
Vol.13 (2023) No. 4

ISSN: 2088-5334

Multi-Language Program Understanding Tool
Navid Rostami Ravari a, Rodziah Latih a,*, Abdullah Mohd Zin b

a Center for Software Technology and Management, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, 43600

UKM Bangi, Malaysia
b Faculty of Computing and Multimedia, Universiti Poly-Tech Malaysia, Kuala Lumpur, Malaysia

Corresponding author: *rodziah.latih@ukm.edu.my

Abstract—Open-source programs have gained popularity due to their decentralized, quick development cycles and accessibility to

everyone. Program understanding is vital for open-source software developers to modify or improve the code. However, one problem

open-source developers face is the difficulty in understanding the programs as the program grows large and becomes complex. The

current program understanding tool is inefficient because it only supports one programming language, while open-source programs

are written in various languages. This paper discusses a new program understanding technique that facilitates multi-language program

understanding. The proposed technique helps developers to understand open-source programs by supporting two unique features:

multimedia and additional comments. We carried out this study in four stages. First, we examined available tools and techniques in

software understanding to identify their strengths and weaknesses. Second, we proposed a new technique. Third, we designed a new

tool to implement the new technique. Lastly, we evaluated the tool using a survey. We invited twenty users, including students and

programmers, to use the system and ask for their feedback. The evaluation of the proposed techniques shows that the respondents have

a positive perception as they agree that the technique helped them better understand the program. The multimedia support and an

additional comment provided by the tool significantly improve user understanding of the program. For future work, we would like to

explore the possibility of utilizing some machine-learning techniques to enhance the process of program understanding.

Keywords— Program comprehension; program visualization; open-source software; source code; multimedia.

Manuscript received 8 Jun. 2022; revised 12 Feb. 2023; accepted 16 Mar. 2023. Date of publication 31 Aug. 2023.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

Open-source software (OSS) is developed to be
decentralized and collaborative, relying on peer review and
community production. The software development company
contributed to OSS projects for many reasons, including
improving software quality and a desire to influence the
software's development direction [1]. The most commonly
mentioned benefit of open-source software is cost saving.
Typically, open-source software implies that users are not
obligated to pay for software and procurement overhead to
manage license renewals [2].

Open-source software is usually easier to get than
proprietary software. It is more reliable because thousands of
independent programmers voluntarily test and fix software
bugs [3]. Open source is independent of the company or
author that created it. Even if the company fails, the program
continues to exist and be used. Also, open-source software
uses open standards that are accessible to everyone. Thus, it
does not have the incompatible formats problem that may

exist in proprietary software. However, lack of support, poor
documentation, and program complexity cause severe
problems when using open-source software [4], [5]. The high
volume of information and missed and conflicting
information makes understanding the software programs
difficult. As a result, not many people can utilize open-source
software.

Program understanding is vital for open-source software
developers who want to modify or improve the code. Open-
source software is becoming large and complex because its
development and maintenance involve the collaboration of
many people. Therefore, understanding, modifying, and
expanding the open-source software become more complex
and require significant time. In particular, programs that have
evolved over many years are challenging to understand
because diverse programmers with different programming
styles have maintained them and have evolved to become
unnecessarily complex and extensive.

The majority of open-source programs comprise a high
volume of code in a large number of files. Therefore,

1554

inadequate documentation makes understanding and using the
source code impossible or very difficult. A reasonable
solution is a program understanding tool that explains the
purpose and task of different parts of the source code.

Comprehending large-scale software costs more and takes
more effort [6]. The academic literature mainly focuses on
research in program comprehension of short code, but the
comprehension of large-scale software is more critical and
needs to be considered. The open-source software may differ
in system comprehension, and further research is required to
understand it. This study is essential because open-source
development is more evolutionary, less planned, and less
documented than large-scale software [7].

This paper discusses a new technique to facilitate open-
source software understanding. The paper is structured as
follows. Section 2 discusses the related work in program
understanding and the method employed for the study.
Section 3 reports the results and discusses the finding. Finally,
Section 4 presents our conclusions and suggestions for further
research.

