

Vol.7 (2017) No. 5

ISSN: 2088-5334

Improving Stemming Algorithm Using Morphological Rules

Titin Winarti#, DJati Kerami*, Lussiana ETP+, Sunny Arief Sudiro+

#Department of Informatics, Semarang University, Soekarno Hatta Street, Semarang, 50196, Indonesia

E-mail: titin@usm.ac.id

*Department of Mathematics and Natural Sciences, University of Indonesia, Pondok Cina, Depok, 16424, Indonesia
E-mail: djatikr@sci.ui.ac.id

+Department of Computer System, School of Information Management Jakarta, Radio Dalam Street, 12140, Indonesia

E-mail: {lussiana,sunny}@jak-stik.ac.id

Abstract— Stemming words to remove suffixes has applications in text search, translation machine, summarization document, and
text classification. For example, Indonesian stemming reduces the words “kebaikan”, “perbaikan”, “memperbaiki” and “sebaik-
baiknya” to their common morphological root “baik”. In text search, this permits a search for a player to find documents containing
all words with the stem play. In the Indonesian language, stemming is of crucial importance: words have prefixes, suffixes, infixes,
and confixes that make them match to relate difficult words. This research proposed a stemmer with more accurate word results by
employing an algorithm which gave more than one word candidate results and more than one affix combinations. New stemming
algorithm is called CAT stemming algorithm. Here, the word results did not depend on the order of the morphological rule. All rules
were checked, and the word results were kept in a candidate list. To make an efficient stemmer, two kinds of word lists (vocabularies)
were used: words that had more than one candidate words and list of root word as a candidate reference. The final word results
were selected with several rules. This strategy was proved to have a better result than the two most known about Indonesian
stemmers. The experiments showed that the proposed approach gave higher accuracy than the compared systems known.

Keywords— stemming; information retrieval; morphological rule

I. INTRODUCTION

Stemming is a core natural language processing
technique for efficient and effective Information Retrieval
[1], and one that is widely accepted by users. It is used to
transform word variants to their common root of the word
by applying it in most cases of morphological rules [2]. For
example, in text searching, it should permit a user
searching by using the query term stemming to find
documents that contain the terms stemmer and stems
because all share the common root word stem. It also has
applications in translation machine [4], document
summarization [9], and text classification [8].

For English, stemming is well-understood, with
techniques such as those of Lovin and Porter [10] in
widespread use. However, stemming for other languages is
less well-known: while there are several approaches
available for languages such as French [11], Malaysian [7],
and Indonesian [5].

Several techniques have been proposed for stemming
Indonesian. We evaluate these techniques through a user

study, where we compare the performance of the scheme to
the results of manual stemming by four native speakers.
Our results show that an existing technique, proposed by
Nazief and Adriani (1996) in an unpublished technical
report, correctly stems around 93% of all word occurrences
(or 92% of unique words). After classifying the failure
cases, and adding our own rules to address these
limitations, we show this can be improved to 95% for both
unique and all word occurrences. We believe that adding a
complete dictionary of root words would improve these
results even further. We conclude that our modified Nazief
and Adriani stemmer should be used in practice for
stemming Indonesian.

All of the previous works used a way in solving
morphological problems where there was only one rule path
that could be executed for a single input. The formula was
used to check particle, suffix, and prefix in rule order [6].
This was not suitable for an ambiguous morphological word
such as “mereka”, “menggulai” or “kemeja”, where there
should be more than one correct result, depending on the

1758

context. This paper proposes an algorithm where it can have
more than one candidate for those ambiguous words.

The rule order of prefix and suffix gives another error of
stemmed word [12]. The error is obtained when the input
words end in lexical similar with suffixes/ particle/
possessive pronoun. For example, the word “penemu” is
stemmed into “pene”+”mu” because the possessive
pronoun rule is first executed before the prefix rule.
Although Adriani [5] has tried to fix the problem by adding
several exception rules to check the prefix first before the
suffix, this approach still can’t handle the exception
conditions if the conditions are not listed in the exception
rules. In Adriani [5], the exception rules are
“ber”+word+”lah” (such as word “bersekolah”), “ber” +
word +”an” (such as word “berlainan”), “di”-”i”, “ter”-”i”,
“me”-”i” and “pe”-”i”. It still can't handle other patterns
such as words “penemu”, “penanya”, etc. The algorithm
proposed in this paper will give all candidates and then
select the best candidate.

