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Abstract— COVID-19 still exists at an alarming level; hence, early diagnosis is important for treating and controlling this disease due 

to its rapid spread. The use of X-rays in medical image analysis can play an essential role in fast and affordable diagnosis. This study 

used a two-level feature selection in hybrid deep convolutional features obtained from the extraction of X-ray images. The transfer 

learning-based approach was implemented using five convolutional neural networks (CNNs) named VGG16, VGG19, ResNet50, 

InceptionV3, and Xception. The combination of two or three CNNs' performance as a feature extractor was then carefully analyzed. 

We selected the features obtained from multiple CNNs in a particular layer with a specified percentage of features in the first level for 

getting relevant features from various models. Then, we combined those features and did the second level of feature selection to select 

the most informative features. Both levels of feature selection were carried out using the light gradient boosting machine (LightGBM) 

algorithm. The final feature set has been used to classify COVID-19 and non-COVID-19 chest X-ray images using the support vector 

machines (SVM) classifier. The proposed model's performance was evaluated and analyzed on the open-access dataset. The highest 

accuracy was 99.80% using only 5% of the features extracted from ResNet50 and Xception. The other way of combining the ensemble 

of deep features and a few recent works for the classification of COVID-19 were also compared with the proposed model. As a result, 

our proposed model has achieved the best success rate for this dataset and may be deployed to support decision systems for radiologists.  
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I. INTRODUCTION

The coronavirus disease (COVID-19) is an extremely 

contagious and dangerous virus infection caused by the severe 

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that 

resulted in a global pandemic and a huge loss of human life 

[1]. It first appeared in December 2019 in Wuhan City, China, 

where it caused severe pneumonia of unknown origin [2]. 

COVID-19 was proclaimed a worldwide public health 

emergency by World Health Organization (WHO) on January 

30, 2020 [3], and designated a pandemic three months later 
[4]. Since November 22, 2021, WHO reports that the overall 

number of people affected by this disease was 256,966,237, 

with about 5,151,643 deaths [5]. 

Early detection and treatment of COVID-19 are critical for 

illness prevention and control, and it can drastically reduce 

the spread of this disease and improve patient recovery rates. 

WHO recommends that all diagnoses of COVID-19 need to 

be performed using the reverse transcription-polymerase 

chain reaction (RT-PCR). However, this procedure is time-

consuming, inconvenient, and expensive [6], producing 
inaccurate results and a slow turnaround time [7]. Testing 

facilities are also insufficient in many places affected by the 

COVID-19 outbreak [8]. In addition, some people, 

particularly small children, find deep nasal swabs irritating. In 

time-sensitive conditions, relying only on the RT-PCR test 

may be insufficient for diagnosing this disease.  

A vaccination program that is secure and safe would be a 

huge success. However, only a few effective vaccines have 

been discovered to the present, and it is believed that it will 

take an inordinate amount of time to protect the entire world 

against the hazards of COVID-19 [9]. Furthermore, the 

coronavirus evolves, impeding the development of a vaccine. 
In this situation, radiological scans may be essential for 

diagnosing this condition accurately. A few radiologists 

propose chest X-rays to diagnose COVID-19 cases, given that 

most radiological laboratories and hospitals have X-ray 

machines capable of capturing chest images [10]. When the 

number of COVID-19 patients increases rapidly, 
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overburdening public health systems may result in a shortage 

of doctors and radiologists to review X-ray images. 

Computer-aided diagnostic (CAD) systems may also be a 

potential choice in this context for supporting doctors with 

medical diagnoses. It is possible to receive a second opinion 

from these systems because they employ computational 

approaches for image processing and analysis. This can be 

helpful in cases when establishing a diagnosis by the human 

eye is difficult. 

Numerous seminal studies have been published on the 

prediction of COVID-19 using X-ray images. El-Kenawy et 
al. [11] extracted features from ResNet50 and enhanced a 

multi-layer perceptron classifier using the advanced squirrel 

search optimization technique. The experiment was validated 

against the pneumonia dataset, comprising 5863 images with 

an average accuracy of 99.26%. In addition, the authors 

implemented their model on a chest X-ray COVID-19 dataset 

acquired from GitHub and achieved a mean accuracy of 

99.7%. Sahlol et al. [12] pursued a similar technique by 

selecting the required qualities using an architecture called 

Inception and a swarm-based feature selection method. The 

authors assessed the accuracy at 98.7% and 99.6% using two 
publicly available COVID X-ray datasets.  

In another study, Bhowal et al. [9] presented a transfer 

learning-based technique to extract features, VGG16, 

Xception, and InceptionV3, using pre-trained models. After 

performing feature selection, the obtained features will be 

sent to a multi-layer perceptron for classification. This 

technique was evaluated using a dataset comprising 752 

COVID-19 and 1584 pneumonia records, and 1639 normal 

chest X-ray images gathered from various sources. The study 

achieved 93.45% accuracy utilizing two-tier feature selection 

algorithms: Coalition game and Nystrom sampling. 
According to it, feature selection can improve performance 

and has additional benefits, such as shorter processing times 

and reducing the number of related, irrelevant, or noisy 

variables.  

Numerous studies have also been conducted to optimize 

the performance of classifiers that utilize CNN-extracted 

features. Abraham and Nair [13] examined the effectiveness 

of multi-efficacy CNNs in identifying COVID-19 based on 

X-ray images. This disease was also predicted using a CNN 

feature concatenation. The features were selected using 

correlation and a BayesNet classifier. The technique was 

validated using two publicly available datasets and yielded 
positive results. The technique obtained 91.16% accuracy in 

the first dataset and 97.44% accuracy in the second dataset. In 

addition, the study affirmed that the use of multiple pre-

trained CNN outperformed a single CNN. Barua et al. [14] 

merged nine deep features using the fully connected layer of 

AlexNet, VGG16, and VGG19. In the next step, SVM was 

used to classify the most informative features, and this method 

was achieved at 99.64 percent accuracy. 