II. MATERIALS AND METHOD

A. Program Understanding Techniques

Program understanding is essential for software
maintenance and enhancement activities [8], [9]. It involves
comprehending programs to perform further tasks such as
fixing bugs, refactoring code, and porting code to different
platforms. Generally, program understanding comprises three
steps: reading the documents and source code and running the
source code [10]. For the first step, documentation is very
useful for studying the behavior of an executable program. In
this case, a lack of documentation or poor documentation
prevents developers from understanding the systems
effectively. Therefore, they must go through the second and
third steps, i.e., read and run the source code to understand
how a program was designed and worked.

Various techniques and tools have been developed to
facilitate the program understanding strategies programmers
use to reach specific tasks. Five strategies for program
understanding are:

1) The “bottom-up” or “chunking”: This strategy
involves comprehending the program's “bottom-up" by
reading the source code and then mentally dividing low-level
software artifacts into meaningful, higher-level abstractions
[11]. This semantical group is called chunks. These secession
processes are continuously done until the program becomes
highly understood. This strategy is suitable when
programmers know only the insufficient program domain.

2) The “top-down”: This theory proposes that
programmers use their experience and repeatedly try to certify
their expectations based on their design [12]. The programs
are comprehended "top-down" by rebuilding knowledge
about the scope of the application and mapping it to the source
code. For example, the programmer decomposes the new
operating system into familiar elements, like a file manager,
process manager, I/O manager, and memory manager. This
strategy is suitable when the program or type of program is
familiar.

3) Knowledge-based: This strategy is known as the
Letovsky Model [13]. It possesses three components: a
knowledge base, a mental model, and an assimilation process.
The knowledge base consists of programming expertise,
problem-domain knowledge, rules of discourse, plans, and
goals. The first component encodes the expertise and
knowledge the programmer brings to understand the task. A
programmer's primary understanding of the target program is
encoded in the second component. It should be noted that the
mental model changes during the understanding process.
Finally, through an assimilation process, the knowledge base
is associated with the target program code and documentation
to improve the mental model.

4) Integrated approaches: This approach merges the top-
down structure model, situation model, program model, and
knowledge-based method into a meta-model [14]. The top-
down, situation, and program models reflect the
comprehension process. In contrast, the knowledge-based
model furnishes the process with information related to the
comprehension task and stores any new and inferred
knowledge. Some programmers regularly switch between
these three models. By moving freely between these three
strategies, understanding the program code is built
simultaneously on several levels of abstraction.

5) Task-based approach: This approach is suitable for
novice developers to enhance program comprehension [15].
Tasks can be defined in the lower cognitive category, such as
recall, or the higher cognitive category, e.g., source code
modification.

B. Program Visualization

Visualization transforms information into a visual form,
enabling users to observe the information [16], [17].
Generally, visualization can be categorized into three groups:
(i) structure, which includes visualizations that support the
analysis of the static aspects and relationships in software
systems, (ii) behavior, which relates to visualizations
proposed for the data analysis collected from the execution of
programs, and (iii) evolution, which contains visualizations
that support the analysis of how systems change over time
[18]. A city metaphor and a directed acyclic graph can
represent the structure of software systems. In contrast, the
system's behavior is visualized using log traces, and the
system's evolution is visualized with code change history
[19].

Program visualization is one of the programs
understanding approaches. Program visualization tools make
the program visible by displaying the structure and elements
of the source code. The illustration can help users remember
and identify how the code works. As a result, programmers
can better understand or remember their code. For novice
programmers, it can remove the barriers to discovering how
the code and algorithms work [20].

C. Program Understanding Tools

Merely reviewing the code does not facilitate an
understanding of large programs. Much information could be
easily lost, including object-oriented inheritance hierarchies,
particular employment of class approaches, and the
attendance or non-attendance of specific design patterns. To

1555

facilitate this process, software visualization tools were
suggested. Hunter is a visualization tool for JavaScript
applications [21]. It visualizes source code through a set of
coordinated views that include a node-link diagram that
depicts the dependencies among the components of a system
and a tree map that helps programmers to orientate when
navigating its structure.

