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Abstract— Rainfall prediction is an essential study as a guideline for water resources management to manage disasters. Still, earlier 

research cares much about temporal information, only considering a single spatial location. The earth’s land surface has a large area 

of spatial location, so to manage spatial information simultaneously as temporal, we use spatiotemporal data to analyze rainfall 

prediction more accurately. This study uses the spatiotemporal Extreme Learning Machines (ELM) Cluster to forecast rainfall using 

CHIPRS data from satellites and stations. Data consists of spatial two dimensions and temporal data from 1981 to 2020. The dataset 

for the experiment contains 480 months. We use focal operation for data preprocessing to the nearest neighbor value. Moreover, the 

ELM cluster can manage every spatial location by sharing the output weight of ELM, so there is no spatial information left behind. 

Then, comparing the spatiotemporal Extreme Learning Machines Cluster among SVR, Linear Regression, Gaussian, Ridge, and Lasso 

are used to predict the data on those timescales. The results indicate that spatiotemporal ELM-Cluster can accurately forecast rainfall. 

Using ELM-Cluster in hydrological rainfall forecasting is encouraging, and the model can practically be used. Evaluation using MAE 

with a score of 66.77 and RMSE, 83.77, getting the fastest training with only 28.9 seconds compared to the other methods due to the 

ELM Cluster does not have backpropagation with spatial improvement. 
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I. INTRODUCTION

Long-term changes in rainfall, also known as climate, often 

cause disasters such as floods or droughts and change nature’s 

behavior in agriculture to produce food [1], [2]. Much 

research has been conducted on physical environment 

prevention to avoid natural disasters and crop failure[3]. 

Influenced by various uncertainties involving many factors, 

rainfall prediction brings significant uncertainty conditions 

and nonlinearity data. Still, prediction correctness often 

suffers various conditions [4], [5]. Combining and modifying 

existing model methods are expected to encourage alternative 

ways of dealing with water resource management], [7]. Other 
traditional machine-learning methods have been used by 

Ridwan et al. to forecast rainfall in Malaysia [8]. The 

method’s result was flourishing and reduced the model 

prediction error rate. An enhanced BP algorithm for rainfall 

forecasting in short-of-time temporal is reported in [9]. ELM 

for rainfall forecast is evaluated using another algorithm to 

ensure the result is the correct traditional algorithms. 

Achieving that ELM showed small coefficients of correlation 

and errors [10]. Anupam and Pani [11] reported that they 

implemented ELM to build short-term simulations of flood 

disasters in India to advise the authorities as a consideration 
of a policy.  

A physical, analytical approach has been used in data 

concentrated based on data-driven with variance performance 

[12], [13]. Many various based on data-driven approaches 

have been applied, involving Autoregressive [14], [15], 

Statistical Downscaling [16], Support Vector Regression 

(SVR), Random Forest [17], Adaptive Neuro-Fuzzy 

Inference Systems (ANFIS) [18][19], Autoregressive 

Integrated Moving Average (ARIMA) model [20], artificial 

neural network (ANN) models [21]. These models have their 

strengths and weaknesses. The speed of computation time in 
the training model and the simple architecture of the model 

can be the advantages of the autoregressive model. However, 

this model depends on previous data and cannot predict values 

that have yet to occur. The SVR model has good 
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generalizability but does not function well when dealing with 

noisy data. 

Furthermore, ANFIS, as one of the techniques, has 

linguistics and numerical knowledge. That is extensively 

applied as a forecast model, particularly in time series [22]. 

However, its application is limited in cases with large inputs 

[23]. As a traditional machine, ANN models can usually 

operate with inadequate data or knowledge. The models have 

parallel processing abilities, making them more fascinating. 

In contrast, the ANN architecture is not constant and needs 
to be tuned for the hyperparameter to optimize the architecture, 

for which we need a trial-and-error technique for the 

hyperparameter to optimize the prediction performance [24]. 

Moreover, Choubin et al. [25] investigate the drought model 

and explore its relation to the SPI method by using a data-driven 

approach to make a complex model containing Multiple Linear 

Regression (MLR), Multi-Layer Perceptron (MLP) by adding 

several hidden layers, and Adaptive Neuro-Fuzzy Inference 

Systems (ANFIS) algorithm. Another report has been 

conducted by Dikshit et al., who proposed a model to predict 

drought with a longer waiting time by utilizing various climatic 
variables that comprehensively affect weather changes from 

other data using the stacked LSTM method [26]. Shahdad and 

Saber [27] investigated how reduced error pruning of a tree in 

ensemble-based models could be even more efficacious. 

