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Abstract—The number of Neighbours (k) and distance measure (DM) are widely modified for improved kNN performance. This work 

investigates the joint effect of these parameters in conjunction with dataset characteristics (DC) on kNN performance. Euclidean; 

Chebychev; Manhattan; Minkowski; and Filtered distances, eleven k values, and four DC, were systematically selected for the 

parameter tuning experiments. Each experiment had 20 iterations, 10-fold cross-validation method and thirty-three randomly selected 

datasets from the UCI repository. From the results, the average root mean squared error of kNN is significantly affected by the type of 

task (p<0.05, 14.53% variability effect), while DC collectively caused 74.54% change in mean RMSE values, k and DM accumulated 

the least effect of 25.4%. The interaction effect of tuning k, DC, and DM resulted in DM='Minkowski',  � � � � �� ,  � �
�	
��� 
�������� � �, and sample size (SS) >9000, as optimal performance pattern for classification tasks. For regression problems, 

the experimental configuration should be���� � �� � ����; � � �����
 �� 	��
������ � �,  and DM = 'Filtered'. The type of task 

performed is the most influential kNN performance determinant, followed by DM. The variation in kNN accuracy resulting from 

changes in k values only occurs by chance, as it does not depict any consistent pattern, while its joint effect of k value with other 

parameters yielded a statistically insignificant change in mean accuracy (p>0.5). As further work, the discovered patterns would serve 

as the standard reference for comparative analytics of kNN performance with other classification and regression algorithms.  
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I. INTRODUCTION

K-Nearest Neighbor (kNN) is known to be an extensively
applied algorithm in diverse areas, including data science, 
data mining, and machine learning (ML) research [1]–[4]. Its 
wide acceptability is largely due to simplicity [5], [6], 
usability, intuitiveness, flexibility, and applicability [1], [7]. 
It accepts continuous, discrete, ordinal, and categorical data 
and is exceptional for handling all types of missing data [5]. 
kNN models are remarkably successful in many fields, 
including pattern recognition [8], biometrics [9], text 
categorization, outlier detection, and collaborative filtering 
[6], [10]. Since a linearly separable target is not a requirement, 
it is very suitable for classification [11], [12], and regression 
problems [13]–[15].  

It is fast during the training phase but computationally 
expensive while estimating the optimal number of nearest 
neighbors. Most worrisome is the relatively low accuracy 
when compared to other ML approaches [1], [7], [16]. This 
challenge is mainly linked to some critical issues—parameter 
configuration (choice of k value and distance measures), and 
pre-processing data requirements [11], and has caused the 
gradual decline in its popularity. Another key determinant of 
kNN performance is the nature of the dataset [17]. Sample 
size, input feature dimensionality, target class dimensionality, 
missing values, and ML problem types generate significant 
prediction errors [17], [18].  

A widely adopted performance improvement methodology 
for kNN is parameter tuning. This involves running multiple 
times with varying parameter values (k or distance), and the 
parameter-value producing the best performance accuracy is 
chosen. This approach is computationally expensive and 
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produces results that are not reliable due to the exclusion of 
dataset structure. Some previous studies investigated the 
effect of parameters on kNN performance individually, and 
optimal parameters were estimated for the applied domain[2], 
[19]–[21]. These optimal parameters differ from one problem 
to another, even for solutions in the same domain.  

Considering that kNN performance depends on the model 
parameters and dataset characteristics, there ought to be a 
viable reference for an optimal decision on the configuration 
of these determinants for optimal results. However, the joint 
effect of both metrics of kNN vis-à-vis the dataset's 
characteristics is not reported in the literature. To fill this gap, 
this work investigates the combined effect of kNN parameters 
on performance. It estimates the desirable kNN parameter 
configuration under varying dataset characteristics (feature 
dimensionality, class dimensionality, type of ML tasks, 
sample size), using some selected research datasets published 
in the University of California, Irvine (UCI) ML repository 
[22]. Moreso, the influence of the interactions among the 
dataset properties on kNN accuracy will also be investigated 
by learning the optimal parameters for each dataset sample. 
This work would therefore make the optimal parameters of 
kNN handy for adoption in any given structure of the datasets 
as its contributions to knowledge. 