Program visualization tools can be used to support analysis,
modeling, testing, debugging, and maintenance activities
[22]. Simple and helpful visualization tools can significantly
reduce the effort spent on program understanding and
maintenance. On the other hand, inappropriate and inefficient
software visualization tools create complexity that prevents
proper understanding of the program code. These
inappropriate tools lead to confusion and misunderstandings
for users. Furthermore, most available program
comprehension tools focus primarily on showing graphical
elements of source code rather than facilitating source code
comprehension. Although many program understanding tools
have been developed, most tools only support specific
programming languages. Different programming languages
have different complexities. The difficulty of importing and
exporting source code is also a usability issue for these tools.

Software understanding tools are practical if the tools are
easy to use and help users to achieve results faster than the
traditional approach. Strong code understanding support can
simplify tasks like improving documentation, maintenance,
testing, adding new functionalities, debugging, and analyzing
code. Besides using graphical presentation, program
visualization can also be realized using techniques such as
node-link diagrams, graphs, infographics, and tree-map [17],
[20], [22], [23].

However, software visualization still has several issues,
e.g., software scalability, tools validation technique, and
scope-related vision [24]. Most software understanding tools
were developed as short-term research prototypes or "toy
programs" and do not fit the industrial scope in terms of the
program inputs range. In this regard, the expectation is that
the software understanding tools are only suitable for small-
to medium-sized systems. We should focus on a production
scale system to potentially deploy software understanding in
the industry.

The lack of rigorous validation techniques is one of the
main problems discussed in the research of software
understanding tools. Beyond the idea of effectiveness, most
research did not articulate research methods and questions.
Indeed, surveys or controlled experiments are not a popular
evaluation approach compared to case studies, even though it
is a proper validation process.

Experts in reverse engineering, reengineering, and
software preservation believe software visualization,
especially 3D visualization, is too metaphorical. The
researcher should understand that software visualization aims
not to create impressive images but to use images to evoke
viewers' mental images for better understanding. The
software understanding system should represent more
knowledge of the application area to envision the software in
context.

Software visualization also lacks usability. To solve this
issue, a researcher should consider human factors when
designing and evaluating software understanding tools mainly

employed by teachers in the education domain. These tools
are supposed to encourage active learning for students.
Hence, conducting empirical studies on the current
understanding and considering such validation in designing
future understanding systems is essential.

In conclusion, from the literature review and some
comparisons of software understanding techniques, it is clear
that program understanding tools can assist users in
understanding the source code better. In addition to the
benefits, we identified various issues that made users reluctant
to use the tools. We use these issues as guidelines for
developing new program comprehension techniques.

D. Research Method

We conducted this study in four stages. First, we review
available program understanding tools and techniques to
identify strengths and weaknesses. Second, we propose new
techniques based on the research results obtained. Third, we
design and develop the program comprehension tool using
the .Net framework with C# programming language and
MySQL database. Finally, we evaluated the developed
program comprehension tool using a survey approach. We
invited a group of students and programmers to use the system
and give their feedback.

III. RESULTS AND DISCUSSION

This section discusses the literature study's results, new
program understanding technique, tool, and result evaluation.

A. Program Understanding Technique

We propose a new program comprehension strategy based
on a literature review and analysis of several programming
comprehension tools. This strategy aims to help programmers
better understand open-source software. Understanding open-
source software is challenging as it grows in size and
complexity due to the involvement of many people. Thus, the
proposed program comprehension technique has four features
that consider this challenge and are explained below.

1) Support Multiple Programming Languages: Most
program understanding tools depend on a particular
programming language. Therefore, they can only visualize
program execution in that language [25], [26]. Unfortunately,
one language cannot meet all the requirements of the software
industry. At least one-third of the current software programs
employ two programming languages, and 10% of all
applications include three or more languages [27].

Large software systems are usually programmed in several
languages. For example, the core of powerful software is
written in languages such as Java, C, or Python, while the user
interface is written in languages such as JavaScript, Python,
Perl, or other scripting languages. The reason for using
different languages in one application is that each language
has its strengths.

This trend has an impact on software understanding tools.
A multi-language tool that supports a combination of
programming languages can enhance the validity of the
proposed tool because source code is usually written in
different languages. Moreover, a multi-language software
understanding tool will increase user satisfaction.

1556

2) Understand the Program Structure: Understanding a
big and complex program without understanding the
program's structure is challenging. Thus, a program
understanding tool must provide this facility. Types of
information that must be provided include each identifier in
the program, the relationship between identifiers, and
subprograms, and their relationship with other subprograms.