Nonetheless, exploring rainfall prediction using an Extreme 

Learning Machine still needs to be investigated more deeply 

since drought and rainfall have significantly correlated to 

predict climate in the future. 

The purposes of this research are fourfold: (1) investigating 

the ability of spatiotemporal ELM clusters in rainfall 

prediction and choosing the suitable model; (2) using 
meteorological variables, specifically rainfall, as a main 

candidate for rainfall prediction and assessing the effect of 

spatiotemporal prediction; (3) evaluating the effect of focal 

operation as a preprocessing step on the capability of Extreme 

Learning Machine (ELM) models and other comparison 

methods for rainfall forecasting; and (4) comparing other 

several different machine learning models in rainfall 

prediction. 

In this section, the authors give brief reviews of relevant 

research that can be inspired the authors to construct the 

Spatiotemporal ELM cluster model, including several 

fundamental studies in rainfall forecasting and sequential data 
using ELM-based models. It should be challenging when 

dealing with rainfall forecasting since it involves complex 

systems in the hydrological process, including atmospheric 

conditions called natural phenomena, which cannot be 

changed. To make predictions increase accuracy, it should 

consider the spatial and temporal perspectives that contain their 

characteristic, including nonlinearity data, complexity, and 

non-stationary. If the model considers that perspective, it will 

increase the accuracy of the prediction. Rainfall is part of the 

climate; in this case, Indonesia has two seasons, the first rainy 

season and the other dry season; this phenomenon is called 
meteorological activity. Much research utilized the rainfall data 

to predict rainfall by modifying the existing model or creating 

a new model to handle the model to become fitter. 

It is necessary to find related work regarding rainfall 

prediction with much better algorithms to reach this study's 

aim. Several years ago, Huang et al. [28] proposed an 

alternative approach to solve time series data against the 

famous ANN algorithm. Based on their proposal, ELM can 

do training very quickly compared to ANN, SVR, and ANFIS. 

In addition, the model is also able to accurately generate 

random weights and biases that are adjusted based on the 

Probability Distribution Function (PDF) approach [29]. ELM 

has also been used widely in various disciplines, such as 

climatology, energy, environment, and medicine [30]. The 

first study of using ELM in rainfall forecasting case was found 

by Dash et al.[31]. They compare ELM and ANN to predict 
drought using the Effective Drought Index, also known as 

EDI; exciting results were obtained that ELM could do 

significantly more than ANN. One-month lead-time EDI 

juxtaposed by using a wavelet ELM [32]. Furthermore, Ali et 

al. evaluated ELM, ANFIS, and MLR models in predicting the 

Standardized Precipitation Index (SPI) when dealing with 

multi-scalar in Pakistan [18]. Integrating ELM with other 

methods can also decrease the error rate; Ali et al. proposed a 

multi-stage hybridized online sequential extreme learning 

machine integrated with the Markov Chain Monte Carlo 

copula-Bat algorithm [33]. Besides that, wavelet packet 
decomposition (WPD) decomposes the original precipitation 

data into several sub-layers before ELM models the data. 

Hereafter, Mouatadid et al. [34] investigated Standard 

Precipitation Evaporation Index (SPEI) forecasting by 

comparing SVR, ANN, MLR, and ELM in drought-prone 

regions. 

With the literature review that has been explained, it is 

clear that ELMs still have an area to explore in spatiotemporal 

rainfall prediction since spatiotemporal data need to consider 

spatial location and temporal history simultaneously. Hence, 

the author proposed the ELM Cluster to learn fast when 
dealing with actual distribution spatial location. This literature 

can motivate the authors to study the potential of ELM in 

rainfall prediction. Researchers have proposed many different 

ELM models during the past decades. Besides that, previous 

research used a wavelet to preprocess the data with various 

models, primarily developing applications [25]. 

