partial leader optimizer because 

the best solution (leader) is not guaranteed to guide the 

improvement. In every iteration, an agent will determine its 

target. There are two options regarding this process. The first 
option calculates the target by pushing the virtual best 

solution away from the agent's solution. The idea is that the 

best solution is currently better than the agent's current 

solution. So, there is an opportunity to improve the best and 

the agent's current solution by pushing the best solution away 

from the agent's current solution. The target is randomized 

within the solution space in the second option. This option is 

considered because there is no guarantee that the first option 

will improve the solution. These options are chosen 

stochastically by each agent based on a certain threshold. So, 

in every iteration, some agents may choose the first option 
while others choose the second one. 

After the target is chosen, the agent will try to find a better 

solution along its current location to the target. In this process, 

the agent will move in several steps to its target. The step size 

is equal. The optimal solution may be laid between the agent's 

current solution and the target.  
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Every time the agent moves to a new step, the agent will 

update its solution. If this new step is better than the agent's 

current solution, this new solution replaces the agent's old 

solution. This process is conducted until the last step. After 

this process ends, the best solution is updated by comparing 

the best and the agent's solutions. If the agent's new solution 

is better than the best solution, then this agent's new solution 

becomes the best solution. 

This simple concept is then transformed into the algorithm. 

Before explained further, there are annotations used in this 
work. These annotations are as follows. Meanwhile, the 

algorithm of PLO is presented in algorithm 1. 

 

bl lower boundary 

bu upper boundary 

c candidate 

C set of candidates 

i candidate index 

x solution 

xbest the best solution 

xtarget target 
X set of solutions 

t iteration 

tmax maximum iteration 

r threshold 

 
algorithm 1: Partial Leader Optimizer 

1 output: xbest 

2 begin 

3   for all X 
4     initialize x using (1) 
5     update xbest using (2) 
6   end 

7   for t = 1 to tmax 
8     for all X 
9       calculate xtarget using (3) 
10       for i = 1 to n(C) 

11         calculate ci using (4) 
12         update x using (5) 
13       end 

14       update xbest using (2) 
15     end 

16   end 

17 end 

 

Below is the explanation of algorithm 1. Line 1 states that 

the best solution becomes the output of the algorithm. Line 3 

to line 6 represents the initialization phase. Line 7 to line 16 

represents the iteration phase. The initialization phase consists 

of two processes for all solutions: setting up the initial 

solution (line 4) and updating the best solution (line 5). The 

iteration phase contains two loops. The outer loop iterates 

from the first iteration to the maximum iteration. 

Meanwhile, the inner loop iterates for all agents. In the 

iteration phase, there are three sequential processes conducted 
for every agent: determining the target (line 9), conducting 

multiple steps (line 10 to line 13), and updating the best 

solution (line 14). There are two processes conducted within 

the multiple-step movement. The first is determining the 

movement candidate (line 13), and the second is updating the 

current solution based on the generated candidate (line 14). 

The formalization of the initialization phase is presented in 

(1) and (2). Equation (1) states that the initial solution is 

randomized within the solution space. Uniform distribution is 

applied in this process. The solution space is limited by using 

the lower and upper boundaries. Equation (2) is used for the 

best solution updating process. If the new solution is better 

than the best solution, this solution will replace the current 

best solution to become the new one. Otherwise, the best 

solution remains the same. 

 � = ���� , ��	  (1) 

 �
��′ = ��, ���	 < ���
��	
�
�� , ����   (2) 

Equation (3) states two possible ways or options to 

determine the target. The first option is pushing the best 

solution away from the related one. The movement step size 

is uniformly randomized between zero and the gap between 

the best and related solutions. The second option is to generate 

the target randomly within the solution space. The selection is 

conducted by generating a random number ranging from 0 to 
1. The first option is chosen if this number is below the 

threshold. Otherwise, the second option is chosen. 

 ��� = ��
�� + ��0,1	. ��
�� − �	,��0,1	 < �
���� , ��	, ����   (3) 

Equation (4) states that the candidate solution is between 
the current and target solutions. The distance between the 

adjacent candidates is equal. The earlier candidates are closer 

to the current solution. Meanwhile, the later candidates are 

closer to the target. 