3) Source code tagging using multimedia: Professional
and novice programmers must check the source code to
comprehend the program. Depending on the individual's
expertise and the program's complexity, this process may take
time. Usually, the best way to comprehend the program is to
use updated documents or physically communicate with
expert developers. However, documents may be outdated and
do not include new changes to the program or may not provide
access to expert developers. Maintaining the experts’
knowledge or information about the program is necessary by
allowing the community of programmers to tag information
to various parts of the source code. Other programmers can
then use this information to understand it.

One of the effective tagging methods is visual media, like
written media and drawing, audio media, audio-visual media
(e.g., video and animation), and multi-sensory media (e.g., 3D
objects and simulations). The media that the expert developer
added allow other programmers to comprehend program
changes. Additionally, it helps explain why they use specific
programming techniques in the various sections. For example,
in large companies where different people work on the same
source code, each person can add media to their work orally
(audio) or by explaining the source code through video [28].
Therefore, this technique assists the new programmer in
comprehending the program in less time and at a lower cost.

4) Additional comments to Enhance understanding:

Another meaningful way to program understanding is by
writing comments in the source code [29]. Comments are
generally formatted as either block comments or line
comments (also called inline comments). Comments usually
provide additional algorithm information, specify constraints,
or warn developers about code complexity [30]. Without
proper comments, it is not easy to understand the source code
[31]. However, using comments on source code is often
overlooked, even though developers know the benefits.

Sometimes, developers forget to update the relevant
comments when changing a part of the program or function.
Thus, the comments might adversely affect the success of
software evolution and the process of program understanding.
Comments like this often mislead developers and create bugs
in the future. Also, open-source code with a high-density
comment is more likely to cause problems understanding the
source code. Comment density is the percentage of comment
lines in the source codebase, or in other words, comment lines
divided by total code lines. The appropriate size of comment
density is likely to be an element of software survival.
However, when comments become large, they complicate the
perception of the source code, resulting in the opposite.
Additional comments are an additional tagging feature to the
source code. Additional comments allow other programmers
to explain various parts of the source code, for example, why
certain design patterns are used. Using additional comments

can avoid massive inline comments and lengthy block
comments.

B. Multi-language Program Understanding Tool

As discussed above, we developed a new program
understanding tool based on the proposed technique. The
proposed technique includes three supporting elements:
multi-language, multimedia, and additional comments. Multi-
language is necessary as most programmers use several
programming languages, and most open-source programs are
written in various languages. Using multimedia, such as
PowerPoint, audio, Video, Image, and PDF file format, as a
tagging method gives the user additional support to improve
program comprehension.

Programmers usually add readable and reliable
explanations about complex parts of the program in the form
of comments to boost program comprehension. However,
many comments among the source code lines are more likely
to cause confusion and increase the complexity of the source
code. Additional comments can be a solution to this
complexity. This tool has two types of users: authors and
users. An author is a person who can upload a new source
code into the tool and can add supplementary information to
the source code. The supplementary information can be video,
audio file, PowerPoints, Comment, photo, and PDF, to help
the user better understand the source code. A user is a person
who uses the tool to understand the source code better.

We developed this tool using the C# programming
language and the .NET framework. The tool primarily aims to
help users understand and learn the source code faster.
Therefore, the essential criteria in designing this user interface
are simplicity and ease of use. Fig. 1 shows the flowchart
describing how to use this tool. The source code is first
imported into the tool (it should be noted that this tool is not
a debugging tool, so we assume that the source code is free of
syntax errors). After importing the source code, the elements
in the source code are extracted using Ctags.

Fig. 1 Flowchart describing the process flow

1557

Ctags is a tool to identify objects in the source code and
keep them in a tag file. It supports 41 programming languages,
including C, C++, C#, and Python. Ctags generates a cross-
reference file that lists the information about the various
language objects in a source file. The information extracted
by Ctags is stored in the database and can be retrieved in a
query format. After this step, the author can add information
to the source code according to the line number. The
information is either multimedia or comments. Fig. 2 shows
the tool’s user interface, displaying the uploaded source code.