Furthermore, using Indian Summer Monsoon Rainfall, 

Mallela and Jonnalagadda [35] compared ELM and LSTM to 

produce the lowest MAE. The newest method is to improve 

ELM using CEEMDAN non-smooth signal decomposition 

with other PSOs. That method can be applied by enhancing 

the weights of input and verges in the ELM, which can 
successfully enhance the forecasting outcome of ELM [36]. 

Therefore, in this study, the author uses a spatiotemporal 

extreme learning machine cluster to handle spatiotemporal 

data in which the models are considered spatial and temporal 

data simultaneously and can produce predictions in every data 

area. 

II. MATERIALS AND METHOD 

In this study, the authors chose Kalimantan Timur as the 

study area to evaluate and compare the performance of several 

LSTM models in forecasting monthly rainfall. Kalimantan 

Timur is located at 2°33′ North Latitude -2°25’ South 

Latitude, 113°44’ - 119°00’ East Longitude, with a land area 

of 127,346.92 km² and a sea area of 25,656 km². Climate 

change causes significant changes in rainfall patterns; this is 

exacerbated by the event of El Nino, which can bring extreme 
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rain, or it might be because El Nina causes prolonged 

droughts. 

 

 

Fig. 1  Sample Data CHIRPS of December 2020 in Kalimantan Timur 

 

Rainfall data obtained from 

https://data.chc.ucsb.edu/products/CHIRPS-2.0/, known as 

CHIRPS, as shown in Fig. 1 sampling of December 2020, is 

still in the form of worldwide raster data, where the research 

only focuses on the Kalimantan Timur region. Hence, the data 

needs to be split. First, a printout of the Kalimantan Timur 

area is required from https://tanahair.indonesia.go.id/. Still, 

combining the data using the ArcGIS application is necessary 

because the custom is city and district data. Furthermore, 

splitting the rainfall data worldwide using the SAGA 

application is needed after the data for the East Kalimantan 

region is obtained. It should be noted that the Split process 
requires degrees of longitude and degrees of latitude and a 

grid size that must be adapted to raster data worldwide, which 

is 0.05o x 0.05o. As shown in Fig. 1, data visualization has 

black and white colors, meaning black has representative sea 

surface and white island surface. 

 

 

Fig. 2  Illustrated the size of spatiotemporal rainfall data. 

Raster data is one of the best formats of data to represent 

surface area since raster can keep multi-band of data to create 

complex spatial conditions. CHIRPS contain a single band to 
interpret monthly precipitation values without additional 

variables. As shown in Fig. 2, this data includes dimensions 

89 x 89 of spatial and 480 of temporal, in this case, monthly 

data. Having three-dimensional conditions makes this 

research more complex since it should be done with a specific 

method, so the spatial and temporal dimensions will not be 

biased or removed from that dimension.  

A. Extreme Learning Machine 

Input samples (�� , ��� is a nonrepetitive case, where �� = ���� , ���, … , ���
�  ∈  �� represents an n-dimensional input 

and �� � ����, ���, … , ���
�  ∈  ��  can express an output of �-

dimensional. The mathematical of the traditional single 

hidden layer is usually applied in a feedforward neural 

network (FNN) of the hidden layer with �� nodes and the ����, as shown in Eq. (1): 

 ����� � ∑ �������  !��"#  (1) 

 $�, � � #, %, … , ! (2) 

Where &� � �'��, '��, … , '��
� denotes the weight of the 

connection line in the neural network between the input and 

the (-th hidden nodes in the hidden layer. The equation 

between (-th hidden nodes and the output weight can be 

expressed mathematically as �� �  �)��, )��, … , )��
�. This 

equation is not random but for the inverse formula. *� can 

represent the bias value of the (-th hidden layer node. In 

contrast, �� + &� are the inner products of �� + &� and can be 

a loop with the exact condition. The symbol of ��  hidden layer 

node and previous explanation and stimulation function ���� 

be able to entirely fit the output value of the input sample in 

the input layer of �; that is, the ∑ ,-. / �., � 01��"�  of the 

neural network architecture. There is also �� , &� , and *�:  
 ����� � ∑ �������  !��"# � ∑ ������� + &� + 5�� !��"#  (3) 

 $�, � � #, %, … , ! (4) 

Where: 

 6 can be represented as a number of hidden units 

 � represents the sample number  of training  

 � is a symbol of the weight vector to connect the 

hidden layer and output  

 & same as � represents a weight vector to calculate 

a value that comes from input to the hidden layer 

 � is a function to handle the data becoming what we 

need, also known as an activation function 

 * can always be a variable together with & to 

calculate the value, also known as bias 

 � is the input data to be obtained using the model 

 

Mathematically expressed � samples can be as follows: 

 7� � 8 (5) 

Explaining 7 � 7�'� , … , '1�, *�, … , *1�, ��, … , �1� is 

illustrative of the output of hidden layer nodes. 