Furthermore, Turkoglu [15] also introduced the 

COVIDetectioNet model. This study used a pre-trained CNN-

based AlexNet architecture with transfer learning. The SVM 
technique was utilized to categorize the essential features 

extracted from all levels of the architecture using the Relief 

algorithm. The proposed model was evaluated on 6092 X-ray 

images of Normal, COVID-19, and Pneumonia with a 99.18 

percent accuracy. Moreover, Reda et al. [16] combined 

characteristics collected from three pre-trained CNN models, 

namely resnet18, resnet25, and densenet201. After optimizing 

each feature vector using the binary Butterfly algorithm, these 

characteristics were transferred to an ELM to classify chest 

X-ray images. The study succeeded in detecting covid-19 

with 99.48% accuracy. Therefore, based on the study, 

combining the deep features extracted from different CNN 

architectures can enhance the accuracy and efficiency of the 

classification process.  

This study investigates another technique for enhancing 

performance by combining CNN features. The feature 
selection process was implemented to ensure that the 

computational process ran as efficiently as possible. VGG16, 

VGG19, ResNet50, InceptionV3, and Xception are five 

convolutional neural networks (CNNs) employed in this study. 

These were combined with the transfer learning technique, 

which does not restrict the layer used to generate features to 

the fully connected layer. Furthermore, two-level feature 

selection using LightGBM, which is a powerful boosting 

method, was used to guarantee that only the most informative 

features are selected and used as input to the SVM classifier 

to achieve better classification results than utilizing only 
features generated from a single CNN. 

The following is a concise explanation of the proposed 

method's primary contribution: 

1) Unlike most studies that focus solely on the use of 

features generated from fully connected layers of the 

CNN architecture, this study employs features 

obtained from various layers, including the 

convolutional and pooling layers. 

2) To further improve COVID-19 classification, deep 

features extracted from two or three different CNN 

models are concatenated to maximize each CNN's 
informative feature extraction capabilities. 

3) A two-level feature selection algorithm that identifies 

superfluous and uninformative features was used to 

collect relevant features from numerous models in the 

first level. They were obtained from multiple CNNs in 

a particular layer with a defined proportion of features, 

and the most informative ones were selected at the 

second level. The LightGBM algorithm was used to do 

both stages of feature selection. 

4) A hybrid study was conducted utilizing features 

derived from several CNN models. Furthermore, two-

level feature selection was performed through 
LightGBM and SVM was used as a high-performance 

classifier.  

5) A high-accuracy decision-making model has been 

offered as a second opinion to aid radiologists in 

diagnosing COVID-19.   

II. MATERIAL AND METHODS 

The proposed COVID-19 X-ray classification approach 
starts by extracting discriminant features from raw pictures 

without major pre-processing or segmentation using a dataset 

of COVID-19 and normal X-ray images. Additionally, a light 

gradient boosting machine (LightGBM) derives important 

features from data using a two-level feature selection 

technique. Finally, the optimal feature is passed to Support 

Vector Machines (SVM) to obtain the classification result.  
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This section discusses the details of the dataset and 

methodologies used in this study, such as CNN as a feature 

extractor, LightGBM as feature selection, and SVM as a 

classifier. The proposed model and the other way of 

combining the ensemble of deep features as the main 

comparison of the proposed model are also discussed. 

A. Dataset 

The dataset published by Chowdhury et al. [17] on Kaggle 
had two classes, namely COVID-19 and normal, and was 

utilized. Furthermore, 2400 X-ray images were analyzed in 

total, namely 1200 COVID-19 and 1200 normal. Fig. 1 

depicts a sample of chest X-ray images from the database.  

 
 

COVID-

19 

   
  

Normal 

   
Fig. 1  sample of chest X-ray images 

B. Data Pre-processing 

The images were randomly divided into various categories 

for the chest X-ray datasets, namely 60% training, 20% 

validation, and 20% testing. Table 1 shows the number of 

images utilized for training, validation, and testing in the 
experimental trials. 

TABLE I 

NUMBER OF IMAGES IN EACH DATA CLASS FOR PERFORMANCE EVALUATION 

OF THE PROPOSED METHOD 

 COVID-19 Normal Total 

Training data (60%) 720 720 1440 

Validation data (20%) 240 240 480 

Testing data (20%) 240 240 480 

 

The training set is used to train the model, the validation 

set is used to choose parameters, such as the layer position for 

feature extraction and the feature percentage, depending on 

the accuracy of the trained model, and the testing set is used 

to evaluate the model's performance against new data. It is 

critical to note that the identical image sets established for 

training, validation, and testing were utilized in all 

experiments, and this implies that the model was uninformed 
of the image sets used for validation and testing. 

It is critical to pre-process the image before utilizing it as 

the model's input. This can be performed by resizing them to 

the same size to support the current dataset to the 

convolutional neural network. This study employed the pre-

trained networks VGG16, VGG19, ResNet50, InceptionV3, 

and Xception for experimental analysis. Furthermore, the size 

of the input X-ray images utilized in this investigation varies. 

VGG16, VGG19, and ResNet50 had 224x224 inputs, while 

InceptionV3 and Xception had 299x299 inputs.  

 

C. Platforms and Hardware 

This experiment was implemented in Python using the 

Keras [18] package and Tensorflow [19] as the backend deep 

learning framework. It runs on Google Colaboratory [20], 

which provides a Tesla V100 GPU with 16,94 GB of GPU 
memory and 54.8 GB of RAM. In addition, it can execute in 

the background, which means that the notebook will continue 

to function even when the internet connection is lost or the 

browser is closed. 

D. Convolutional Neural Network as Feature Extractor 

Deep learning (DL) is a subfield of artificial intelligence 

(AI) that enables the construction of end-to-end models 

capable of providing remarkable results without necessarily 
requiring feature extraction [21, 22]. This type of architecture 

enables these networks to find intricate details hidden from 

simple networks. The greater the number of convolution 

layers utilized, the more comprehensive the obtained features 

are [23]. CNN-based models are more efficient and accurate 

than more standard machine learning techniques, and these 

models extract salient features and achieve a high degree of 

classification accuracy. CNN's fundamental premise is to 

capture local features at their earliest levels and combine them 

to build more sophisticated features. By avoiding matrix 

multiplication, CNN overcomes the shortcomings of Feed-

Forward Neural Networks and Multi-Layer Perceptron [24]. 
The operation used in CNN is convolution, which is 

frequently signified in Eq. (1) where x denotes the input and 

w the kernel, while the output s is called the feature map [25]. 