Fig. 2 User Interface of the software tool

There are two categories of information: multimedia and
additional comments. A user right-clicks any line in the
source code and chooses the type of information that the user
wants to see, as shown in Fig. 3. The status bar at the bottom
of the editor shows the availability of supporting information
(Fig. 4). A green flag means that the information is available.
Otherwise, it is marked with a red flag. If the selected
information is available, it is displayed on a separate page.
Fig. 5 shows the source code with supporting video and
PowerPoint slides. Fig. 6 shows a user interface to add
additional comments.

Fig. 3 Showing information in multimedia format

Fig. 4 Different flags relate to three categories of supplementary information.

Fig. 5 The source code with supporting video and slide

Fig. 6 Adding new extra comment

C. Technique Evaluation

We evaluated the effectiveness of the proposed technique
by conducting a survey. We used a five-level Likert scale
questionnaire to measure the experts' agreement with the
statements. The response scales are 1-Strongly disagree, 2-
Disagree, 3-Neither agree nor disagree, 4-Agree, and 5-
Strongly agree. The survey involved 20 participants (5 expert
programmers and 15 students). A sample size of 20
participants is sufficient because, according to the Usability
Test Sample Size Model, most usability problems are detected
by the first three to five subjects [32]. Running additional
subjects during the same test is unlikely to reveal new
information.

There is no age or gender restriction in our survey. The
users were introduced to the new program understanding tool
and given ample time to try out the tool. Later, we asked them
to answer a questionnaire regarding their experience using it.
The questionnaire consisted of three parts. The first part is
about user perceptions of the proposed technique. This part
consists of eight questions: Q1 and Q2 ask the users'
perception of source code comprehension, Q3-Q7 ask the
users' perception about using multimedia in understanding the
source code, and Q8 asks about the users' perception of the
proposed technique. Table 1 shows the mean for each
question, which is 4.35. The result indicates that the users
positively perceive using multimedia in understanding the
source code and the proposed technique.

The second part of the questionnaire dealt with how the
user interacts with the tool. It consists of five questions
concerning ease of use (Q9 - Q10) and user satisfaction with
the tool (Q11-Q13). Table 2 shows that the mean value is
4.26, which confirms that users are satisfied with the tool. The
third part consists of five questions (Q14-Q18) to evaluate the
technique's effectiveness in understanding the source code.
The participants were asked to comprehend the MINIX
source code using the technique. Table 3 shows the result. The
mean for this MINIX case study is 4.0, which indicates that
the techniques give a better understanding and learning of the
source code.

1558

TABLE I
USERS' PERCEPTION OF THE PROPOSED TECHNIQUE

Questions Mean

Q1. Has it been difficult for you to understand the
source code?

4.15

Q2. Has it become easier for you to understand
open-source code using this tool?

4.3

Q3. Do you find it appropriate to use media for
learning?

4.9

Q4. Do you find it appropriate to use media to learn
source code and programming?

4.6

Q5. Has the use of media in this tool helped you
better understand the source code?

4.4

Q6. Do you find it appropriate to use comments
outside the source code as additional comments?

4

Q7. Has the additional comment in the tool helped
to better understand the source code?

4.3

Q8. Do you see the technique used in this tool as an
appropriate way to better understand the source
code?

4.3

The average score of questions 4.35

TABLE II
USERS’ SATISFACTION WITH THE TOOL

 Questions Mean

Q9. Has working with tools been easy for you? 4.35
Q10.

Do you believe it can be used without special
knowledge about the tool?

4.55

Q11. Do you want to work on the tool in newer
versions?

3.95

Q12. Do you recommend this tool to your friends? 4.15
Q13. Was the order of the tool options in the

proper order?
4.3

The average score of questions 4.26

TABLE III
THE EFFECTIVENESS OF THE TECHNIQUE

 Questions Mean

Q14. Do you want to check the source code of
the MINIX operating system?

3.05

Q15. Do you find it difficult to understand the
source code of the MINIX operating
system?

4.3

Q16. Did using the tool on the source code of
the MINIX operating system lead to a
better understanding of it?

4.2

Q17. Has the technique of adding multimedia
helped better to understand the source
code of the MINIX operating system?

4.3

Q18. Has the extra comment technique helped
better to understand the source code of
the MINIX operating system?