 7 � 7�&#, … , &!� , 5#, … , 5!� , �#, … , �!� (6) 

 9���# + &# +  5#� … ���!� + &# + 5!� �. . . … …���# + &! + 5#� … ���!� + &! + 5!� �;
! +!�

 (7) 

Where: 

 � is the number of the output layer 

 7 is hidden layer output matrix 

 < is a target matrix of training data 

Huang et al. [28] explain ELM theory with the specific 

condition that the excitation function is essentially highly 
differentiated so that the weights of the formula on each layer 
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at each node and the hidden layer balance can be assigned 

randomly. However, to control the random number, it is 

necessary to initialize the number itself [28], [37]. Following 

the installed input weight  &� and the hidden layer value *� 
with randomizing the training utilizing a single hidden layer 

in FNN can take the linear approach by getting minimum 

squares �= of the 7� � 8; it also can be expressed as: 

 � �  >�#8…�#8
? , 8 �  9$#8…$ ;

!+@
 (8) 

 �= �  ABC� ,7�D / 8, (9) 

Another condition can determine the equation inside the 

architecture, �� �  � is equal to both of them, so the hidden 

layer and training sample must be the same in theory, which 
is not repeated, that is, but in this research, the authors will 

change the number of hidden layers to become a 

hyperparameter that should be tuned to find an optimum 

model. �= �  7E#8 can be found easily when a positive 

definite invertible is matrix 7. Then, the error rate in the 

output of the hidden layer is zero. Still, in many cases, the 

number of  �� is lower than �. That is, �� ≪ � at this point, 7 

is not a positive definite matrix. There is no &� , and *�and ���( � 1, 2, … , �� �  makes the 7� �  8. Currently, it can 

solve the minimum � of the loss function 7� –  8, it can show 

as: 

 �D �  ABC� ‖7� / 8‖ (10) 

Based on the concept generalized inverse of matrices, the 

minimum norm least-square solution (meeting the �(K‖7� / 8‖and �(K‖�‖ at the same time) can express as: 

 �= �  7L8 (11) 

Where 7L is the Moore–Penrose augmented inverse matrix 

conducted of the hidden layer matrix 7. To achieve a better 

generalization performance, standard items can be combined, 

as stated in Eq. (12): 

 �= � M#N O 7L7PE# 788 (12) 

B. Spatiotemporal Extreme Learning Machine Cluster 

Dealing with the rainfall, the features of the neighbor are at 
a spatial point that must be considered to produce an accurate 

model. Appropriately, it must be used as a typical input model 

to verify a single pixel around the data target. Nevertheless, 

finding the correlation between spatial and temporal 

perspectives is quite tricky. To resolve this problem, a model 

should be provided with specific spatial and temporal 

conditions. The neural network system can learn complex 

nonlinear systems such as rainfall. 

Nonetheless, the artificial neural network has weaknesses 

with complexity and slow training. Moreover, the problem 

when dealing with evenly distributed data on spatiotemporal 

makes the model efficient to train, even though the model 
should consider spatial information. Following this 

background, this study investigated a novel ELM Cluster 

algorithm to manage spatiotemporal information. This 

proposed model can solve the problems by building a multi-

model of ELM. 

Previous findings that compared the effectiveness of neural 

networks to that of ELM models found that this finding is 

consistent with those findings. Contrary to common 

implementations, previous research has conclusively shown 

that not all weights and biases in a feedforward neural 

network must be optimized. Theoretically, it can be shown 

that a single-hidden-layer feedforward neural network with 

randomly assigned input weights and biases performs better 
in terms of generalization than a typical feedforward neural 

network using a backpropagation method. ELMs improve 

generalization performance by achieving the minimum 

training error and the smallest weight norm. Applying the 

same model to several geographical areas is useful for rain 

forecasting. 