Another weakness of Adriani [5], there is no dictionary
of stemmed word list involved which causes inaccurate
result such as “perbaikan” is stemmed into “bai” root word
with “per” as the prefix and “kan” as the suffix. This is due
to the rule position of “kan” is prior to the rule position of
“an”. One can argue that the solution is to change the rule
order where rule of “an” affix is positioned prior than the
“kan” affix rule, but then this solution will result in
similar problems for words with “kan” affix such as
“menarikan” which then will be morphologically analysed
into “me”, “tarik” and “an” [12].

Meanwhile, in Adriani [5], a complete root of word
dictionary is used to handle this problem. For the word
“perbaikan”, because the root of word “bai” is not in the
dictionary then the system will not choose “per” – “bai” –
“kan”. Instead, the stemmer will choose “per” - “baik” -
“an”, due to the root of word “baik” is in the dictionary.

Although Adriani [5] stemmer gives a better result, it
consumes much time because, for each rule, the resulted
word is searched into the root of the word in the dictionary.
As an alternative solution, this paper proposes the usage of
a restricted list of the root of a word called as vocabulary
which size is less than the complete dictionary used by
Adriani [5] stemmer. By using this, the proposed stemmer
will give good accuracy score such as Adriani [5] stemmer
with less complexity.

II. MATERIAL AND METHODS

A. Nazief Adriani Algorithm
The stemming scheme of Nazief and Adriani is

described in an unpublished technical report from the
University of Indonesia (1996). In this section, we describe
the steps of the algorithm, and illustrate each with
examples; however, for compactness, we omit the detail of
selected rule tables. We refer to this approach like Nazief.

The algorithm is based on comprehensive morphological
rules that group together and encapsulate allowed and
disallowed affixes, including prefixes, suffixes, infixes
(insertions) and confixes (combination of prefixes and
suffixes). The algorithm also supports recoding, an
approach to restore an initial letter that was removed from
the root of the word prior to prepending prefix. In addition,

the algorithm makes use of an auxiliary dictionary of the
root of words that are used in most steps to check if the
stemming has arrived at a root of the word.

Before considering how the scheme works, we consider
the basic groupings of affixes used as a basis for the
approach, and how these definitions are combined to form
a framework to implement the rules. The scheme groups
affixes into the following categories:

1) Inflectional Suffixes: the set of suffixes that do not
alter the root of the word. For example, “pulang” (sit) may
be suffixed with “-lah” to give “pulanglah” (please sit).
The inflections are further divided into:

• Particles (P): including “-lah” and “-kah”, as used in
words such as “duduklah” (please sit).

• Possessive pronouns (PP): including “-ku”, “-mu”,
and “-nya”, as used in “ibunya” (a third person
possessive form of “mother”). Particle and possessive
pronoun inflections can appear together and, if they
do, possessive pronouns appear before particles. A
word can have at most one particle and one
possessive pronoun, and these may be applied directly
to the root of words or to words that have a derivation
suffix. For example, “makan” (to eat) may be
appended with derivation suffix “-an” to give
“makanan” (food). This can be suffixed with “-nya”
to give “makanannya” (a possessive form of “food”)

2) Derivational Suffixes: the set of suffixes that are
directly applied to the root of words. There can be only one
derivation suffix per word. For example, the word “lapor”
(to report) can be suffixed by the derivation suffix “–kan”
to become “laporkan” (go to report). In turn, this can be
suffixed with, for example, an inflectional suffix “-lah” to
become “laporkanlah” (please go to report).

3) Derivational Prefixes: the set of prefixes that are
applied either directly to the root of words, or to words that
have up to two other derivational prefixes. For example,
the derivational prefixes “mem-” and “per-”may be
prepended to “indahkannya” to give “memperindahkannya”
(the act of beautifying).

The classification of affixes as inflections and
derivations leads to an order of use:

[DP+[DP+[DP+]]] root of word [[+DS][+PP][+P]]

TABLE I
DISALLOWED PREFIX AND SUFFIX COMBINATIONS [5]

Prefix Disallowed
suffixes

Examples

be- -i be-kerja-i � be-kerja
di- -an di-jual-an � di-jual-kan
ke- -i, -kan ke-sakit-kan � ke-sakit-an

ke-sakit-i � ter-sakit-i
me- -an me-latih-an � me-latih-kan
se- -i, -kan Se-nasib-kan � se-nasib
te- -an ter-bawa-an� ter-bawa-kan

Table 1 is disallowing prefix and suffix combinations.