This highly effective strategy was implemented in this study 

due to the high-dimensional nature of COVID-19 diagnosis 

using X-ray images.  

 ���� = �� ∗ ����� (1) 

There is a constraint on developing a computer-aided 

diagnostic system using CNN. To produce more accurate 

predictions, the CNN model must be trained on a big dataset 

containing various potential variants [26, 27]. Numerous 
CNN architectures have been built in the literature for 

handling a wide variety of classes. However, these designs 

were meant to be robust when trained on big datasets but tend 

to overfit when trained on smaller datasets. Acquiring 

enormous labeled medical images suitable for DL-based 

COVID-19 screening has become problematic. However, it is 

possible to use pre-trained CNN models on a large database 

such as ImageNet [28]. The notion of transfer learning, which 

involves the transfer of features and weights from a pre-

trained model to new training models and problems with less 

data, was used in this study. This is because robust deep 
learning models may be generated with far less training data 

through transfer learning rather than starting from scratch, 

maximizing classification performance over unseen test 

images. In addition, pre-trained CNNs can detect COVID-19 

effectively [29-31]. Thus, rather than employing the CNN 

model for COVID prediction, it was used to extract relevant 

features and then feed the generated feature vector to 

LightGBM as a Feature Selection (FS) approach, followed by 

an SVM classifier-based classification of the input chest X-

ray images. 

The CNN models utilized in this study include VGG16 [32], 
VGG19 [32], ResNet50 [33], InceptionV3 [34], and 
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Xception[35], all of which were pre-trained on the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) dataset. 

Furthermore, default parameter values were used for all pre-

trained networks to create multi-CNN.  

VGG16 and VGG19 are part of an innovative design from 

the Visual Geometry Group (VGG). Simonyan and Zisserman 

[32] presented a straightforward and efficient design 

paradigm for CNN. This involves adding a layer of 3×3 filters 

to the heap of 5×5 and 11×11 filters, making it more efficient. 

By minimizing the number of parameters, an additional 

benefit of reducing computational complexity was realized 
using small-size filters. 

ResNet is comparable to the VGG network but is 

approximately eight times deeper. It was designed by He et al. 

[33] on the basis of deep architectures that have demonstrated 

strong convergence properties and high accuracy. ResNet50 

was constructed using numerous stacked residual units and 

evolved with 50 layers, 49 of which are convolutional and one 

completely linked at the network's end. Convolutional, 

pooling, and layering units of the preceding layer (xl − 1). 

After several processes, such as convolution with variable-

size filters or batch normalization, followed by the application 
of an activation function such as ReLU to (xl − 1), the result 

obtained was F(xl − 1). The final residual output was xl, which 

is expressed mathematically in Eq. (2).  

 xl = F(xl − 1) + xl − 1 (2) 

The residual network has many fundamental residual blocks. 

The operations of these blocks can be modified according to 

the residual network architecture type [33, 36]. 

InceptionV3 is a convolutional deep neural network design 

that is commonly utilized for classification problems. 

Furthermore, Szegedy et al. [34] pioneered the model notion 

in the GoogleNet [37] architecture, and suggested 
InceptionV3 by modifying the inception module. The 

InceptionV3 network is composed of several symmetric and 

asymmetric construction blocks, each of which has several 

branches of convolutions, average and maximum pooling, 

concatenation, dropouts, and fully linked layers. This network 

contains a total of 42 layers and 29.3 million parameters. 

The primary trait of Xception is its extreme inception 

architecture and has basic concept of depth-separable 

convolution [35]. Xception model enhanced the original 

inception block by replacing a single dimension (3×3) with a 

1×1 convolution to minimize computational complexity. By 

utilizing the decoupling channel and spatial correspondence, 
the Xception network becomes significantly more 

computationally efficient. It applies 1×1 convolutions in 

transferring the convolved output to the embedding short 

dimension. Furthermore, it also applies k spatial 

transformations. This is important to note that k in this case 

denotes the cardinality which defines the breadth of the 

transformation as determined by the number of outcomes. 

However, in Xception, the computations were simplified by 

explicitly convolving each channel around the spatial axes. 

These axes are then employed to achieve cross-channel 

correspondence as the 1×1 convolutions (pointwise 
convolutions). This convolution is used in Xception to 

normalize the channel's depth. The Xception transformation 

strategy improves learning speed and performance but does 

not lower the parameter count [38].  

A combination of pre-trained CNN features is expected to 

enhance the performance of computer-aided diagnostic 

systems. Therefore, concatenating feature sets maximizes the 

ability of each CNN to extract meaningful and discriminative 

features. This study aims to provide a method for predicting 

COVID-19 utilizing features collected from various pre-

trained neural networks. Initially, features were generated 

from chest X-ray images using a CNN model. However, the 

resulting feature vector size is extremely huge, such as 

200,000 feature attributes, not to mention the size of 

combined feature vectors.  