 �� = � + � �
 �!	" . ���� − �	  (4) 

Equation (5) is used for the solution updating process. If 

the candidate is better than the solution, it will replace the 
current solution to become the new one. Otherwise, the 

solution remains the same. 

 �# = ��� , ����	 < ���	
�, ����   (5) 

Based on the explanation above, the algorithm complexity 

of PLO is shown as O(tmax.n(X).n(C)). It means the algorithm 

complexity is linear to the maximum iteration, the population 
size, and the number of candidates. 

B. Simulation 

PLO is then implemented into the simulation so that its 

performance can be evaluated. In this work, there are three 

simulations. The first simulation is used to analyze the 

performance of PLO in solving the 23 benchmark functions. 

This first simulation compares PLO with five other 

metaheuristic algorithms: PSO, MPA, SMA, ASBO, and 
POA. The second and third simulations are conducted to 

analyze the algorithm's sensitivity. The second simulation is 

conducted to analyze the sensitivity of the maximum iteration, 

and the last one is conducted to analyze the sensitivity of the 

threshold. 

The 23 benchmark functions are selected based on two 

reasons. The first reason is that this algorithm represents 

various problems, from unimodal and multimodal problems, 

low dimension to big dimension problems, and narrow 

solution space to large solution space problems. These 23 

functions are divided into three categories. These functions 
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are distributed into seven high-dimension unimodal functions 

(function 1 to function 7), six high-dimension multimodal 

functions (function 8 to function 13), and ten fixed-dimension 

multimodal functions (function 14 to function 23). A detailed 

description of these 23 benchmark functions is presented in 

Table 1. Second, these 23 functions have been used 

extensively in many studies proposing new metaheuristic 

algorithms. 

TABLE  I 

BENCHMARK FUNCTIONS 

F Function Solution space Dim 

1 Sphere [-100, 100] 20 
2 Schwefel 2.22 [-100, 100] 20 
3 Schwefel 1.2 [-100, 100] 20 
4 Schwefel 2.21 [-100, 100] 20 

5 Rosenbrock [-30, 30] 20 
6 Step [-100, 100] 20 
7 Quartic [-1.28, 1.28] 20 
8 Schwefel [-500, 500] 20 
9 Ratsrigin [-5.12, 5.12] 20 
10 Ackley [-32, 32] 20 
11 Griewank [-600, 600] 20 
12 Penalized [-50, 50] 20 

13 Penalized 2 [-50, 50] 20 
14 Shekel Foxholes [-65, 65] 2 
15 Kowalik [-5, 5] 4 
16 Six Hump Camel [-5, 5] 2 
17 Branin [-5, 5] 2 
18 Goldstein-Price [-2, 2] 2 
19 Hartman 3 [1, 3] 3 
20 Hartman 6 [0, 1] 6 

21 Shekel 5 [0, 10] 4 
22 Shekel 7 [0, 10] 4 

23 Shekel 10 [0, 10] 4 

 

Some reasons for choosing the five algorithms for 
comparison are as follows. PSO is an early metaheuristic 

algorithm that uses swarm intelligence. PSO also becomes the 

foundation for the development of a lot of later metaheuristic 

algorithms. Moreover, because of its popularity, many 

optimization studies used, modified, or combined PSO. The 

example is as follows. Liu et al. [22] used PSO to improve the 

accuracy of the rock slope slip simulation. Gao et al. [23] 

combined PSO with Levy flight, also used in MPA, to solve 

high latency issues in the mobile cloud computing system. 

Habib et al. [24] used the modified PSO (MPSO) to reduce 

the sidelobe level (SSL) in beam pointing for uniform 
hexagonal array (UHA) antennas. Many studies used and 

modified MPA and SMA are the popular shortcoming 

metaheuristic algorithms. The example is as follows. Abdel-

Basset [25] used MPA in proposing a task scheduling model 

in the fog computing environment to improve the quality of 

services. Liu et al. [26] combined SMA and ACO to solve the 

classic traveling salesman problem, arguing that SMA can 

cover the disadvantage of ACO in the easiness of falling into 

the optimal local trap. Dhawale et al. [27] improved the basic 

SMA by combining it with sinusoid chaotic behavior to 

become an algorithm, namely chaotic SMA (CSMA). 