The only exception is that the root of word “tahu” is
permitted with the prefix “ke-” and the suffix “-i”.

1759

The square brackets indicate that an affix is optional.
The previous definition forms the basis of the rules used in
the approach. However, there are exceptions and
limitations that are incorporated in the rules:

1) Not All Combinations are Possible: after a word is
prefixed with “di-”, the word is not allowed to be suffixed
with “-an”. A complete list is shown in Table 1.

2) The Same Affix Cannot be Repeatedly Applied: after
a word is prefixed with “te-” or one of its variations, it is
not possible to repeat the prefix “te-” or any of those
variations.

3) If a Word Has One or Two Characters: then
stemming is not attempted.

4) Adding a Prefix May Change the Root of Word or a
Previously Applied Prefix: we discuss this further in our
description of the rules. To illustrate, consider “meng-” that
has the variations “mem-”, “meng-”,“meny-”, and “men-”.
Some of these may change the prefix of a word, for
example, for the root of word “sapu” (broom), the variation
applied is “meny-” to produce the word “menyapu” (to
sweep) in which the “s” is removed.

The latter complication requires that an effective
Indonesian stemming algorithm is able to add deleted
letters through the recoding process. The algorithm itself
employs three components: the affix groupings, the order
of using rules (and their exceptions), and dictionary. The
dictionary is checked after any stemming rule succeeds: if
the resultant word is found in the dictionary, then
stemming has succeeded in finding a root of the word, the
algorithm returns the dictionary word, and then stops; we
omit this lookup from each step in our listing rule. In
addition, each step checks if the resultant word is less than
two characters in length and, if so, no further stemming is
attempted.

For each word to be stemmed, the following steps are
followed:

1) The unstemmed word is searched in the dictionary.
If it is found in the dictionary, it is assumed that the word is
a root of the word, and so the word is returned, and the
algorithm stops.

2) Inflectional suffixes (“-lah”, “-kah”, “-ku”, “-mu”,
or “-nya”) are removed. If this succeeds and the suffix is a
particle (“-lah” or “-kah”), this step is again attempted to
remove any inflectional possessive pronoun suffixes (“-ku”,
“-mu”, or “-nya”).

3) Derivational suffix (“-i” or “-an”) removal is
attempted. If this succeeds, Step 4 is attempted. If Step 4
does not succeed:

• If “-an” was removed, and the final letter of the word is
“-k”, then the “-k” is also removed and Step 4 is
reattempted. If that fails, Step 3b is performed. Table 2
is determining the prefix type for words prefixed with
“te–”. If the prefix “te-” does not match one of the rules
in the table, then “none” is returned. Similar rules are
used for “be–”, “me-”, and “pe-”.

• The removed suffix (“-i”, “-an”, or “-kan”) is restored.
4) Derivational Prefix Removal is Attempted: This has

several sub-steps:
• If a suffix is removed in Step 3, then disallowed prefix

suffix combinations are checked using the list in Table
1. If a match is found, then the algorithm returns.

• If the current prefix matches any previous prefix, then
the algorithm returns.

• If three prefixes have previously been removed, the
algorithm returns.

• The prefix type is determined by one of the following
steps:

ο If the prefix of the word is “di-”, “ke-”, or “se-”,
then the prefix type is “di”, “ke”, or “se”
respectively.

ο If the prefix is “te-”, “be-”, “me-”, or “pe-”, then an
additional process of extracting character sets to
determine the prefix type is required. As an example,
the rules for the prefix “te-” are shown in Table 2.
Supposed the word be-ing stemmed is “terlambat”
(late). After removing “te-” to give “-rlambat”, the
first set of characters is extracted from the prefix
according to the “Set 1” rules. In this case, the letter
following the prefix “te-” is “r”, and this matches
the first five rows of the table. Following “-r-” is “-
l-” (Set 2), and so is the third to fifth rows match.
Following “-l-” is “-ambat”, eliminating the third
and fourth rows for Set 3 and determining that the
prefix type is “ter-” as shown in the rightmost
column.