TABLE II 

THE NUMBER OF FEATURES EXTRACTED FROM DIFFERENT LAYER OF 

DIFFERENT CNN 

CNN 

Architecture 

Name of Layer Number of 

Features 

VGG16 block3_pool 
block4_pool 
block5_conv1 
block5_conv2 
block5_conv3 
block5_pool 

fc1 
fc2 

200,704 
100,352 
100,352 
100,352 
100,352 
25,088 

4,096 
4,096 

VGG19 block3_pool 
block4_pool 
block5_conv1 
block5_conv2 
block5_conv3 
block5_conv4 

block5_pool 
fc1 
fc2 

200,704 
100,352 
100,352 
100,352 
100,352 
100,352 

25,088 
4,096 
4,096 

ResNet50 conv4_block1_add 
conv4_block2_add 
conv4_block3_add 
conv4_block4_add 
conv4_block5_add 
conv4_block6_add 

conv5_block1_add 
conv5_block2_add 
conv5_block3_add 
avg_pool 

200,704 
200,704 
200,704 
200,704 
200,704 
200,704 

100,352 
100,352 
100,352 
2,048 

InceptionV3 mixed0 
mixed1 
mixed2 
mixed3 

mixed4 
mixed5 
mixed6 
mixed7 
mixed8 
mixed9_0 
concatenate 
mixed9 

mixed9_1 
concatenate_1 
mixed10 
avg_pool 

313,600 
352,800 
352,800 
221,952 

221,952 
221,952 
221,952 
221,952 
81,920 
49,152 
49,152 
131,072 

49,152 
49,152 
131,072 
2,048 

Xception add_11 
avg_pool 

102,400 
2,048 

 

There are two methods for combining CNN feature vectors. 

The first one is after combining all retrieved features; the 

feature vector is sent to LightGBM. The retrieved features 
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from each CNN are first picked and merged in the second 

method. However, because the features are mixed from 

several sources, there is a possibility that certain features will 

perform inadequately when combined. As a result, the second 

phase of feature selection is used. This approach is referred to 

as two-level feature selection using the LightGBM algorithm. 

This ensemble approach concatenates the output of many 

CNNs into a common subset. 

Moreover, unlike most of the studies, which focus 

exclusively on fully connected layers of the CNN architecture, 

this study extracts information from a variety of layers, 
including the convolutional and pooling layers. The length of 

the feature vector generated by the various layers of each 

CNN architecture is shown in Table 2.  

E. Light Gradient Boosting Machine as Feature Selection  

Feature extraction is critical in computer vision, image 

processing, and pattern recognition systems. It has been 

utilized in various models to extract deep features [9]. As 

previously stated, CNN models extract and choose only the 
most representative features from the input image. 

Furthermore, it is envisaged that the integration of pre-trained 

CNN features would improve the performance of computer-

aided diagnostic systems. However, the number of features 

extracted by CNNs is not necessarily relevant, as the number 

of features extracted is directly connected to the architecture 

utilized, specifically while training images are few. The more 

depth a network has, the more features it can extract. As a 

result, the possibility that some of the extracted features are 

redundant was investigated. 

Features are rarely directly fed into classifiers because of 

their high dimensionality, resulting in decreased accuracy, 
increased training time, and overfitting [12]. As a result, 

working with a smaller collection of features can have some 

advantages, including faster processing times and the 

elimination of features that contribute nothing to the 

classification process [26], [27], [39]. However, the feature 

selection process does not always improve classification 

accuracy [40], and achieving comparable performance with 

fewer features is a desirable development. The consequences 

of removing too many features on accomplishment were 

examined using LightGBM as the feature selection method.  

 

 
 

(a) 

 
(b) 

Fig. 2  Illustration of (a) level-wise and (b) leaf-wise tree growth 

 

Based on the fact that LightGBM [41] has a quicker 

training time and greater efficiency, it was employed in 

feature selection. It implements gradient boosting decision 

trees (GBDT), an ensemble approach for serially combining 

weak learners (boosting). Combining decision trees improves 

the model by having each new learner fit the residuals from 

the prior tree. The final model incorporates the data from each 

phase, resulting in a strong learner. Moreover, LightGBM is 

similar to XGBoost but differs in a few key areas, most 

notably in the way the tree or base learners are created. In 

contrast to previous ensemble approaches, LGBM develops 

tree leaf-wise rather than level-wise, which helps to 

minimize loss throughout the sequential boosting phase. The 
difference between level-wise and leaf-wise tree growth is 

shown in Fig. 2. 

After a comprehensive review of trial and error using 

several hyperparameters, boosting type='gbdt', learning 

rate=0.05, number of estimators=100, and objective='binary' 

was selected for the proposed task. Furthermore, this feature 

selection was only used on the training set, and the features 

from the validation and test sets were chosen using the 

selected feature indices. At the end of the algorithm, the 

optimal feature subset was determined and then utilized for 

classification.  

F. Support Vector Machine as Classifier 

Vapnik [42] pioneered the use of Support Vector Machines 

(SVM) for classification. The SVM approach divides data 

into classes by constructing an optimal margin separator 

(hyperplane). The optimal hyperplane is one that is placed at 

the greatest distance between support vectors of different 

classes, and the nearest data point to the hyperplane is 

designated as the support vector. As a result, optimization 

processes are required to create a hyperplane that can 
adequately generalize the data and is located at the same and 

greatest distance from the support vector for each class. Fig. 

3 illustrates the hyperplane, margin, and support vector.  

 

 
 

Fig. 3  Illustration of the hyperplane, margin, and support vector on SVM 

(modification from [43]) 

 

Let 	 = 
��� ,  ���� , � = 1, 2, … , �  and �� ∈ ℝ�  is a data 

point. N represents the number of images and �� ∈

�1, �1�ccccp denotes the normal and COVID X-ray images, 

respectively. If there is a vector w and scalar b, a proper 
inequality can be created that divides the data set into two 

classes; the data set can be separated linearly. The inequalities 

are given in Eq. (3) [44].  

 ���� ⋅ �� � ��  1 for � = 1, 2, … , � (3) 
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Eq. (4) expresses that the hyperplane equation separating 

classes −1 and +1 is given where w is perpendicular to the 

hyperplane and b is the bias.  