On the other hand, Altay [28] developed another chaotic 
mechanism for essential SMA by applying ten chaotic maps, 

such as the Chebyshev map, circle map, Gauss map, and 

others. Al-qanees et al. [29] used MPA to improve the 

adaptive neuro-fuzzy inference system (ANFIS). This system 

is implemented in the COVID-19 confirmed cases forecasting 

system [29]. Finally, ASBO and POA represented the 

shortcoming of metaheuristic algorithms. These algorithms 

are firstly introduced in 2022. Although these two algorithms 

show outstanding performance, studies that use these 

algorithms are still hard to find. 

This first simulation is conducted based on several settings. 
The maximum iteration and population size are 100 and 20, 

respectively. In PLO, the number of candidates is ten, and the 

threshold is 0.5. In PSO, all weights are 0.1. In MPA, the FAD 

is 0.5. There is not any adjusted parameter in ASBO and POA. 

III. RESULT AND DISCUSSION 

This section presents the simulation result and the in-depth 

analysis of the result and findings. Table 2 to Table 4 presents 
the result of the first simulation. Table 2 presents the average 

fitness score, while Table 3 presents the standard deviation. 

Then, Table 4 presents the number of functions where PLO is 

better than other algorithms. In Table 4, the data is divided 

based on the groups. Table 5 shows the performance of PLO 

within the various maximum iteration. Table 6 shows the 

performance of PLO within the various threshold. 

Table 2 shows that PLO performs well. It can find an 

acceptable solution for the 23 functions. Moreover, PLO can 

find the optimal global solution for seven functions: Schwefel 

2.22, Shekel Foxholes, Six Hump Camel, Branin, Goldstein-

Price, Shekel 7, and Shekel 10. Among these seven functions, 
one function is in the first group, while the six functions are 

in the third group. PLO also outperforms all sparing 

algorithms in solving eight functions: Shekel Foxholes, 

Kowalik, Six Hump Camel, Branin, Hartman 6, Shekel 5, 

Shekel 7, and Shekel 10. 

Table 3 shows that the performance variance of PLO varies 

depending on the problem it tries to solve. PLO performs zero 

variance in solving two functions: Goldstein-Price and 

Schwefel 2.22. Meanwhile, PLO performs very low variance 

in optimizing Shekel Foxholes, Branin, Six Hump Camel, 

Shekel 7, and Shekel 10. 
Table 4 shows that PLO is competitive compared with the 

five algorithms. PSO becomes the most straightforward 

algorithm to beat. On the other hand, ASBO becomes the most 

challenging algorithm to beat. PLO is very superior in solving 

the functions in the third group. Meanwhile, PLO is inferior 

in the first and second groups, especially compared to ASBO. 

PLO outperforms PSO, MPA, SMA, ASBO, and POA in 

solving 22, 19, 18, 9, and 20 functions. 

In simulation two, the maximum iteration consists of three 

values. The first value is 25, the second is 50, and the third is 

75. These three values are less than 100, as set in the first 
simulation. Table 5 shows that, in general, the convergence of 

the optimization process is achieved in low maximum 

iteration. There are 12 functions where the convergence is 

achieved when the maximum iteration is set at 25. 