ο If the first two characters do not match “di-”, “ke-”,
“se-”, “te-”, “be-”, “me-”, or “pe-” then the
algorithm returns.

• If the prefix type is “none”, then the algorithm returns.
If the prefix type is not “any”, then the prefix type is
found in Table 3, the prefix to be removed is found, and
the prefix is removed from the word; for compactness,
Table 3 shows only the simple cases and those
matching with Table 2.

• If the root of the word has not been found, Step 4 is
recursively attempted for further prefix removal. If a
root of the word is found, the algorithm returns.

TABLE II

DETERMINING THE PREFIX TYPE FOR WORDS [5]

Following Characters
Prefix type

Set 1 Set 2 Set 3 Set 4
“-r-“ “-r-“ - - none
“-r-“ Vowel - - ter-luluh
“ -r-” not (“-r-” or vowel) “ -er-” vowel Ter
“ -r-” not (“-r-” or vowel) “ -er-” not vowel None
“ -r-” not (“-r-” or vowel) not “-er-” – Ter

not (vowel or “-r-”) “ -er-” vowel – None
not (vowel or “-r-”) “ -er-” not vowel – Te

1760

• Recoding is performed. This step depends on the prefix

type and can result in different prefixes being prepended
to the stemmed word and checked in the dictionary. For
compactness, we consider only the case of the prefix
type “ter-luluh” is shown.

• Table 3 is determining the prefix from the prefix type.
Only simple entries and those for the te- prefix type are
shown in Tables 2 and 3. In this case, after removing
“ter-”, an “r-” is prepended to the word. If this new
word is not in the dictionary, Step 4 is repeated for the
new word. If a root of the word is not found, then “r-” is
removed and “ter-” restored, the prefix is set to “none”,
and the algorithm returns.

TABLE III
DETERMING PREFIX FROM PREFIX TYPE[5]

Prefix
type

Prefix to be
removed

Examples

di di- di-asuh� asuh
ke ke- ke-atas � atas
se se se-ekor� ekor
ter ter- ter-buka � buka

1) Having Completed All Steps Unsuccessfully: the
algorithm returns to the original word.

B. Improving Nazief Algorithm

In this section, let see Table 4 about affix removal base
on the rules of morphology Indonesian.

TABLE IV
THE RULES OF AFFIX REMOVAL

Rule Affix Changes Affixes Examples
1 BerV... BerV...|be-rV... beroda �be-roda

2
BerCAP... Ber-CAP...where

C!=’r’ and P!=’er’
berkuda� ber-
kuda

3
BerCAer
V...

Ber-CAerV...where
C!=’r’

berkerja� ber-
kerja

4 Belajar... Bel-ajar... bel-ajar

5
BeC1erC2 Be-C1erC2...where

C1!={‘r’|’l’}
bekerja� be-kerja

6 TerV... Ter-V...|te-rV... teratas�ter-atas

7
TerCerV Ter-CerV...where

C!=’r’
tercemar� ter-
cemar

8
TerCP... Ter-CP...where

C!=’r’and P!=’er’
terjatuh�ter-jatuh

9
TeClerC2..
.

Te-ClerC2...where
C1!=’r’

terencana� te-
rencana

10
Me{l|r|w|y
}V ...

Me-{1|r|w|y}V... merawat�me-
rawat

11
Mem{b|f|
v}...

Mem-{b|f|v}... membawa�mem-
bawa

12
Mempe Mem-pe... mempertaruhkan�

mem-per-taruh-
kan

13
Mem{rV|
V} ...

Me-m{rV|V}...| Me-
p{rV|V}...

memasak � me-
masak

14
Men{c|d|j|
z|s}...

Men-{c|d|j|z|s}... mencuci�men-
cuci

15 MenV... Me-nV...| me-tV... menari� me-tari

16
Meng{g|h|
q|k}...

Meng-{{g|h|q|k}... menghadiri�
meng-hadir-i

17
MengV... Meng-V...| meng-

kV...|
mengambil�meng
-ambil

 (mengV-...if V=”e”) mengelak�meng-

elak

18
MenyV... Meny-sV... menyapu� meny-

sapu

19
MempA... Mem-pA...where

A!=’e’
mempertaruhkan�
mem-per-taruh-kan

20
Pe{w|y}V
...

Pe-{w|y}V... penyapu�peny-
sapu

21 PerV... Per-V...| pe-rV... peramal�pe-ramal

22
PerCAP... Per-CAP... where

C!=’r’ and P!=’er’
perkataan�per-
kata-an

23
PerCAerV
...

Per-CAerV... where
C!=’r’

pekerjaan�pe-
kerja-an

24
Pem{b|f|v
}...

Pem-{b|f|v}... pembeli�pem-beli

25
Pem{rV|V
}...

Pem{rV|V}... | Pe-
p{rV|V}...