 � ⋅ � � � = 0 (4) 

The problem that SVM must solve is an optimization 

problem in which we must maximize the margin, as shown in 

Eq. (5) while adhering to the constraints specified in Eq. (6), 

where N is the number of data points. 

 min
�,%

&'
(  )|�|)+, (5) 

 ���� ⋅ �� � ��  1,  ∀� = 1, 2, … , � (6) 

Cortes and Vapnik [44] introduced a modified form of 

SVM that allows for errors in classification. This type of SVM 

is also known as soft margin SVM. The SVM soft margin 

aims to find the optimal hyperplane with the minimum 

number of misclassifications. The SVM soft margin 

optimization problem is shown in Eq. (7). It was modified by 

adding variables .  and /  to the previous optimization 
problem.  

 min
�,%,0 

&'
( )|�|)+ � / ∑ .�

2
�3' , (7) 

subject to the constraints 

 ���� ⋅ �� � ��  1 � .� (8) 

 .�  0, ∀� = 1, 2, … , � (9) 

G. Proposed Method  

This study describes a comprehensive machine learning-

based approach for automatically identifying COVID-19 

from X-ray images. To extract discriminative features from 

X-ray images, pre-trained CNN models such as VGG16 [32], 

VGG19 [32], ResNet50 [33], InceptionV3 [34], and 

Xception[35] were used. After collecting deep features, the 

LightGBM algorithm was used to choose the most 

informative features. Then, these features were merged and 

used as the input to SVM. Furthermore, this study reveals that 

merging the deep features retrieved from the various layers of 

different CNN architectures improves the classification 
process efficiency. A two-tiered feature selection strategy 

shows this. First, relevant features were selected from 

numerous models by combining the features generated from 

multiple CNNs in a single layer with a predetermined 

proportion of features as shown in Fig. 4. Afterwards, the 

features were aggregated, and a second round of feature 

selection was performed to determine which features enhance 

classification accuracy as shown in Fig. 5. This proposed 

method was also compared to the other way of combining the 

ensemble of deep features that is directly combining all 

extracted features and then sent to LightGBM.  
In order to quantify and examine the performance of the 

selected approaches, an SVM classifier was used with 

accuracy as the performance parameter. This formula is 

shown in the equation below.   

 accuracy = 
TP+TN

total number of data
 × 100% (10) 

The following parameters were used in calculating the 

accuracy, namely TP represents the number of correctly 

predicted COVID-19, while TN is the number of correctly 

predicted normal x-ray images.  

 

 
Fig. 4  The first level of the feature selection algorithm 

III. RESULTS AND DISCUSSION 

As previously explained, the COVID-19 disease was 
diagnosed using the chest X-ray dataset [17]. In order to 

evaluate the proposed automated COVID-19 detection and 

classification system, the following tests were conducted: 

• Experiment 1—The dataset was used to examine the 

classification performance of the five CNN models. 

• Experiment 2—Using 10% to 90% of features, the 

hybrid approach CNN-LightGBM-SVM was applied 

in different layers of CNN. The experiment's outcome 

with the best feature percentage was then compared to 

CNN-SVM with no feature selection. 

• Experiment 3—Features derived from several CNNs 
are integrated and then chosen using LightGBM prior 

to being sent to the SVM classifier. 

• Experiment 4—Finally, CNN-SVM is used to 

construct two-level feature selection using LightGBM, 

and the outcome is compared to experiment 4.  
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The first experiment classified the COVID-19 images 

using the original five pre-trained CNN models. The features 

were first acquired from the dataset's images in each model, 

and then the image was classified using the softmax classifier. 

The Adam optimizer was employed with the following 

parameters: learning rate=0.00005, batch size=32, and 

epoch=50. The experimental analysis is summarized in Table 

3. The accuracy stated here is on the test set, and it can be 

shown that VGG16 surpasses other deeper architectures, such 

as ResNet50, InceptionV3, and Xception. Remarkably, 

deeper models outperform shallower models on the most 

recent COVID-19 datasets. This is most likely due to the size 

and quality of presently available datasets, which result in the 

model being overfitting.  
 

 

Fig. 5  The second level of feature selection algorithm 

 

TABLE III 
THE PERFORMANCE OF CNN MODEL 

CNN Model Accuracy (%) Running Time (s) 

VGG16 99.59 18.25 
VGG19 97.75 18.24 
ResNet50 62.78 19.99 
InceptionV3 50.92 23.54 

Xception 50.92 21.15 

The best result was achieved using the VGG16 model, 

which had a 99.59 percent accuracy and required 18.25 
seconds to test. This is unsurprising, given that Simonyan and 

Zisserman [32] noted in their study that the VGG architecture 

delivers great performance even when employed with basic 

pipelines. However, this study demonstrates that the proposed 

method used improves classification accuracy.  
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The second experiment examines the performance of 

CNN-LightGBM-SVM employing 10% to 90% of the 

validation dataset's extracted features. The best feature 

percentage was then used to demonstrate the CNN-LGBM-

SVM method's performance. It is worth noting that the hybrid 

technique CNN-LGBM-SVM is used across many layers of 

CNN. In addition, C=1.0, kernel=Radial Basis Function 

(RBF), and gamma=1/(n features*X.var ()) were used as the 

SVM hyperparameter value.  

Tables IV to VIII compared the performance of CNN-SVM 

with and without feature selection using LightGBM. In 
general, the findings indicated that the suggested CNN could 

extract robust features, which enabled the classifiers to attain 

promising performance in terms of X-ray image classification 

since all the classifiers produced comparable results. In most 

situations, incorporating LightGBM with CNN-SVM 

improves accuracy. As a result, it demonstrates that a 

combination of deep features and a feature selection technique 

is useful for image classification. Furthermore, Table IV to 

VIII demonstrates that the classification accuracy obtained 

from this experiment is identical to that obtained from the 

original VGG16 model. When ResNet50 was used, the 
greatest accuracy of CNN-LightGBM-SVM obtained was 

99.59%. However, compared to the original ResNet50 model, 

using ResNet50 as a feature extractor and SVM as a classifier 

is sufficient in boosting accuracy to 99.39%, which is a 58.31% 

improvement. By utilizing LightGBM to execute feature 

selection, the accuracy was increased to 99.59%.   