TABLE II 

SIMULATION RESULT ON 23 BENCHMARK FUNCTIONS (AVERAGE FITNESS SCORE) 
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F PSO MPA ASBO SMA POA PLO Better Than 

1 2.773x103 3.064x102 5.342x10-23 1.283x103 1.589x104 1.952 PSO, MPA, SMA, POA 
2 0 0 0 0 0 0 - 
3 8.197x103 9.527x102 1.064x10-3 6.542x103 2.132x104 1.733x102 PSO, MPA, SMA, POA 
4 2.348x101 1.400 2.998x10-9 1.770x101 5.416x101 8.531 PSO, SMA, POA 
5 1.095x106 6.654x101 1.854x101 5.714x105 2.323x107 1.513x102 PSO, SMA, POA 
6 2.094x103 2.885x102 6.335x10-2 7.670x102 1.501x104 1.099 PSO, MPA, SMA, POA 
7 3.035x10-1 6.838x10-2 9.218x10-3 2.371x101 7.427 2.598x10-2 PSO, MPA, SMA, POA 

8 -2.231x103 -2.679x103 -3.385x103 -5.732x103 -2.896x103 -5.181x103 PSO, MPA, ASBO, POA 
9 1.457x102 7.455x101 3.560 1.578x101 1.914x102 3.037x101 PSO, MPA 
10 1.108x101 5.870 1.677 7.025 1.863x101 4.823 PSO, MPA, SMA, POA 
11 2.480x101 3.977 8.692x10-2 8.787 1.500x102 4.757x10-1 PSO, MPA, SMA, POA 
12 3.744x104 5.580 2.586x10-3 4.613x103 2.214x107 3.817 PSO, MPA, SMA, POA 
13 5.220x105 2.741x102 5.148 5.454x105 7.594x107 1.221x101 PSO, MPA, SMA, POA 
14 4.991 5.319 1.103 1.310 1.785 9.980x10-1 PSO, MPA, ASBO, SMA, POA 
15 1.989x10-2 4.429x10-3 7.526x10-2 9.362x10-2 2.997x10-3 4.700x10-4 PSO, MPA, ASBO, SMA, POA 
16 -1.030 -1.022 -7.618x10-2 -3.286x10-2 -1.029 -1.032 PSO, MPA, ASBO, SMA, POA 

17 1.504 5.816x10-1 6.438x10-1 6.312x10-1 4.009x10-1 3.981x10-1 PSO, MPA, ASBO, SMA, POA 
18 1.097x101 4.668 3.000 3.000 3.046 3.000 PSO, MPA, POA 
19 -1.278x10-2 -3.827 -4.954x10-2 -4.954x10-2 -4.954x10-2 -4.778x10-2 PSO 
20 -2.464 -1.957 -1.223 -1.596 -2.957 -3.308 PSO, MPA, ASBO, SMA, POA 
21 -4.419 -1.849 -9.137 -7.074 -3.085 -9.850 PSO, MPA, ASBO, SMA, POA 
22 -4.109 -1.798 -8.214 -6.513 -3.400 -1.040x101 PSO, MPA, ASBO, SMA, POA 
23 -5.048 -1.856 -8.994 -8.012 -3.838 -1.054x101 PSO, MPA, ASBO, SMA, POA 

 

TABLE III 

SIMULATION RESULT ON 23 BENCHMARK FUNCTIONS (STANDARD DEVIATION) 

F PSO MPA ASBO SMA POA PLO 

1 8.032x102 1.785x102 1.118x10-22 6.718x102 2.511x103 2.734 
2 0 0 0 0 0 0 

3 1.954x103 5.431x102 2.816x10-3 3.465x103 6.512x103 1.590x102 
4 5.632 1.208 2.298x10-9 1.058x101 5.669 2.588 
5 1.191x106 9.673x101 2.230x10-2 6.293x105 1.158x107 1.048x102 
6 1.018x103 1.393x102 3.280x10-2 4.863x102 3.565x103 1.748 
7 1.767x10-1 4.041x10-2 4.229x10-3 2.580x101 3.653 1.295x10-2 
8 -3.927x102 3.205x102 3.013x102 2.844x102 4.203x102 8.645x102 
9 1.510x101 2.519x101 1.529 5.024 2.112x101 9.787 
10 9.293x10-1 1.255 4.256x10-1 1.969 5.316x10-1 1.166 