pembunuh� pem-
bunuh

26
Pen{c|d|j|z
}...

Pen-{c|d|j|z}... pencuri�pen-curi

27 PenV... Pe-nV... | pe-tV... penari� pe-tari

28
PengC Peng-C pengkaji�peng-

kaji

29
PengV... Peng-V... | peng-

kV... | (pengV-... if
V=”e”)

pengukur�peng-
ukur

30
PenyV... Peny-sV... penyapu� peny-

sapu

31
PelV... PelV... kecuali pada

kata ‘pelajar’
pelajar�pel-ajar

32
PeCerV... Per-erV... where

C!={r|w|y|l|m|n}
pekerja�pe-kerja

33
PeCP... Pe-CP... where

C!={r|w|y|l|m|n}
and P!=’er’

pelari� pe-lari

34
terClerC2..
.

Ter-ClerC2... where
C1!=,,r”

terkejar� ter-kejar

35
peClerC2..
.

Pe-ClerC2... where
C1!={r|w|y|l|m|n}

pekerja� pe-kerja

where :
C : consonan, A : vocal or consonan
V : vocal, P : partikel or fragmen

TABLE V
MODIFICATION OF RULES AFFIX REMOVAL

Rule

Affix

Changes
Affixes

Examples

11 Mem{b|f|v|p} Mem-{b|f|v|p} Membeli�mem-beli

13 Mem{rV|V}.. Me-p{rV|V}... Memproduksi� mem-

produksi

14 Men{c|d|j|z|s|t

}...

Men-

{c|d|j|z|s|t}...

Mencari� men-cari

30 Peng{a|i|u|o}..

.

Peng-

{a|i|u|o}...

Pengukur�peng-ukur

38 Me-mV/C... Mem-V/C Memulai� me-mulai

39 PemV... Pem-p-V... Pemasok� pem-pasok

40 Pe{c|t|s|z} Pe-{c|t|s|z}... Penyabar� pe-sabar

We discuss the reasons why the nazief scheme works
well, and what aspects that can be improved. We present a
detailed analysis of the failure cases, and propose solutions
to these problems. We then present the results, including

1761

the improvements, and describe our modified nazief
approach.

The performance of nazief approach is perhaps
unsurprising: it is by far the most complex approach, being
based closely on the detailed morphological rules of the
Indonesian language. In addition, it supports dictionary
lookup and progressive stemming, allowing it to evaluate
each step to test if a root of the word has been found and to
recover from errors by restoring affixes to attempt different
combinations. However, despite these features, the
algorithm can still be improved.

In summary, three opportunities exist to improve
stemming with nazief. First, a more complete and accurate
root of word dictionary may reduce errors. Second,
features can be added to support stemming of hyphenated
words. Last, new rules and adjustments to rule precedence
may reduce over and under stemming, as well as support
affixes not currently catered for in the algorithm. We will
discuss the improvements we propose in the next section.

To address the limitations of nazief scheme, we propose
the following improvements:

1) Using a More Complete Dictionary: we have
experimented with two other dictionaries, and
present our results later.

2) Adding Rules to Deal With Plurals: when plurals,
such as “bola-bola” (balls) are encountered, we
propose stemming these to “bola” (ball).

However, care must be taken with other hyphenated
words such as “bolak-balik” (to and for), “berbalas-balasan”
(mutual action or interaction) and “seolah-olah” (as though).
For these later examples, we propose stemming the words
preceding and follow the hyphen separately and then, if the
words have the same root of the word, to return the singular
form. For example, in the case of “berbalas-balasan”, both
“berbalas” and “balasan” stem to “balas” (response or
answer), and this is returned. In contrast, the words “bolak”
and “balik” do not have the same stem, and so “bolak-balik”
is returned as the stem; in this case, this is the correct action,
and this works for many hyphenated non-plurals.