We consider that the spatiotemporal ELM Cluster can 

effectively solve the issue of multi-model training. The 

perspective of many models has a large enough hand to make 

ELM models able to compete with ANNs. The ELM theory 

confirms that no repeated adjustment enables ELM to do 
better with other methods and short training time. In addition, 

the hidden layer uses the Fourier series to process data. Hence, 

ELM can randomly determine the weights and bias, for 

instance, in the ELM network model (Fig. 3).  

 

Fig. 3  Extreme Learning Machine (ELM) based 

The weights value between the input and the hidden nodes 

of the ELM are randomized to get an initialized number. In 

practical implementation, multiple ELM models can share the 

same random input weight, which we call cluster. Fig. 4 

illustrates that multiple sub-models communicate a similar 
structure and share input weight simultaneously. This shows 

that the input, hidden layer, and output cells are equal. The 

ELM algorithm involves randomizing between the input layer 

weights and the hidden layer form between the input �, in 

which the output of the hidden layer weight can be shared with 

other inputs. 

Changes in the ELM network can be modified into ELM-

Cluster, where each part of the structure of the hidden nodes 

can be expanded many times to achieve compatibility with the 

processed data. This stage is revolutionary since each data 

sample can be allocated to each ELM block. 
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Fig. 4  Spatiotemporal ELM cluster can distribute the same random weight & 

but still have different �. 

 

Different inputs enter different ELM sub-models to be 

trained without affecting each other, which is suitable for 

parallel processing. In the multi-model training method, the 

model can express much information, lowering the feature 

processing load. Meanwhile, the spatiotemporal ELM cluster 

proposes a smart way to convert some features represented by 

spatial visualization into multiple models. Features are inputs 
from machine learning that can be predicted to be as much as 

the spatial input itself, following data diversification features: 

Target features and neighboring features. Target features can 

be the spatial point that predicts 3 x 3 neighbors. In the 

meantime, the neighbor features are spatial points to consider 

how they can affect the spatial target. With the subset of 

spatiotemporal data, the training algorithm is trained as per 

single spatial data distribution in the feature time to attain the 

recognizer. 

Furthermore, we explained the pseudocode in Table 1 to 

get more information on how to create the code in Python. To 

calculate the hidden layer output, the algorithm applies a 
nonlinear activation function elementwise to X and W matrix 

products and adds the bias vector b. This hidden layer output 

denoted as H, represents the transformed representation of the 

input data. Next, the algorithm solves for the output weights 

beta using a linear regression method. This involves taking 

the pseudo-inverse of the hidden layer output matrix H and 

multiplying it with the target matrix Y. Once the output 

weights are determined, the trained ELM model consists of 

the input weights W, bias b, and output weights beta. This 

model can then be used to predict new, unseen data. 

TABLE I 
ALGORITHM OF SPATIAL ELM CLUSTER BY UTILIZING RANDOM WEIGHT IN 

THE FIRST ITERATION WITHOUT BACKPROPAGATION 

Algorithm 1. Spatiotemporal ELM Cluster 

Training 

Input: Training sample � with temporal axis in every spatial 
location 

Output: Target Q with single-step temporal in every spatial 
location. 

Algorithm 1. Spatiotemporal ELM Cluster 

1. Randomly allocate weight '� and bias, where *� , ( �1, … , 6 
2. Extract feature as an input candidate 
3. Divide the input data training for all spatial location. 

4. Calculate output R of hidden layer. 

5. Calculate output weight �= �  7L8 

6. Iterate �= with different spatial location 

7. Change input with different spatial location 

8. Make predictions by using �= for all spatial location 
9. Evaluate by using MAE and RMSE 

C. Evaluation Metrics 

Postprocessing aims to make better rainfall predictions 

than “raw” (unprocessed) hydrological simulations. For this 

aim, it is important to evaluate the models' performance and 

compare them with each other to conclude which model is the 

best. Several metrics are used to evaluate predictions for 
different wait times. Since accurate and reliable predictions 

are so crucial during rainfall events, the primary accuracy 

measure for a deterministic forecast is the root-mean-square 

error (RMSE) in equation (13): 

 �STU �  V∑�WXEYX�Z
�  (13) 

Where Q� denotes the (  − th time- [  prediction of daily 

rainfall, \� denotes the observed daily, and K represents the 

total number of time-k monthly rainfall predictions. 
Compared with mean absolute error (MAE) metrics, RMSE 

penalizes significant errors [38], which is desirable for high 

rainfall forecasts. Unlike RMSE, which gives a relatively high 

weight to significant errors, Mean Absolute Error (MAE), a 

linear statistical measure, is more applicable when the overall 

impact of errors is proportionate to the increase in error. MAE 

can be formulated as [38] in equation (14). 