II. MATERIALS AND METHODS 

This section is divided into five sub-sections. The related 
works are summarized in sub-section A, while the data-driven 
analytic framework is described in sub-section B. The series 
of the experimental setup is presented in sub-section C. Sub-
section D presents the effect of patterns produced from 
parameters interaction. 

A. Related Works 

This section discusses related works on kNN algorithm, the 
effect of each parameter, and dataset characteristics on kNN 
Performance.  

1) kNN Algorithm: KNN is a non-parametric supervised 
ML algorithm often regarded as a lazy learner because it does 
not learn any discriminative function from the training data; 
rather, it memorizes the training dataset and utilizes k number 
of related instances to predict the class of a new data [11], 
[23]–[26]. Initially proposed for the classification of numeric 
data, research over the years has led to its further successful 
application in regression tasks and in predicting other non-
numeric data types. Although considered a simple algorithm 
because of its underlying operational principles, its 
performance in most classification and regression problems 
has been seen to surpass other supervised ML algorithms [18], 
[27], [28]. 

To improve the performance of the kNN algorithm, several 
variations have been proposed and applied in different 
domains. From the kNN graph neural network (kNNGNN) 
[28]; to the PK Means++ (kNNPK++) [27] and the Particle 
Optimized scored kNN (POSkNN) [29], or the neuro-fuzzy 
kNN method and the K-dimensional tree (kNN-KD-tree) by 
[25] the algorithm has continued to use hyper-parameters (k 
Neighbours, distance measure, and weighting function) for 
performance determination and enhancement. Enhanced 
adaptive kNN using simulated AneaAnneais lingposed [18], 

[30] and a modified model [30]. More description of kNN 
parameters and applications [31]–[35] 

2) Effect of Distance Metric on Performance: The 
performance of the kNN is dependent on the adopted distance 
measure [36]. kNN was only initially utilized with traditional 
metrics like Euclidean and Manhattan distance measures. 
Recently, advances in research have led to its adaptation for 
the classification of non-numeric data [37]. Some studies 
[38]–[40] proposed a time-saving memory-efficient variant of 
kNN algorithm using heterogeneous Euclidean-overlap 
metric – a modified version of the conventional Euclidean 
distance measure. The algorithm was trained and tested using 
categorical data to reduce execution time through dataset 
compression. The results show that the accuracy of data 
classification in the compressed and uncompressed datasets 
was almost the same, while classification time was noticeably 
reduced with the former.  

Furthermore, several reports proposed and selected 
different distance measures with single or multiple datasets 
and presented varying results in terms of the most efficient 
distance measure with kNN. Consequently, the question of 
which distance measure to adopt for the kNN classier has been 
asked and investigated [20], leading to the submission that the 
performance of kNN significantly depends on the distance 
measure. In the study, fifty-four (54) distance measures were 
selectively reviewed, out of which the Hassanat distance 
metric was observed to have the best average performance.  

An investigation into the performance of kNN on six 
heterogeneous datasets of non-numeric binary data types 
using Euclidean, Manhattan, Cosine, Jaccard, and Canberra 
DMs [21]. K values comprised odd numbers between 1 and 9; 
the feature weights of 0.8 and 0.6 were assigned to the most 
important and least important feature sets, respectively, while 
the feature set with equal importance weighted 0.5. Their 
results showcased Euclidean distance as the best. Although 
their results showed that the optimal value of k for most 
datasets under the different weight assumptions was one, the 
reason for the enhanced performance is yet to be established.  

Similarly, kNN performance evaluation with 
electroencephalogram data comparatively studied Manhattan, 
Euclidean, Minkowski, Chebychev, and Hamming [41] 
distance measures. Accuracy is one of the key performance 
metrics in ML; it was used for evaluation and returned a 70.08% 
score for the Minkowski distance measure, which was 
observed to be the highest. With kNN, the value of k is 
dependent on the data under investigation, while the distance 
measure affects the classification result. In addition to a large 
variation of k-values, the values at which the highest accuracy 
scores are returned are large compared to the seemingly 
moderate accuracy scores observed [41].  

In another comparative study to examine the distance 
measure effect on kNN performance; the Euclidean, Cosine, 
Chi-square, and Minkowski distance measures, among others; 
were investigated [42], utilizing heterogeneous datasets for 
the kNN performance evaluation. From their results, the Chi-
Square measure produced the highest accuracy in all three 
medical-related datasets against the expected Euclidian 
distance. Another study [7] proposed a combination of the low 
mean-based kNN and distance weight kNN technique for 
improved classification accuracy using Euclidean distance. 
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Earlier, Parvin, Alizadeh, and Minati [43] proposed a 
modified kNN algorithm with Euclidian distance as the 
preferred distance measure.  