11 8.509 1.309 6.292x10-2 6.457 3.190x101 3.511x10-1 
12 9.085x104 2.208 4.439x10-3 1.329x104 1.218x107 3.652 
13 8.018x105 5.539x102 1.126 9.580x105 2.453x107 1.214x101 
14 3.560 3.059 3.134x10-1 1.141 1.085 3.448x10-16 
15 2.321x10-2 3.630x10-3 3.328x10-2 3.665x10-2 2.121x10-3 4.073x10-4 
16 4.588x10-3 9.428x10-3 1.631x10-1 8.057x10-2 1.721x10-3 2.293x10-16 
17 2.993 1.587x10-1 1.844x10-1 4.364x10-2 2.523x10-3 5.722x10-17 
18 2.046x101 1.244 0 0 5.324x10-2 0 
19 -3.973x10-2 1.253x10-1 1.433x10-17 1.436x10-17 1.436x10-17 7.667x10-3 

20 3.780x10-1 4.149x10-1 4.026x10-1 4.806x10-1 1.676x10-1 3.959x10-2 
21 2.580 6.200x10-1 2.104 2.752 1.117 1.236 
22 3.543 5.121x10-1 2.696 2.648 1.386 8.383x10-6 
23 3.126 5.614x10-1 2.529 3.199 1.529 3.669x10-15 

 

TABLE IV 

HEAD-TO-HEAD COMPARISON 

Algorithm Number of Functions that PLO beats 

1st Group 2nd Group 3rd Group Total 

PSO 6 6 10 22 
MPA 4 6 9 19 
ASBO 0 1 8 9 
SMA 6 4 8 18 
POA 6 5 9 20 

 

TABLE V 

RELATION BETWEEN MAXIMUM ITERATION AND THE PERFORMANCE 

F 
Average Fitness Score 

tmax = 25 tmax = 50 tmax = 75 

1 4.866x101 9.479 1.541 
2 0 0 0 
3 5.603x102 3.259x102 2.522x102 
4 9.990 9.298 8.887 
5 1.878x103 2.790x102 3.331x102 
6 3.628x101 6.966 2.606 
7 6.026x10-2 5.603x10-2 3.193x10-2 
8 -5.402x103 -5.676x103 -5.661x103 
9 4.158x101 3.030x101 3.214x101 

10 5.265 5.101 5.250 
11 1.420 8.983x10-1 5.718x10-1 
12 4.394 4.560 3.310 
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F 
Average Fitness Score 

tmax = 25 tmax = 50 tmax = 75 

13 2.781x101 2.564x101 1.533x101 
14 1.224 9.980x10-1 9.980x10-1 
15 2.042x10-3 6.639x10-4 6.414x10-4 
16 -1.032 -1.032 -1.032 
17 3.981x10-1 3.981x10-1 3.981x10-1 
18 3.000 3.000 3.000 

19 -4.650x10-2 -4.954x10-2 -4.636x10-2 
20 -3.322 -3.279 -3.279 
21 -8.226 -9.231 -8.434 
22 -7.778 -9.466 -9.217 
23 -7.761 -9.894 -1.029x101 

TABLE VI 

RELATION BETWEEN THRESHOLD AND THE PERFORMANCE 

F 
Average Fitness Score 

r= 0.25 r= 0.5 r = 0.75 

1 5.714 1.952 4.370 
2 0 0 0 

3 1.846x102 1.733x102 2.283x102 
4 7.232 8.531 9.521 
5 3.421x102 1.513x102 3.196x102 
6 4.938 1.099 3.766 

7 1.659x10-2 2.598x10-2 4.577x10-2 
8 -5.526x103 -5.181x103 -5.460x103 
9 2.639x101 3.037x101 3.625x101 
10 4.300 4.823 5.732 
11 4.600x10-1 4.757x10-1 5.467x10-1 
12 1.500 3.817 3.581 
13 9.489 1.221x101 1.692x101 
14 9.980x10-1 9.980x10-1 1.043 

15 4.209x10-4 4.700x10-4 6.603x10-4 
16 -1.032 -1.032 -1.032 

17 3.981x10-1 3.981x10-1 3.981x10-1 

18 3.000 3.000 3.000 

19 -4.846x10-2 -4.778x10-2 -4.954x10-1 

20 -3.291 -3.308 -3.279 
21 -9.814 -9.850 -8.321 
22 -1.039x101 -1.040x101 -8.830 

23 -1.051x101 -1.054x101 -9.600 

 

In the third simulation, there are three values for the 
threshold. The first value is 0.25, the second is 0.5, and the 

third is 0.75. The best result is written in bold font in Table 6. 