1) Adding Prefixes and Suffixes, and Additional Rules:

• Adding the particle (inflection suffix) “-pun”. This
is used in words such as “siapapun” (where the
root of the word is “siapa” (who).

• For the prefix type “ter”, we have modified the
conditions so that row 4 in Table 2 sets the type to
“ter” instead of “none”. This supports cases such
as “terpercaya” (the most trusted), which has the
root of word “percaya” (believe).

• For the prefix type “pe”, we have modified the
conditions (similar to those listed in Table 2 so
that words such as “pekerja” (worker) and “peserta”
(member) have prefix type “pe”, instead of the
erroneous “none”.

• For the prefix type “mem”, we have modified the
conditions so that words beginning with the prefix
“memp-” are of type “mem”.

• For the prefix type “meng”, we have modified the
conditions so that the words beginning with the
prefix “mengk-” are of type “meng”.

2) Adjusting Rule Precedence:

• If a word is prefixed with “ber-” and suffixed with
the inflection suffix “-lah”, try to remove prefix
before the suffix. This addresses problems with
words such as “bermasalah” having a problem
where the root of the word is “masalah” (problem)
and “bersekolah” (be at school) where the root of
the word is “sekolah” (school).

• If a word is prefixed with “ber-” and suffixed with
the derivational suffix “-an”, try to remove prefix
before the suffix. This solves problems with, for
example, “berbadan” (having the body of) the root
of the word is “badan” (body).

• If a word is prefixed with “men-” and suffixed
with the derivational suffix “-i”, try to remove
prefix before the suffix. This solves problems with,
for example, “menilai” (to mark) the root of the
word is “nilai” (mark). If a word is prefixed with
“di-” and suffixed with the derivational suffix “-i”,
try to remove prefix before the suffix. This solves
problems with, for example, “dimulai” (to be
started) the root of the word is “mulai” (start).

• If a word is prefixed with “pe-” and suffixed with
the derivational suffix “-i”, try to remove prefix
before the suffix. This solves problems with, for
example, “petani” (farmer) the root of the word is
“tani” (farm).

• If a word is prefixed with “ter-” and suffixed with
the derivational suffix “-i”, try to remove prefix
before the suffix. This solves problems with, for
example, “terkendali” (can be controlled) the root
of the word is “kendali” (control).

Fig. 1 shows a flowchart of CAT’s stemming algorithm.

III. RESULTS AND DISCUSSION

In this section, we compare the result of algorithm before
and after stemming with Nazief Andriani’s and CAT. CAT
approach provides the easy way of stemming Indonesian
language through flexibility affix classification. Therefore,
the affix additional can be applied in easy way. We
experiment used to test are the students’ journals of
Department of Information Technology of Faculty of
Communication and Information Technology of Semarang
University. There are 10 articles used for testing.

 Based on the test results (see Table 6), it is clear that
there is increasing on commonality document measurement
results, the amount of which depends on how similar and
not similar documents were tested with one of the
documents in the database. Based on data tested above, the
average of the last increase is 14% if it is done with CAT
algorithm stemming.

1762

Fig. 1 Flowchart CAT’s stemming algorithm

TABLE VI
THE RESULT OF STEMMING TEST FOR SIMILAR DOCUMENT WITH

ID_DOC 325

Id_Document 325
Process time (second) 225.875

No Id_Doc Without
Stemming

Nazief
Adriani’s
Stemming

CAT’s
Stemming

1 264 90,000 97,000 100,000
2 298 7,406 11,751 13,508
3 292 5,927 9,981 11,257
4 313 4,472 8, 418 10,163
5 289 6,445 8,659 9,954
6 304 6,979 8, 946 9,758
7 288 7,517 8,327 9,571
8 324 6,303 8, 326 9,498
9 257 6,303 8,263 9,498
10 306 8,843 8,067 9,273

Fig. 2 Comparison results of without stemming, Nazief Adriani’s
stemming and CAT’s stemming

0

20

40

60

80

100

2
6

4

2
9

8

2
9

2

3
1

3

2
8

9

3
0

4

2
8

8

3
2

4

2
5

7

3
0

6

Without

Stemming

Nazief Adriani's

Stemming

CAT's

Stemming

Doc_id

1763

V. CONCLUSION

Stemming is an important information retrieval
technique. In this paper, we have investigated Indonesian
stemming and presented an experimental evaluation of
Indonesian stemmers. The results show that a successful
stemmer is complex, and requires the careful combination
of several features: support for complex morphological
rules, progressive stemming of words, dictionary check
after each step, trial-and-error combinations of affixes, and
recoding support after prefix removal. Our results show
that the new stemmer is the most effective scheme. It will
increase about 14,741 % if we use the new stemmer.