The Euclidean distance appears to be the most patronized 
distance measure in the literature [42]–[44]. However, it is 
less effective when high classification accuracies are a 
priority, as observable in some studies [20], [42], [44]. Ehsani 
and Drabløs [24] found out of the twelve distance functions 
adopted for kNN performance evaluation, Sobolev and Fisher 
were outstanding in several cancer datasets in the study. A 
similar report is tenable; the Manhattan distance measure 
returned the highest accuracy ahead of the Euclidean and 
Chebyshev measures for classification tasks. In Chomboon et 
al. [45], eleven distance functions were considered; 
Minkowski, Mahalanobis, Euclidian, Cosine Similarity, 
Manhattan, Chebyshev, Correlation, Hamming, Jaccard, 
Standardized Euclidian, and Spearman. Although no single 
pole performing distance measure on eight binary synthetic 
datasets was given, their investigations showed that the 
Manhattan, Minkowski, Chebyshev, Euclidian, Mahanathan, 
and Standardized Euclidean distance measures outperformed 
others with relatively similar accuracy scores.  

Furthermore, using the Manhattan, Euclidian, Soergel, 
Lance-Williams, contracted Jaccard-Tanimoto, 
Bhattacharyya, Lagrange, Mahalanobis and four of its 
variants, Canberra, Wave-Edge, Clark, Cosine, and 
Correlation distance measures with kNN on eight different 
datasets; Manhattan, Euclidian, Soergel, Lance-Williams and 
contracted Jaccard-Tanimoto returned the highest accuracy 
score. Some studies [46]–[49] have insights into the 
relationship between distance measures and kNN 
performance 

3) Effect of K-Neighbors on kNN Performance: The 
performance of several proposed kNN models using various 
domain-specific datasets depends on the distance measure and 
k values [15] adopted. Nevertheless, no known domain-
specific or generally acceptable range of k values can be used 
with specific distance measures or particular study scenarios 
to obtain optimal results when the underlying algorithm in the 
study is known. As such, the literature has a huge variation of 
k values. In most cases, specific k values have been observed 
to produce the best performance. There is no justifiable 
explanation of why one k value performs better or less than 
the other factors that may be involved. However, without 
proper investigations, there will be no standardized criteria for 
selecting k values in kNN kNN-based investigations.  

The sensitivity of kNN to chosen k values is a challenging 
characteristic of the algorithm [50], which is an area of 
interest in this work. In k-NN, the k value represents the 
number of nearest Neighbors; hence the value is a core 
deciding factor for the classifier's performance. In several 
works, k-neighbors varied over different ranges also forces a 
variation in the accuracy of the kNN model. In Syaliman, 
Nababan, and Sitompul [7], optimal classification was 
obtained with k=10 in an experiment involving k in the range 
1≤ k ≤ 10. In a similar experiment, for k-values ranging from 
1≤ k ≤ 20, k=8 produced the best result. 

Investigating the efficiency of kNN in classifying 
electroencephalogram data, Md Isa and collaborators [41] 
iterated k in the range 1≤ k ≤ 15. This k value range is not very 

different from that adopted in Parvin, Alizadeh, and Minati 
[43], where a modified kNN algorithm is proposed with k 
values is  3 ≤ k ≤15. Considering the range of the chosen k 
values in these studies, we note that the value at which the 
models performed best was a relatively high k value. A 
distinctively large range of k values is seen in [51], where 1 ≤ 
k ≤133. Granted that large k values with different datasets 
returned high accuracies, this is not always the case because; 
in Hu et al. [42], even when k values ranged 1 ≤ k ≤15, the 
highest accuracy of 78.8% was returned when k = 4, followed 
by accuracies of 71.9% and 76.5% for two different datasets 
respectively when k = 1.  

Ali, Neagu, and Trundle [21] chose a relatively smaller 
range of k values consisting of only the odd numbers between 
1 and 9, and had the best performance when k =1. 
Consequently, these results show conditions of high accuracy 
with small/low k values and correlate with a special case of 
kNN known as the nearest Neighbor.  