 S]U �  �� ∑ |Q� / \�|�."�  (14) 

III. RESULT AND DISCUSSION 

A. Data Preprocessing 

The data preprocessing stage is the selection stage, which 

aims to obtain relevant data. In raw data, missing values are 

often found, not stored values (mis recording), data sampling 

needs to be improved, and others. However, because this 

research does not use raw data but secondary data, 

preprocessing will be done to process spatial and temporal 

data. In addition, preprocessing will only focus on the data on 

cells with value, so the cells with no data will not be used. 

Fig. 5  Focal operation for spatial data to consider the neighbors’ value 

In this study, focal operation theory is implemented, as 

shown in Fig. 5, a spatial function to calculate the output value 

of each cell using neighbor values, like the nearest neighbors’ 

algorithm (K-NN), a machine learning algorithm[39]. In 
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addition, this theory is also commonly used in convolution, 

kernel, and moving windows in deep learning algorithms such 

as CNN or RNN. Moving Window can be imagined as an 

arrangement of square cells with a specific size, which in this 

study is 3 x 3, which shifts its position with specific steps. As 

the operation is applied to each cell of the moving window, 

the values in the raster tend to be smoother. It was adopted in 

this study to smooth the predictive value in spatial conditions. 

Spatiotemporal data are generally placed in continuous 

space, while classical data sets such as images or video data 
are usually in a discrete area. Spatiotemporal data patterns 

usually present very complex spatial and temporal properties, 

and correlations between data are challenging to explain with 

traditional methods. Finally, one of the standard statistical 

assumptions is that the sample is obtained independently. 

However, this does not apply in spatiotemporal analysis 

because spatiotemporal data tend to be highly correlated, so it 

is impossible to carry out separate studies. 

 

 
Fig. 6  Illustrated spatiotemporal data using the sliding window in spatial 

perspective 

 

As explained earlier, the data used in each time unit 

(temporal) is 89x89 with a length of 480 temporal, as shown 

in Fig. 5. Hence for modeling, the data is taken spatially with 

a size of 3x3 for 13 months (temporal); if we use the timestep 

12 scenario, this data will slice the sliding window along the 

temporal axis. Moving to the right side with a single step will 

be implemented in the data, so after the last window on the 

right area, it will continue by a sliding window in the next 

row, from left to right. It can be seen in the blue area in Fig. 6 
until the end of the spatial data, which is the right bottom side. 

The window is initially placed at the beginning of the time 

series, and computations or analysis are performed on the data 

within that window. the window moves forward by a 

predefined step size (often called the stride) and repeats the 

analysis on the next set of data points within the new window 

position. 

B. Spatiotemporal ELM Cluster Model Tuning Test 

1) Validation Result Based on Length of Timestep 

Timestep in rainfall forecasting in much research has 

different based on data. However, since the data has 

seasonality, it should be 12-time steps because the rainfall 

seasonality in Indonesia is 12 months, with six months in the 

rainy season and the rest in the dry season. Fig. 7 visualizes 

the length of the timesteps for each point toward the averages 

MAE. The increase in timestep length seems to be a small 

improvement to the model’s performance. It is even better 

with only one month as the shortest timestep, with an average 

MAE of 68.55. The worst result was using four four-month 

timestep, resulting in 93.02 average MAE. The graph in Fig. 

7 shows that the correlation between the timestep length and 
the average MAE at each point is less significant. 

Moreover, since the study aims to find the fastest training 

of the model, it needs to explore which timestep is the fastest 

training. Fig. 8 illustrates the correlation between timestep 

length, and the average time required for the machine to train 

the model. Fig. 8 proves that the longer the timestep value, the 

longer the processing time is needed. This result is reasonable, 

considering that the data processed is directly proportional to 

the defined timestep length. For more information, the 

increasing time training significantly happens in 6 and 12 

timesteps. It is influenced by seasonality since the single 
season has six months. 