We intend to continue this work. We will improve the
dictionaries by curating them to remove non-root and add
root words. We also plan to extend the nazief stemmer
further to deal with cases where the root of the word is
ambiguous.

ACKNOWLEDGMENT

We thank Bobby Nazief for providing source code and
the dictionary used in this paper, Semarang University, and
Gunadarma University for allowing us to use their
laboratory, equipment, and instruments, as well as the
experimental area.

REFERENCES

[1] Sharma, D., “Improved stemming approach used for text processing
in information retrieval system”, Master of Engineering in
Computer Science & Engineering, Thapar University, Patiala, 2012

[2] Moral, C., Antonio, A., Imbert, R., Rmirez J., “A survey of
stemming algorithms in information retrieval”, Inf. Res.: Int
Electron. J. 19(1), 2014

[3] Maurya, V., Pandey, P., Maurya, L.S., “Effective information
retrieval system”, Int. J. Emerg. Technol. Adv. Eng. 3(4), 787–792,
2013

[4] Singhal, A., “Modern information retrieval: a brief overview“ IEEE
Data Eng. Bull. 24(4), 35–43, 2011

[5] Adriani, Mirna, Jelita Asian, Bobby Nazief, Seyed Mohammad
Tahaghoghi and Hugh Williams, “Stemming Indonesian: A Confix-
Stripping Approach”, ACM Transactions on Asian Language
Information Processing, Vol. 6, No. 4, 2007.

 [6] Arifin, A. Z. & Setiono, A. N., “Classification of Event News
Documents in Indonesian Language Using Single Pass Clustering
Algorithm”, in ‘Proceedings of the Seminar on Intelligent
Technology and its Applications (SITIA)’, Teknik Elek- tro,
Sepuluh Nopember Institute of Technology, Surabaya, Indonesia.
2002

[7] Bakar, Z. A. & Rahman, N. A, “Evaluating the effectiveness of
thesaurus and stemming methods in retrieving Malay translated Al-
Quran documents”, in T. M. T. Sembok, H. B. Zaman, H. Chen,
S.R.Urs & S. Myaeng, eds, ‘Digital Li- braries: Technology and
Management of Indigenous Knowledge for Global Access’, Vol.
2911 of Lecture Notes in Computer Science, Springer- Verlag, pp.
653 – 662., 2003.

 [8] Gustad, T. & Bouma, G, “Accurate stemming of Dutch for text
classification”, Language and Computers 45(1), 104–117, 2002.

 [9] Oraasan, C., Pekar, V. & Hasler, L., “A comparison of
summarisation methods based on term specificity estimation”, in
‘Proceedings of the Fourth International Conference on Language
Resources and Evaluation (LREC2004)’, Lisbon, Portugal, pp. 1037
– 1041, 2004

[10] Porter, M., “An algorithm for suffix stripping,” Program 13(3),
130–137, 1980

[11] Savoy, J., “Stemming of French words based on grammatical
categories”, Journal of the Ameri- can Society for Information
Science 44(1), 1–9, 1993

[12] Tala, Fadillah Z, “A Study of Stemming Effects on Information
Retrieval in Bahasa Indonesia”, Master Thesis, Institute for Logic,
Language and Computation, Universiteit van Amsterdam, The
Netherlands, 2003.

[13] Madenda, S, “Pengolahan Citra & Video Digital”, Erlangga,
Jakarta, 2015.

[14] Karczmarek, Pawe, Kiersztyn, Adam, Pedrycz, Witold and Rutka,
Przemys ,”Chain Code-Based Local Descriptor for Face
Recognition,” Proceedings of the 9th International Conference on
Computer Recognition Systems CORES 2015, paper. 403 , p. 307.

[15] Y. Luo and Y. Wen and D. Tao and J. Gui and C. Xu, “Large Margin
Multi-Modal Multi-Task Feature Extraction for Image
Classification,” IEEE Transactions on Image Processing, vol. 25, pp.
414-427, Jan. 2016.

1764