K values in the range � = {3,5,7} were chosen to compare 
the efficiency of the traditional kNN model using Euclidian 
distance with variant ensemble clustering kNN algorithm. 
Even though the performance of the modified kNN was better 
than the traditional algorithm, the reason for the choice of k 
and optimal runtime at k = 5 concerning the other k values is 
not reported. Furthermore, after experimenting with eight 
different k values (� = {1,3,5,11,21,31,41,51}), to arrive at 
the conclusion that near-zero k values do not always suit small 
datasets, while large k values are also unsuitable for the huge 
dataset. Concerning large k values, [51] thinks that they are 
less sensitive to noise and make the boundary between 
different classes of a dataset smoother.   

Moreso, even for datasets from the same domain with 
similar characteristics, the best-performing k-values are not 
uniform. The submission of Isa et al. [41] and Hassan et al. 
[52] contains non-uniform classification results even though 
a similar dataset was used in both studies. Additionally, 
considering the Wisconsin Breast Cancer (WBC) dataset 
adopted by Ehsani and Drabløs [24] and Iswanto, Tulus, and 
Sihombing [39], the selected k values ranged from 1 to 20 in 
the former, while the latter chose four k values between 5 and 
20 in steps of 5. While previous studies reported the highest 
accuracies without pointing to a specific value of k; the same 
dataset yielded the best performance [24] when k = 5. Even 
though both studies adopted the same dataset, there is a 
disparity in the k values at which kNN performed best. Even 
though this disparity is associated with the choice of distance 
measures, in both investigations [51], there is still the 
dilemma of what distance measure and k value to combine 
with a dataset to obtain optimal kNN performance.  

The simplest way to choose a k value is to iteratively run 
the kNN model a number of times and choose the k value 
associated with the best performance. This has been the take 
of many researchers, as evident in the literature. This position, 
however, compounds and increases the time cost for an 
investigation and model resolution since the range of possible 
k values that can be tested for optimality determination is 
infinite.  

To the best of our knowledge, the lack of standardized 
benchmarks for k value selection has left researchers with no 
criteria for selecting the smallest and largest values of k. 
Being that static k values are discouraged [53], [54], k-values 
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that make the range of a study are an exclusive choice of the 
author, and in many cases, the individual guiding benchmarks 
for k value selection are not reported. Thus, one can opine that 
a trial-by-error method is adopted in most studies for the set 
of k values to be used in the model testing.   

Although another study [55] presented experimental results 
on what data properties affect the choice of k-value; it did not 
incorporate what data properties or features should be 
considered in selecting an appropriate distance measure. 
Since the k value and the distance measure are core 
determinants of the algorithm's classification efficiency, we 
identify this subject as requiring research attention. 

4) Effect of Dataset Characteristics on kNN Performance: 

Several empirical ML and data mining studies have revealed 
that the performance of classifiers depends on the dataset 
employed and the parameters of individual classifiers. There 
is no k value or distance measure of kNN that is the best in all 
dataset situations [51], [55], [56]. In two other studies [51], 
[53], the significance of the impact of dataset characteristics 
on the classifier's performance is acknowledged and exploited 
to study the performance of kNN algorithm. The study 
confirmed that higher k values are suitable for 2-class datasets 
with relatively high sample sizes while a different relationship 
is depicted with & >  2 −class datasets.  

An investigation of how dataset characteristics and other 
performance metrics collectively or individually affect the 
efficiency of an algorithm and the impact level of each 
criterion [56]. Results of experiments confirmed differing 
ranks of five (5) distance measures using lung, prostate, and 
breast cancer datasets. Therefore, understanding the 
relationship between dataset characteristics and kNN 
parameter is crucial to the performance of kNN. Sample size 
or number of instances, sparsity, uneven density, missing 
values, data format, class dimensionality or distribution, and 
domain area are some dataset particulars that affect model 
performance [57].   

Therefore, there is no best algorithm for all dataset 
situations using performance metrics [17], [58], but there 
should be best algorithms for specific datasets. While most 
kNN research focuses on finding the optimal k values, others 
investigate the best distance metric or the effect of dataset 
parameters. No previous research attempts to simultaneously 
investigate the optimal k value and best distance metric in 
specific data situations. Therefore, to fill this gap, this work 
investigates the optimal k value, the best distance metric 
concerning specific data scenarios using thirty-three UCL 
datasets.  