4.15

The average score of questions 4.0

IV. CONCLUSION

Program understanding is one of the most critical tasks in
using source code. The recent open-source programs are
complex and complicated to understand because they were
developed by many programmers using different languages
and styles. Techniques that have been developed to
understand programs have different strengths and
weaknesses. The weaknesses of existing techniques motivate
us to introduce a new technique to improve the understanding
of open-source software.

Our proposed technique simplifies the understanding of
open-source programs by supporting two unique features, i.e.,

the ability to add multimedia and additional comment to the
complex open-source code. These additional features help
with a better understanding of the source code. Moreover, the
tool we developed also supports multiple programming
languages to help users examine source code written in
different languages.

The evaluation of the proposed techniques shows that the
users have a positive perception because they agree that the
technique is better at assisting them to understand the
program. They also agree that it is easy to use. The tool's
multimedia support and extra comment significantly improve
user understanding of the source code. This proposed
technique can be used via GitHub and design proper plugins
for IDEs, such as Eclipse or IntelliJ IDEA. Users who access
the source code from GitHub receive the multimedia and
supplementary comment assigned to it.

The proposed software understanding tool currently
supports five media types: video, audio, image, PDF, and
PowerPoint. This tool considers a wide range of available
media and their unique use. Each media can be used to
improve source code understanding. In its current form, the
software tool suffers several limitations. One of them is the
lack of intelligence to some understanding process to be
carried out automatically. For future research, we would like
to explore the possibility of using some machine learning
algorithms that can help enhance the program understanding
process.

ACKNOWLEDGMENT

We thank Universiti Kebangsaan Malaysia for supporting
this work under the GGPM-2020-026 research grant fund.

REFERENCES
[1] S. Butler et al., “On Company Contributions to Community Open

Source Software Projects,” IEEE Trans. Softw. Eng., vol. 47, no. 7,
2021.

[2] A. Khandelwal, “Impact of Open Source Software in Research,” 2020.
[3] A. Azlen, M. Nordin, R. Latih, and N. M. Ali, “Using SaaS to Enhance

Productivity for Software Developers: A Systematic Literature
Review,” J. Theor. Appl. Inf. Technol., vol. 31, p. 24, 2020.

[4] Sumandeep Kaur, “Issues in Open-Source Software ,” Int. J.

Comput. Sci. Commun., vol. 11, no. 2, pp. 47–51, 2020.
[5] G. M. Kapitsaki, N. D. Tselikas, K.-I. D. Kyriakou, and M.

Papoutsoglou, “Help me with this: A categorization of open source
software problems,” Inf. Softw. Technol., vol. 152, p. 107034, Dec.
2022.

[6] A. Mohd Zin, S. Ahmad Aljunid, Z. Shukur, and M. Jan Nordin, “A
Knowledge-based Automated Debugger in Learning System,” 2000.

[7] O. Levy and D. G. Feitelson, “Understanding large-scale software
systems – structure and flows,” Empir. Softw. Eng., vol. 26, no. 3, p.
48, May 2021.

[8] S. A. Aljunid, Abdullah Mohd Zin, and Zarina Shukur, “A Study on
the Program Comprehension and Debugging Processes of Novice
Programmers,” J. Softw. Eng., vol. 6, no. 1, pp. 1–9, 2012.

[9] M. Hassan, “How do we Help Students ‘See the Forest from the
Trees?,’” in Proceedings of the 2022 ACM Conference on

International Computing Education Research - Volume 2, 2022.
[10] Z. Ahsan, U. Obaidellah, and M. Danaee, “Is Self-Rated Confidence a

Predictor for Performance in Programming Comprehension Tasks?,”
APSIPA Trans. Signal Inf. Process., vol. 11, no. 1, 2022.

[11] N. Al Madi and M. Zang, “Would a Rose by any Other Name Smell
as Sweet? Examining the Cost of Similarity in Identifier Naming,” in
The 33rd Psychology of Programming Interest Group (PPIG 2022),
2022.

[12] H. Eicken et al., “Connecting Top-Down and Bottom-Up Approaches
in Environmental Observing,” Bioscience, vol. 71, no. 5, pp. 467–483,
May 2021.

1559

[13] S. Letovsky, “Cognitive processes in program comprehension,” J.