 

 
Fig. 7  Time series size of temporal sliding window and Mean Absolute Error 

 

 
Fig. 8  Training Time of different sizes of temporal sliding window 

 

In addition, we observed variability in the test and 

validation results in every model. Since we shifted the 

experiment range by 12 months, we selected the validation 

and test scores from the rainy season to the dry season. Since 

more weather events happen during rain time, the movements 
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of the weather, mainly rainfall, are less predictable. Thus, the 

error rate fluctuates depending on the odd or time step. The 

variability in the results highlights the challenges of modeling 

and predicting weather patterns, especially during periods of 

high variability, like the rainy season. It is essential to 

consider the inherent unpredictability of certain weather 

phenomena when evaluating the performance of your models. 

Additionally, taking into account the specific characteristics 

and patterns of different seasons can provide valuable insights 

into the behavior and accuracy of the models in different 
weather conditions. 

2) Validation Result Based on Activation Function in 

Hidden Layer 

This section summarizes the results of comparing 

activation functions in Table 2. Three activation functions 
have been compared: ReLU, Sigmoid, and Tanh. The best 

results were obtained with Sigmoid as the activation function, 

followed by ReLU and Tanh, where the MAE and RMSE 

values did not differ much. Based on the sigmoid formula, it 

can be known that the graph is between zero and one, so it 

controls the value only at those distances. However, ReLu is 

quite different. It restricts the value from zero to infinity. 

Because of that, the value with a significant number will go 

through the activation function to the next layer. For the tanh, 

the diagram limits the value between minus one and one. In 

this condition, the value with a number minus might make the 

model’s worst and produce an accurate prediction. 

TABLE III 

HYPERPARAMETER TUNING BASED ON ACTIVATION FUNCTION 

Activation MAE RMSE 

ReLu 68.55 86.19 
Sigmoid 66.77 83.77 

Tanh 68.46 85.88 

3) Validation Result Based on Number of Hidden Layer 

Nodes 

Table 3 details the results of comparing the number of units 

of the model when predicting the testing dataset in MAE and 
RMSE units. The number of units tested was 16, 32, and 48. 

The most petite MAE and RMSE were obtained with a model 

with 16 units. The model with 48 units produces the highest 

error value. Besides, the model with 32 units produces an 

error slightly lower than 48 units. The more units used in a 

model, the higher the error value. 

TABLE IIII 

HYPERPARAMETER TUNING BASED ON NUMBER OF HIDDEN NODES 

Evaluation 

Metrics 

Number of Nodes 

16 32 48 

MAE 66.77 70.21 73.79 
RMSE 83.77 88.24 93.03 

C. Comparison of the Spatiotemporal ELM Cluster and 

Other Algorithms 

Our proposed model has been compared with several other 

machine learning methods, such as SVR, Linear Regression, 

Gaussian, Ridge, and Lasso.  

 ELM Cluster: Extreme Learning Machine to cluster 

every model by iterating every piece of information in 
spatial location, as shown in Fig. 4. 

 SVR: Support Vector Regression is a part of Support 

Vector Machine, a supervised learning algorithm that 

forecasts discrete values. Support Vector Regression 

uses the same rule as the SVMs. 

 LR: Linear regression is a linear model, e.g., a model 

that pretends a linear correlation between the input 

variables (x) and the single value of the output variable 

(y). 

 Gaussian: Gaussian linear model is a unique case of the 

simplified linear model that just so happens to be 
conventional least squares 

 Ridge: A method of assessing the coefficients of 

multiple-regression models in circumstances where the 

independent variables are extremely related. 

 Lasso: An alteration of linear regression when the 

model is penalized for misconduct for the sum of the 

absolute values of the weights. Thus, the absolute value 

of the weights will (in general) decrease, and the lot 

tends to be zero. 

The results of the evaluation and training duration of these 

models are summarized in Table 4. The proposed model 
occupies the first position with the best results, namely MAE 

of 66.77 and RMSE of 83.77. The other models, from best to 

worst, namely Support Vector Regression (SVR), Linear 

Regression, Gaussian Regression, Ridge Regression, and 

Lasso Regression, followed the Spatiotemporal ELM in 

model performance. The other models applied for every 

spatial point. All tested models are ensured through a training 

process for each point in the dataset. 