Table 6 shows the algorithm's performance in response to 

different threshold values varies. The best outcome is found 

for six functions at all threshold levels. When the threshold is 

low, ten functions produce their best results. There are six 

functions where a moderate threshold yields the best results. 

When the threshold is high, only one function produces the 

best results. Meanwhile, there is one function where the best 

result is obtained when the threshold is low or moderate. 

Although the result has shown that the performance of PLO 

is acceptable, it is not wise to conclude that PLO is superior 
to the defeated algorithms, such as PSO, MPA, SMA, and 

POA. As explained in the no-free-lunch theory, there is not 

any perfect algorithm. On the other hand, the algorithm's 

performance lays on the problem it tries to tackle. Besides, 

many metaheuristic algorithms depend on their adjusted 

parameters to control their performance. For example, the 

dominant exploitation strategy may be better at solving 

unimodal problems, while the dominant exploration strategy 

may be better at solving multimodal problems. As indicated 

in Table 6, a low threshold may be suitable for some 

problems, while a moderate threshold may be suitable for 

others. 

The result in Table 6 also shows that diversifying agent 

roles is essential. Too many agents that conduct leader-guided 

movement ends with a less satisfying result. On the other 

hand, balancing leader-guided and randomized movements 

ends with better results. 

Traditional algorithms, such as the variable neighborhood 

search (VNS), tabu search (TS), genetic algorithm (GA), and 

PSO, are still employed and developed in various 
optimization research even if many shortcoming methods 

have outperformed them. The example is as follows. Rejer 

and Jankowski [30] improved the basic GA with an 

aggressive mutation method, a fast GA with aggressive 

mutation (FGAAM), to decrease the time feature finding time 

for feature selection. Sajadi and Ahmadi [31] combined GA 

with vibration damping optimization (VDO) to optimize the 

inventory management of perishable products. Krityakierne et 

al. [32] used TS to optimize home healthcare routing and 

scheduling. There are several reasons for this circumstance. 

First, these old-fashioned algorithms are battle-proven 
algorithms implemented in many optimization studies. 

Second, their mechanics are uncomplicated, so they can be 

combined with other algorithms to improve their performance 

and tackle their weaknesses, especially in avoiding the local 

trap. Third, many metaheuristic algorithms lay on the iteration 

and the population size. Improving the algorithm's 

performance by increasing the maximum iteration or 

population size is easy. 

On the other hand, the intention of developing a new 

algorithm is still high. This circumstance also comes from 

several reasons. First, as stated in the no-free-lunch theory, no 
perfect method or algorithm is superior to solving all 

problems. On the contrary, there are many problems with 

specific circumstances (objective and constraint). Moreover, 

to date, many problems have become more complex than in 

the previous time. Second, there are a lot of mathematical 

solutions that can be used and have not been explored to 

construct many new algorithms. 

IV. CONCLUSION 

This work has proposed a new metaheuristic method, a 

partial leader optimizer (PLO). Based on the explanation, this 

algorithm is shown as a simple algorithm. Meanwhile, the 

simulation results show that PLO is competitive compared to 

PSO, MPA, ASBO, SMA, and POA. PLO is better than PSO, 

MPA, SMA, ASBO, and POA in finding the optimal solution 

of 22, 19, 18, 9, and 20 functions, respectively. The simulation 

result also shows that PLO can achieve an acceptable solution 

in the low iteration. Moreover, the low or moderate threshold 

is generally better than the high threshold in solving the 

benchmark functions. 
Various approaches can continue this work. First, more 

studies to implement PLO in many real-world applications are 

needed to create a more comprehensive evaluation of the 

performance of PLO. Second, more studies to combine PLO 

with other algorithms, either the old-fashioned algorithms or 

the shortcoming ones, are also challenging. 
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