B.  Dataset Driven Analytic Methodology 

The dataset-driven analytic approach (Fig. 1) phases 
through the following series of activities:  

 dataset collection and characterization; 
 10-fold cross-validation-based experiments; 
 Input rank analysis; 
 Interaction effect computations and tests; 
 Rule-set formulation.  

Datasets published in the UCI Repository were randomly 
selected for the experiments [59]. The UCI repository 
manages several benchmarking datasets organized for 
empirical performance analysis of algorithms and gives 

descriptions and papers associated with each dataset [11], [22], 
[55]. Thirty-three (33) datasets were retrieved and used for the 
analytic experiments, out of which thirteen (13) are regression 
and twenty (20) classification tasks.  

 

 
Fig. 1  Dataset-Driven Analytic Workflow 

 

A parametric description of the datasets (Table 1) has the 
number of attributes (NOA), associated ML task (TA), sample 
size (SS), Domain Area (DA), and Attribute Format (AF) of 
each dataset. NOA ranges from 4 - 38; SS ranges from 23-
45730; TD has values between 0-29. SA includes life, 
financial, computer, physical and social, while AF was 
grouped into real, integer, categorical, and mixed formats. AF 
is "mixed" when more than one data format is involved. 
Categorical attributes remained unchanged, while the 
continuous ones (input dimensionality, sample size, and target 
class dimensionality) were broken down into subgroups to 
allow for groupings of specific data situations. This will 
provide a standardized criterion for adoption when 
referencing datasets; and eases the interpretation of results  

C. Experimental Analytics 

A series of experiments were set up for each dataset in the 
Waikato Environment for Knowledge Analysis (WEKA) 
experiment environment [1]. The default parameters of kNN 
algorithm were used apart from varying the number of 
neighbors (k) and distance measures. Before running the 
experiments, all datasets were pre-processed by removing 
irrelevant features (for example, ID, dates etc.) and records 
with missing values. 
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The experiment was performed with eleven k values; k =

{1,3,5,7,10,13,15,17,20,25,30} neighbors and five distance 
measures; Chebyshev (CH), Euclidean (EU), Manhattan 
(MA), Minikowski (MI) and filtered (FI) distance metrics. 
Each experiment was repeated 20 times with 10-fold cross-
validation (10-FCV). Extensive tests on different datasets 
with different classifier schemes confirmed the suitability of 
ten (10) as the number of folds to get the best estimates of 
accuracy. The 10-FCV results were averaged (with standard 
deviation), producing a single result for each k and distance 
measure combination. 

Root Mean Squared Error (RMSE) was the performance 
metric used for the analytic evaluation. The justification for 
the adoption of RMSE is its wide acceptability as a measure 
of accuracy in comparing the predictive errors of different 
estimation models/model configurations [60]. Each dataset 

produced 55 results (average RMSE ± standard derivation), 
giving a total of 1,815 data points 

The k values, distance measure, and the resultant RMSE, 
were columns added to the corresponding dataset properties 
described in Table 1. The resultant performance dataset had 
eight (8) input features and one target variable. Table 2 shows 
the structure of the dataset for k=1 and Euclidean distance 
metric for the Solar Flare dataset. 

Dimension reduction maps data to a lower-dimensional 
space to discover and extract explanatory variance in the 
dataset, or such that a sub-space that comprises the data is 
known [61], [62]. An interesting projection method for 
dimension reduction that is more adept at preserving the 
global structure of data is the Principal Component Analysis 
(PCA) [63], [64].  

TABLE I 
SUMMARY OF DATASET PROPERTIES  

S/N Dataset Name No. of Attributes 

(NOA) 

Tasks 

(TA)  

Sample Size 

(SS) 

No. of Target 

Class (TD) 

Domain Area 

(DA) 

Attribute Format 

(AF) 