Regarding time efficiency, Spatiotemporal ELM occupies 

the first position as the model with the fastest training duration 

of 28.9 seconds. It was then followed by other machine 
learnings with training duration by Linear Regression for 30.5 

seconds, Gaussian for 35.8 seconds, Ridge for 40.1 seconds, 

SVR for 46.4 seconds, and Lasso for 56.2 seconds. 

TABLE IV 

RESULT EVALUATIONS BETWEEN ELM CLUSTER AND OTHER METHODS 

USING MAE AND RMSE, COMPARING WITH A TRAINING TIME OF THE MODEL 

TO LEARN FROM THE DATA  

Model MAE RMSE
Training 

Time 

ELM Cluster 66.77 83.77 00:28.9 
SVR [40] 67.02 84.74 00:46.4 
Linear Regression [41] 67.15 84.91 00:30.5 
Gaussian Regression [42] 67.36 86.05 00:35.8 
Ridge Regression [43] 69.64 87.1 00:40.1 
Lasso Regression [43] 72.45 98.07 00:56.2 

D. Prediction Result Evaluation 

The error rate using MAE or RMSE has been explained 

before. In this section, the authors interpret the prediction 

result using the ELM cluster to predict monthly rainfall by 

spatiotemporal data. As shown in Fig 9 and Fig. 10, it 

explained the ground truth of the data. Fig. 11 shows the 
prediction using ELM-Cluster that is similar in spatial area. 

Therefore, this study uses only single data rainfall as input and 

qualitatively evaluates the prediction results by data itself. 

The spatial distributions of the prediction have the same 

pattern as the ground truth. As can be observed, the forecast 

results of all the spatial models present significant spatial 

areas with an intensity of more than 300 mm but show similar 

spatial characteristics of the model's forecast ability with 
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west-to-east distribution. Forests dominate the western region 

of Kalimantan Timur. There would be more heavy rain than 

on the east coast, while areas with rain intensity less than 

150mm are mainly near the beach. 

The uncertainty quantification is vital in rainfall prediction. 

Estimating the incoming rain season prescriptive analytics 

can be challenging if the temporal quantities of available 

surface land heights at specified locations area. In this study, 

the scenarios are set up with induced rainfall. Our 

experimental framework was constructed to show the 
enhanced value of using the predictors’ sequence information 

from former time steps in increasing the models’ predictive 

abilities. In addition, we tested the value in the model by 

adding more predictors to the model’s performance. 
 

 
Fig. 9  Ground truth data before preprocessing 

 

 
Fig. 10  Ground truth from the CHIRPS data. In one month, rain density 

ranges from 0 mm to almost 400 mm 

 

 
Fig. 11  Result of rainfall prediction using ELM cluster 

IV. CONCLUSION 

This study uses spatiotemporal ELM cluster and several 

machine learning models to forecast hydrological rainfall 

captured by satellite and station, combining into data 

CHIRPS. For this purpose, the authors have used 1 to 12 

timescales to find the minimum error. Five different machine 
learning models and one spatiotemporal ELM Cluster model 

are used for modeling and using several timestep to ensure the 

better size timestep. Applied focal operation with the nearest 

neighbor for the preprocessing data can make the model 

relatable with spatial dan temporal perspectives. Based on the 

results, the spatiotemporal ELM Cluster is the best model for 

rainfall prediction modeling on that timestep and with 

different tuning hyperparameters, finding the best 

hyperparameter to create a fit model for the ELM cluster, 

while Lasso is the worst compared to others. Besides, the 

spatiotemporal technique positively decreases the error rate 
and training time around the model learning. The established 

spatiotemporal ELM Cluster model has a high generalization 

ability and prediction error rate, which can support the 

formulation of appropriate environmental management 

policies.  

Moreover, many complex factors relating to rainfall 

prediction will lead to the effect of the algorithm in terms of 

prediction. Exploring other predictors such as wind, 

temperature, and meteorological effects should consider 

raising the effectiveness of rainfall prediction with temporal 

and spatial data. This idea can control different areas with 

different factors of rain density. 
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