Syst. Softw., vol. 7, no. 4, pp. 325–339, Dec. 1987.
[14] A. Fekete and Z. Porkoláb, “A comprehensive review on software

comprehension models,” Ann. Math. Informaticae, vol. 51, pp. 103–
111, 2020.

[15] A. A. Shargabi, S. A. Aljunid, M. Annamalai, and A. M. Zin,
“Performing Tasks Can Improve Program Comprehension Mental
Model of Novice Developers,” in Proceedings of the 28th

International Conference on Program Comprehension, 2020.
[16] P. Lima, J. Melegati, E. Gomes, N. S. Pereira, E. Guerra, and P.

Meirelles, “CADV: A software visualization approach for code
annotations distribution,” Inf. Softw. Technol., vol. 154, p. 107089,
Feb. 2023.

[17] E. Fregnan, J. Fröhlich, D. Spadini, and A. Bacchelli, “Graph-based
visualization of merge requests for code review,” J. Syst. Softw., vol.
195, p. 111506, Jan. 2023.

[18] Stephan Diehl, Software Visualization - Visualizing the Structure,

Behaviour, and Evolution of Software. 2007.
[19] N. Chotisarn et al., “A systematic literature review of modern software

visualization,” J. Vis., vol. 23, no. 4, pp. 539–558, Aug. 2020.
[20] Azila Adnan and Muhamad F B Noor Hassim, “Infographics in

Teaching and Learning: An Attention Grabber,” in International

University Carnival on E-Learning (IUCEL) Proceedings 2022, 2022.
[21] M. Dias, D. Orellana, S. Vidal, L. Merino, and A. Bergel, “Evaluating

a Visual Approach for Understanding JavaScript Source Code,” in
Proceedings of the 28th International Conference on Program

Comprehension, 2020.
[22] M. Kargar, A. Isazadeh, and H. Izadkhah, “Improving the

modularization quality of heterogeneous multi-programming software
systems by unifying structural and semantic concepts,” J.

Supercomput., vol. 76, no. 1, pp. 87–121, Jan. 2020.
[23] D. Limberger, W. Scheibel, J. van Dieken, and J. Döllner, “Procedural

texture patterns for encoding changes in color in 2.5D treemap
visualizations,” J. Vis., Oct. 2022.

[24] L. Bedu, O. Tinh, and F. Petrillo, “A Tertiary Systematic Literature
Review on Software Visualization,” in 2019 Working Conference on

Software Visualization (VISSOFT), pp. 33–44, 2019.
[25] R. Ishizue, K. Sakamoto, H. Washizaki, and Y. Fukazawa, “PVC.js:

visualizing C programs on web browsers for novices,” Heliyon, vol. 6,
no. 4, p. e03806, Apr. 2020.

[26] M. Mladenović, Ž. Žanko, and M. Aglić Čuvić, “The impact of using
program visualization techniques on learning basic programming
concepts at the K–12 level,” Comput. Appl. Eng. Educ., vol. 29, no. 1,
2021.

[27] M. Altherwi, “An empirical study of programming language effect on
open source software development,” in Proceedings Companion of the

2019 ACM SIGPLAN International Conference on Systems,

Programming, Languages, and Applications: Software for Humanity,
2019.

[28] Mohan Krishna Kagita and Li Xiujuan, “Machine Learning
Techniques for Multimedia Communications in Business Marketing,”
J. Mult. Log. Soft Comput. , vol. 36, no. 1, pp. 151–167, 2021.

[29] H. He, “Understanding source code comments at large-scale,” in
Proceedings of the 2019 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations

of Software Engineering, 2019.
[30] S. Panthaplackel, J. J. Li, M. Gligoric, and R. J. Mooney, “Deep Just-

In-Time Inconsistency Detection Between Comments and Source
Code,” Proc. AAAI Conf. Artif. Intell., vol. 35, no. 1, pp. 427–435,
May 2021.

[31] X. Song, H. Sun, X. Wang, and J. Yan, “A Survey of Automatic
Generation of Source Code Comments: Algorithms and Techniques,”
IEEE Access, vol. 7, pp. 111411–111428, 2019.

[32] J. Nielsen, J. Lewis, and C. Turner, “Determining Usability Test
Sample Size,” in International Encyclopedia of Ergonomics and

Human Factors, Second Edition - 3 Volume Set, CRC Press, 2006.

1560