1 Abalone 8 1 4177 29 Life Mixed 
2 Audit Data 18 1 77 2 Financial Real 
3 Contraceptive Method Choice 9 1 1473 3 life Categorical 
4 Glass identification 10 1 214 7 Physical Real 
5 Letter recognition 16 1 20000 26 Computer Integer 
6 Mushroom 22 1 8124 2 Life Categorical 
7 Nursery 8 1 12960 5 Social Categorical 
8 Processed Cleveland   13 1 303 5 Life Mixed 
9 Teaching assistant  5 1 151 3 None Categorical 
10 Water treatment 38 0 527 0 Physical Real 
11 Wine 13 1 178 3 Physical mixed 
12 Breast Cancer 32 1 569 2 life Real 
13 Credit Approval 14 1 690 2 Financial Mixed 
14 Computer Hardware 9 0 209  0 Computer Integer 
15 Dermatology 33 1 366 6 Life Mixed 
16 Ecoli 8 1 336 8 Life Real 
17 Flags 29 1 194 8 None mixed 
18 Haberman's Survival 3 1 306 2 Life Integer 
19 Hepatitis 19 1 155 2 Life mixed 
20 Energy Efficiency 8 0 768  0 Computer mixed 
21 Solar Flare 10 0 1389 0  Physical Categorical 
22 Seoul Bike Sharing Demand 12 0 8760 0 Computer Mixed 
23 Monks Problem 7 1 432 2 none Categorical 
24 Challenger USA  4 0 23 0 Physical Integer 
25 Forest fires 13 0 517 0 Life Real 
26 Algerian Forest Fires 11 1 244 2 Life Real 
27 Dry Bean Dataset 16 1 13611 7 Computer mixed 
28 Servo 4 0 167 0 Computer Mixed 
29 Yacht Hydrodynamics 6 0 308 0 Physical Real 
30 Concrete Compressive 

Strength 
8 0 1030 0 Physical Real 

31 Physiochemical 9 0 45730 0 Life Real 
32 Frogs MFCC  22 0 7195 0 Life Real 
33 Bike Sharing Count 13 0 732 0 Social Mixed 

TABLE II 
RMSE VALUES FOR K=1 AND EUCLIDEAN DISTANCE COMBINATION FOR SOLAR FLARE DATASET 

Dataset  Name NOA TA SS DA AF k DM RMSE 

Solar Flare >10 Reg 1001-1500 Phy Cat 1 CH  0.15±0.09 
Solar Flare >10 Reg 1001-1500 Phy Cat 1 EU 0.17±0.10 
Solar Flare >10 Reg 1001-1500 Phy Cat 1 MA 0.17±0.11 
Solar Flare >10 Reg 1001-1500 Phy Cat 1 MI 0.17±0.09 
Solar Flare >10 Reg 1001-1500 Phy Cat 1 FI 0.16±0.12 

 
It minimizes the dimensionality of sizable datasets; by 

transforming a large set of variables into a smaller one that 
still retain a significant proportion of information in the 

original dataset[63], [65]. PCA was carried out in the 
following steps: i) Standardization of continuous variables to 
fall between 0 and 1, to ensure equal contribution to the 
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analysis. ii) computation of the covariance matrix for highly 
correlated variables identification. iii) Acquisition of 
eigenvalues and computation of the eigenvectors. iv) ordering 
of eigenvalues in descending order for principal components 
in order of significance. v) choice of eigenvectors that 
correspond to the largest eigenvalues. vi) selection of the total 
number of relevant factors.  

Meaningful principal factors were selected based on the 
identification of factors earning eigenvalues greater or equal 
to unity (1) [61], [65], [66] and were retained through the 
Parallel Analysis (PA) approach [67] via the Monte Carlo 
Protocol [67] in 1000 repetitions. The percentile intervals (at 
95% confidence level) for each artificial eigenvalue were 
estimated and used as standard critical values for assessing 
actual eigenvalues. The results (Table 3) revealed eigenvalues 
of the dataset properties as individually greater than those of 
the kNN parameters except for SS, which earned the least 
eigenvalue of 0.0727.  

TABLE III 
EIGENVALUES AND FACTOR LOADINGS OF FEATURES 

Components 
Actual 

Eigenvalues 

PA 

Eigenvalues 

95% PA 

Eigenvalues 

Prop. of 

Variance 

(Actual)  

Cumulative 

Variance 

(Actual) 

TD 2.13 1.088 1.118 0.304 0.3040 
TA 1.02 1.053 1.074 0.145 0.4493 
NOA 1.00 1.025 1.004 0.1429 0.5922 
AF 0.99 0.999 1.016 0.1428 0.7350 
KV 0.93 0.974 0.991 0.1338 0.8689 
DM 0.85 0.947 0.977 0.1207 0.9896 
SS 0.07 0.914 0.941 0.0104 1.00 