TABLE IV 

THE COMPARISON OF VGG16-SVM AND VGG16-LIGHTGBM-SVM 

PERFORMANCE 

VGG16’s 

layer 

VGG16-SVM  VGG16-LGBM-

SVM 

Acc 

(%) 

Time 

(s) 

Acc (%) Time (s) 

block3_pool 

block4_pool 

block5_conv1 

block5_conv2 

block5_conv3 

block5_pool 

fc1 

fc2 

98.98 

98.77 

98.98 

99.18 

98.77 

98.98 

98.77 

98.57 

64.21 

37.72 

34.35 

32.75 

36.16 

21.98 

19.34 

19.54 

99.18 

99.18 

99.18 

99.39 

98.77 

98.98 

98.36 

98.16 

50.33 

23.95 

19.62 

19.74 

19.66 

18.97 

18.86 

18.67 

TABLE V 

THE COMPARISON OF VGG19-SVM AND VGG19- LIGHTGBM -SVM 

PERFORMANCE 

VGG19’s 

layer 

VGG19-SVM  VGG19-LGBM-

SVM 

Acc 

(%) 

Time 

(s) 

Acc (%) Time (s) 

block3_pool 

block4_pool 

block5_conv1 

block5_conv2 

block5_conv3 

block5_conv4 

block5_pool 

fc1 

fc2 

98.57 

98.77 

98.77 

98.77 

98.77 

98.16 

98.57 

98.77 

98.57 

49.89 

38.77 

35.69 

34.28 

34.39 

37.08 

22.76 

19.31 

19.38 

98.77 

98.77 

99.18 

98.98 

98.77 

97.96 

99.18 

98.77 

98.36 

41.30 

24.92 

20.23 

20.17 

20.57 

20.63 

21.99 

19.44 

19.33 

 

TABLE VI 

THE COMPARISON OF RESNET50-SVM AND RESNET50- LIGHTGBM -SVM 

PERFORMANCE 

ResNet50’s layer ResNet50-SVM  ResNet50-LGBM-

SVM 

Acc 

(%) 

Time 

(s) 

Acc (%) Time (s) 

conv4_block1_add 
conv4_block2_add 
conv4_block3_add 
conv4_block4_add 
conv4_block5_add 
conv4_block6_add 
conv5_block1_add 
conv5_block2_add 

conv5_block3_add 
avg_pool 

99.39 
99.18 

99.39 
99.18 
99.18 
99.18 
99.18 
98.36 

98.16 
98.16 

51.20 
50.07 
54.55 
57.63 
55.73 
54.25 
32.81 
35.77 

39.18 
20.72 

99.18 

99.59 
99.39 
99.18 
99.18 
98.77 
98.77 
98.77 

98.36 
98.16 

25.59 
43.51 
45.87 
48.96 
50.04 
23.99 
21.84 
25.12 

34.32 
20.96 

 

In the fourth experiment, a multi-CNN model was used as 

a feature extractor, which provides a feature vector for initial 

feature screening using LightGBM techniques. Afterward, 

this study incorporated the selected feature, and the effect of 
the utilization percentage of the total features was also 

examined. Table IX specifies the layer positions for each 

CNN. A collection of features was extracted from the model's 

specific layers utilizing a predefined percentage of features 

based on the model's previously shown promising 

performance in the CNN-SVM. The performance of the 

multi-CNN-LightGBM-SVM is summarized in Table XI. 

TABLE VII 

THE COMPARISON OF INCEPTIONV3-SVM AND  

INCEPTIONV3- LIGHTGBM -SVM PERFORMANCE 

InceptionV3’s 

layer 

InceptionV3-

SVM  

InceptionV3-

LGBM-SVM 

Acc 

(%) 

Time 

(s) 

Acc (%) Time (s) 

mixed0 
mixed1 
mixed2 
mixed3 

mixed4 
mixed5 
mixed6 
mixed7 
mixed8 
mixed9_0 
concatenate 
mixed9 

mixed9_1 
concatenate_1 
mixed10 
avg_pool 

99.18 
98.98 

99.18 
98.57 

98.98 
98.77 
98.77 
98.57 
98.57 
97.75 
98.36 
98.16 

97.34 
97.55 
97.96 
97.55 

74.16 
90.12 

109.81 
67.09 

63.72 
58.32 
60.56 
58.83 
34.99 
33.38 
32.97 
49.83 

37.00 
33.51 
55.12 
23.29 

98.98 
98.98 

99.18 
98.77 

99.18 
98.77 
98.77 
98.57 
98.57 
97.55 
98.57 
98.36 

97.55 
97.55 
97.96 
97.34 

67.65 
80.38 
97.48 
59.81 

58.02 
56.69 
56.15 
54.10 
36.35 
31.53 
31.41 
45.90 

35.39 
31.88 
50.13 
24.13 

TABLE VIII 

THE COMPARISON OF XCEPTION-SVM AND XCEPTION- LIGHTGBM -SVM 

PERFORMANCE 

Xception’s 

layer 

Xception -SVM  Xception -LGBM-

SVM 

Acc 

(%) 

Time (s) Acc (%) Time (s) 

add_11  
avg_pool 

98.77 
98.36 

38.79 
21.10 

98.16 

98.57 

20.94 
25.91 

 

As shown in Table XI, this approach has the highest 
accuracy of 99.39%. Although it is reliable, it falls short of 

the performance of the original VGG16. This is possible 
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because of the enormous dimension of features that remain 

owing to the usage of feature percentages rather than a set 

number of features.  

A multi-CNN model was used as a feature extractor in the 

fifth experiment. It generates a feature vector with certain 

dimensions that is processed through LightGBM approaches 

for initial feature screening. After the chosen feature was 

merged, the collection of features derived from the images 

must be informative to facilitate classification and adequate 

to prevent classification mistakes. As a result, the second 

feature selection was used to exclude features that are 
undesirable for usage in this union of features.  

TABLE IX 

THE CHOSEN LAYER NAME TO USE IN MULTI-CNN-LIGHTGBM-SVM IN THE 

EXPERIMENT 4 

CNN Architecture Layer Name 

VGG16 block5_conv2 
VGG19 block5_conv3 
ResNet50 conv5_block1_add 
InceptionV3 mixed8 

Xception add_11 

 

The percentage of total features and the layer position 

where they would be generated were examined. In the first 

level of feature selection, the length of the feature vector 
obtained from each CNN is specified in Table X. A collection 

of features was retrieved from the model's particular layers 

using a specified percentage of features based on the model's 

prior promising performance in the CNN-LightGBM-SVM. 