 

The dataset parameters collectively caused 74.54% 
variability of the RMSE values, while KV and DM 
accumulated 25.4% variance (Fig. 2). The first two actual 
eigenvalues are greater than their PA counterparts (for both 
the mean and 95th percentile criteria) and thus would be 
retained. As evidenced in the PA values, there is a seeming 
indication of a third factor because the eigenvalue is almost 
the same as the randomized average and 95th quartile 
eigenvalues, but only two factors show up in the graphical 
representation (Fig. 2) — the PA values plot crosses the actual 
eigenvalues line right at two factors.   
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Fig. 2  Plot of actual versus average randomly generated eigenvalues 

 
The results confirmed two significant components – TD 

and TA. Since a single TA is performed at a time, the dataset 
was partitioned into two based on TA, regression, and 
classification datasets. The PCA experiment was repeated for 
each class of dataset; the results are presented in Tables 4 and 
5, respectively. The proportion of variance explained by 
individual components showed that the KNN parameters 
together contributed 20.76% variability, while the dataset 
properties took 79.24% for the classification task. 

TABLE IV 
EIGENVALUES AND FACTOR LOADINGS FOR REGRESSION TASK 

Components Actual 

EV 

PA EV 

(Average) 

95% 

PA EV 

Prop. of 

Variance 

(Actual)  

Cumm. 

Variance 

(Actua) 

AF 1.128 1.103 1.156 0.2256 0.2256 
NOA 1.030 1.045 1.081 0.2061 0.4317 
SS 1.002 0.999 1.028 0.2006 0.6322 
KV 0.997 0.953 0.983 0.1994 0.8317 
DM 0.841 0.898  0.935 0.1683 1.00 

TABLE V 
EIGENVALUES AND FACTOR LOADINGS FOR CLASSIFICATION TASK 

Components Actual 

EV 

PA EV 

(mean) 

95% 

PA 

EV 

Prop.  of 

Vari. 

(Actual)  

Cumm. Var. 

(Actual) 

SS 1.46 1.0994 1.137 0.2439  0.243 
TD 1.29 1.0528 1.079 0.2151  0.459 
AF 1.00 1.0160 1.038 0.1670  0.626 
NOA 0.998 0.9816 1.003 0.1664  0.792 
DM 0.721 0.9471 0.969 0.1202  0.912 
KV 0.524 0.9028  0.934 0.0874  1.000 

 

In the regression task (table 4), the situation improved for 
the KNN parameters (36.88%), with KV having a proportion 
of 19.94%. Figs. 3-4 visualized the individual and cumulative 
explained variance for each component.  

 
Fig. 3  Regression Scree plot of explained variance across components 

 

 
Fig. 4  Classification Scree plot of explained variance across components 

 
The explained variance depicts different patterns; — the 

second, third and fourth factors explained virtually the same 
variance in the regression dataset, while a majority of the 
factors in the classification task were disproportionately 
distributed. The variation in the factor-distribution pattern in 
both tasks confirmed the significant effect of ML task on the 
performance of KNN. 

On the decision of the principal factors to retain, three 
components have actual eigenvalues greater or equal to 1 in 
both classification and regression tasks. However, the PA 
scree plot for regression datasets (Fig. 5) approves three 
significant factors (AF, NOA, SS) for retention. In Fig. 6, the 
actual eigenvalue plot meets the PA eigenvalue plot before 
getting to the third factor, thereby further affirming the 
presence of two principal factors of SS and TD. 
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Fig. 5  Interaction of actual and PA eigenvalues for classification Task 

 

 
Fig. 6  Interaction of actual and PA eigenvalues for Regression Task 

 

The biplot visual (Fig. 7) shows the original features as 
vectors in the plane formed by two principal components. 
They commenced at the origin [0,0] [0,0] and extended to 
coordinates based on the factor loadings. The angles between 
vectors of the different variables showed that SS and TD had 
a high positive correlation, while NOA and AF depicted a 
negative correlation for the classification task.  

 
(a) 

 

 
(b) 

Fig. 7 (a-b)  BIPLOT showing the relationship of features along two principal 
components 

For regression datasets, NOA and AF were highly 
positively correlated, although a near lack of correlation was 
noticed between AF and SS. In both regression and 
classification tasks, k and DM correlated negatively with 
other features as they lied in the opposite direction with an 
insignificant proportion of explained variance, as shown by 
their length. 