Table XII details the performance of the proposed method.  

According to Table XII, the best-performing model was 

built utilizing feature maps from two separate pre-trained 

deep learning models, namely ResNet50 and Xception. 

Combining the features gained through these approaches 

resulted in the feature maps. Furthermore, combining deep 

features extracted from several CNN models has been proven 

to increase performance in this and other experiments. Since 

the goal is to obtain greater performance with fewer features, 

LightGBM algorithms were used to select these feature maps. 

Following a detailed study of the findings in Tables III-XII, it 

was determined that employing two-level feature selection 
with LightGBM enhanced accuracy by 0.21 percent when 

compared to the original VGG16 model. This number 

confirms the suggested method's efficacy, since the test set 

was unknown to the created model. In addition, the proposed 

model improves prediction accuracy while reducing the 

feature dimension to 7,055 features by eliminating those that 

were redundant. 

TABLE X 

THE CHOSEN LAYER NAME AND FEATURE PERCENTAGE FOR OUR PROPOSED 

METHOD IN EXPERIMENT 5 

CNN 

Architecture 

Layer Name Feature 

Percentage 

(%) 

Selected 

Feature 

Length 

VGG16 block5_conv2 10 10,035 
VGG19 block5_pool 70 17,561 
ResNet50 conv4_block2_add 70 140,492 
InceptionV3 mixed4 10 22,195 
Xception avg_pool 30 614 

TABLE XI 
THE PERFORMANCE OF MULTI-CNN-LIGHTGBM-SVM IN EXPERIMENT 4 

Combined Architecture Feature Percentage (%) 

5 15 25 35 45 55 65 75 85 95 

VGG16 and VGG19 98.77 97.96 98.77 98.98 99.18 99.18 98.77 98.98 98.98 99.18 
VGG16 and ResNet50 98.77 97.96 98.77 98.98 99.18 99.18 99.18 99.18 99.18 99.18 
VGG16 and InceptionV3 98.36 97.96 98.77 98.98 99.39 99.39 99.39 99.39 99.18 99.18 
VGG16 and Xception 98.98 97.96 98.77 98.98 99.18 99.18 99.18 99.18 99.18 99.18 
VGG19 and ResNet50 98.36 98.57 98.36 99.18 98.77 98.77 98.77 98.77 98.77 98.77 
VGG19 and InceptionV3 98.36 97.96 98.36 99.18 98.77 98.98 98.98 98.98 98.77 98.77 
VGG19 and Xception 98.77 98.57 98.36 99.18 98.77 98.77 98.77 98.77 98.77 98.77 

ResNet50 and InceptionV3 98.36 98.36 98.36 98.77 99.18 99.18 99.18 99.18 99.18 99.18 
ResNet50 and Xception 98.57 98.36 98.57 98.98 99.18 99.18 99.18 99.18 99.18 99.18 
InceptionV3 and Xception 98.57 98.57 98.77 98.98 98.77 98.98 98.98 98.98 98.77 98.77 
VGG16, VGG19, and ResNet50 98.98 98.57 99.18 99.39 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16, VGG19, and InceptionV3 98.77 98.77 98.98 99.18 99.39 98.77 98.98 98.98 98.98 98.98 
VGG16, VGG19, and Xception 98.98 98.77 99.39 99.39 99.39 98.77 98.16 97.75 98.36 98.16 
VGG16, ResNet50, and InceptionV3 98.57 98.36 98.36 98.77 98.98 98.57 98.98 98.98 98.98 98.98 
VGG16, ResNet50, and Xception 97.96 98.57 98.57 98.77 99.18 98.36 98.16 97.34 97.34 97.34 
VGG16, InceptionV3, and Xception 98.36 98.36 98.36 98.77 98.98 99.18 99.18 99.18 99.18 99.18 

VGG19, ResNet50, and InceptionV3 97.34 97.96 97.96 98.57 99.18 98.77 98.77 98.77 98.77 98.77 
VGG19, ResNet50, and Xception 97.14 97.34 97.55 98.77 99.18 98.77 98.77 98.77 98.77 98.77 
VGG19, InceptionV3, and Xception 98.16 97.96 97.96 98.57 99.18 98.77 98.77 98.77 98.77 98.77 

TABLE XII 
THE PERFORMANCE OF OUR PROPOSED METHOD MULTI-CNN-LIGHTGBM-SVM WITH TWO-LEVEL FEATURE SELECTION IN EXPERIMENT 5 

Combined Architecture Feature Percentage (%) 

5 15 25 35 45 55 65 75 85 95 

VGG16 and VGG19 99.39 99.39 99.39 99.18 99.18 99.39 99.39 99.39 99.39 99.39 
VGG16 and ResNet50 97.75 97.75 98.16 99.39 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16 and InceptionV3 98.98 98.98 98.98 99.18 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16 and Xception 98.98 98.77 98.77 98.77 99.39 99.39 99.39 99.39 99.39 99.18 
VGG19 and ResNet50 98.77 98.98 99.18 99.39 99.18 99.18 99.59 99.59 99.59 99.59 
VGG19 and InceptionV3 98.98 98.98 98.98 98.77 99.18 99.18 99.18 99.18 99.18 99.18 
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VGG19 and Xception 98.36 98.57 98.77 98.57 98.36 98.77 98.77 98.98 99.18 99.18 

ResNet50 and Xception 99.80 99.39 99.39 99.39 99.39 99.39 99.39 99.18 99.18 99.59 
InceptionV3 and Xception 99.18 99.18 98.98 99.18 98.98 99.18 99.18 99.18 99.18 99.18 
VGG16, VGG19, and ResNet50 98.57 98.77 98.77 99.39 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16, VGG19, and InceptionV3 98.36 98.36 98.36 99.39 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16, VGG19, and Xception 99.59 99.59 99.59 99.39 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16, ResNet50, and Xception 97.75 97.96 98.16 99.18 99.39 99.39 99.39 99.39 99.39 99.39 
VGG16, InceptionV3, and Xception 98.36 98.36 98.36 99.18 99.39 99.39 99.39 99.39 99.39 99.39 
VGG19, ResNet50, and Xception 98.16 98.57 99.18 99.39 99.18 99.18 99.59 99.59 99.59 99.59 
VGG19, InceptionV3, and Xception 97.55 97.75 97.96 98.36 99.18 99.18 99.18 99.18 99.18 99.18 

 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 6  The comparison of time required for multi-CNN-LGBM-SVM with 

and without two-level feature selection in terms of (a) feature extraction, (b) 

feature selection, and (c) classification process. 

 

Fig. 6 illustrates the time needed for extracting, selecting, 

and classifying the test data used in experiments 4 and 5. In 
terms of time complexity, Fig. 6(a) shows that extracting 

features from the multi-CNN-LGBM-SVM model used in 

experiment 4 takes much longer than the latter model. This 

might occur as a result of the first-level feature selection 

process, which eliminated a large number of features. Given 

the latter method's use of two-level feature selection, it's 

reasonable that the time required to select the feature is greater, 

as seen in Fig. 6(b). It is important to note that the superiority 

of multi-CNN-LightGBM-SVM is shown by the time 

efficiency associated with feature extraction and selection. 

After a comprehensive investigation of these graphs, it was 

found that the application of two-level feature selection 
speeds up the feature extraction process by ten seconds, even 

though the feature selection procedure takes 0.5 seconds 

longer. Meanwhile, the time needed to do classification using 

SVM is same for both models. As shown in Fig. 6(c), the more 

features utilized, the longer the SVM model takes to classify 

the data. 

In this study, the proposed method was compared with 

previous studies' performance results that used a similar 

approach in implementing multi-CNN in classifying X-ray 

images, and these comparative results are presented in Table 

XIII.  

TABLE XIII 

THE COMPARISON OF OUR WORK WITH SOME SIMILAR PUBLISHED WORKS 

Method CNN Architecture Acc (%) 

CNN-Correlation FS-
BayesNet [13] 

SqueezeNet, 
DarkNet-53, 
MobileNetV2, 
Xception, 
ShuffleNet 

97.44 

COVID19FclNet9 (CNN-
INCA-SVM) [14] 

AlexNet, VGG16, 
and VGG19) 

98.84 

COVIDetectioNet (CNN-
Relief-SVM) [15] 

AlexNet 99.18 

CNN-binary BOA-ELM 
[16] 

ResNet18, 
ResNet50, and 
DenseNet201  

99.48 

Our proposed method 
(multi-CNN-LGBM-SVM 
with two-level feature 
selection) 

ResNet50 and 

Xception 
99.80 

 

It is impossible to compare findings fairly owing to the 

disparity in datasets, performance measures, and validation 

procedures. However, as seen in Table XIII, the proposed 

technique outperforms all state-of-the-art methods and was 

found to be robust and efficient due mainly to its use of fewer 
features and a reasonable processing time. Therefore, as seen 

by the observed results, the second level of feature selection 
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can effectively select the most relevant features after the first 

screening. The proposed model for this dataset was better than 

the previous works. As a result, it can be concluded that the 

proposed two-level feature selection using LightGBM 

algorithm in multi-CNN-LightGBM-SVM is more capable of 

accurately predicting COVID-19 than its predecessors.   

IV. CONCLUSION 

The total number of COVID-19 infections remains high. 

As a result, early diagnosis of this disease is critical for 

effectively isolating affected individuals and breaking the 

transmission chain. A few radiologists recommend chest X-

ray images for COVID-19 diagnosis since they are readily 

available and accessible in all hospital environments. In 

addition, it has been demonstrated that X-rays may be utilized 

efficiently to diagnose COVID-19. However, manual reading 

of many X-rays may increase erroneous detections due to 

workload and human eye vision problems. As a result, 

developing computer-aided diagnosis systems that utilize 
accessible radiological imaging is a viable alternative for 

undertaking diagnostic assessment and analysis of COVID-

19 cases and can assist medical professionals.  

This study presented a three-step deep learning model 

comprising a feature extractor based on transfer learning 

using a convolutional neural network (CNN), a two-level 

feature selection, and a feature classifier. The first phase 

involves selecting two or three CNNs from a group of five 

proposed CNNs to produce features from chest X-ray images. 

The retrieved feature set may contain information that is 

redundant or irrelevant. Therefore, eliminating irrelevant data 

is required before the classification step. In this process, 
LightGBM was used to perform a two-level feature selection. 

The first level selects the relevant feature from an extracted 

feature from a particular layer based on a defined proportion 

of features. Each feature vector is run through LightGBM to 

reduce unnecessary features and extract the most relevant 

ones in order to optimize CNN performance. As a secondary 

feature selection step, all the previously selected features 

obtained from different CNNs are combined, and LightGBM 

is used to achieve the final optimal features. In the last 

classification phase, support vector machines (SVM) is 

employed to classify COVID-19 and non-COVID-19 chest X-
ray images. As a result, the suggested model improved 0.21% 

accuracy from 99.59 using VGG16 to 99.80% accuracy 

utilizing hybrid CNN-SVM with ResNet50 and Xception 

features. This performance outperforms numerous CNNs and 

recent COVID-19 image-processing studies. 

Performance improves when dimensionality reduction 

techniques are used, showing a significant degree of 

correlation between features that should be reduced to 

improve the classifier's performance while also lowering the 

processing times. Thus, diagnostic effectiveness can be 

increased while radiologists avoid the substantial workload 
associated with the first COVID-19 screening. In future 

studies, it is intended to extend the suggested model as a 

software device to boost its accessibility and apply the 

proposed algorithms to a variety of medical image processing 

applications that employ additional imaging modalities.  
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