D. Parameter Interaction Effect Pattern 

The relationship between the kNN performance and the 
principal factors in classification and regression tasks was 
modeled by fitting the generalized linear models to examine 
the factors' combined effects on RMSE. As shown in Table 6 
and Fig. 8, the results indicate a statistically significant 
difference in the mean performance of kNN across TD, SS, 
DM, and k-neighbors for the classification task and across SS, 
NOA, AF, and DM for regression tasks (p<0.0000), at 95% 
confidence level. This implies that changing each factor level 
causes a significant variation in the RMSE value. 

Whereas there exists a statistically significant direct impact 
on k-neighbors on classification performance (F=2.89, 
p=0.002), the reverse is the case regarding regression task 
(F=0.14, p=0.999).  

TABLE VI 
INTERACTION EFFECT OF PRINCIPAL FACTORS AND KNN PARAMETERS FOR 

CLASSIFICATION TASK 

Factors DF Adj MS F P 

TD 3 9.0372 117.42   0.000 
SS 4 22.5295 292.73   0.000 

DM 4 0.4576 5.95   0.000 
K 10 0.2226 2.89   0.002 
DM*K 40 0.0050 0.07   1.000 
SS*K 40 0.0447 0.58   0.983 
TD*K 30 0.0121 0.16   1.000 
SS*DM 16 0.0486 0.63   0.859 
TD*DM 12 0.2483 3.23   0.000 
SS*DM*K 160 0.0170 0.22   1.000 
TD*DM*K 120 0.0013 0.02   1.000 
     
Error 661 0.0770   
Total 1100    

TABLE VII 
INTERACTION EFFECT OF PRINCIPAL FACTORS AND KNN PARAMETERS FOR 

REGRESSION TASK 
 

Factors DF Adj MS F P 

SS 4 31061.6 57.07 0.000 

NOA 2 63072.6 115.88 0.000 

AF 3 4698.0 8.63 0.000 

DM 4 2230.2 4.10 0.003 
K 10 74.8 0.14 0.999 
DM*K 40 8.2 0.02 1.000 
AF*K 30 4.5 0.01 1.000 
NOA*K 20 329.9 0.61 0.904 
SS*K 40 143.2 0.26 1.000 
AF*DM 12 1135.3 2.09 0.020 

NOA*DM 8 3352.0 6.16 0.000 

SS*DM 16 1093.6 2.01 0.015 
AF*DM*K 120 3.7 0.01 1.000 
NOA*DM*K 80 19.1 0.04 1.000 
SS*DM*K 160 7.8 0.01 1.000 
Error 164 544.3   
Total 713    

No.of Attrib.

Sample.Size

Target.Dim.

Attribute.Format

Distance.Metric

K
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Fig. 8a reveals that TD>14 (mean=1.37), SS of 5000 -7000 
(mean=1.89), CHE (mean=1.03), and k=1 (mean =1.03) are 
associated with worse kNN performance in their respective 
categories for classification dataset. However, regression task 
results depict k=30 (mean=-7.71), CHE (mean=-13.67), SS 
between 7000-8000 (mean=-34.43), NOA in the range 4-6 
(mean=-53.57), and Categorical AF (mean=-23.88) are 
associated with the best kNN performance. 

1) DM Relationship Pattern: Multiple comparisons using 
Bonferroni test on the RMSE reveal that TD of "1-3" and "7-
9" produces statistically insignificant mean difference and 
produces a significantly least mean RMSE values (Mean=0.7) 
while the class ">14" (Mean= 1.4) depicts the highest 
significant difference in RMSE means. As shown in Table 7, 
the relationship between RMSE and the other variables does 
not make statistically dependent on the value of k (p>0.05) in 
both tasks. However, for classification, the impact of TD on 
kNN performance significantly relies on the level of DM 
(F=3.23, p=0.000), while the combined effect between SS and 
other factors displayed no statistically significant evidence of 
variation.  A statistically significant joint effect was noticed 
with AF*DM (F=2.09, p=0.020), NOA*DM (F=6.16, 
p=0.000), and SS*DM (F=2.01, p=0.015) regarding 
regression task. 

 
(a) Classification 

 
(b) Regression 

Fig. 8  Direct Effect of Factors of kNN performance a) Classification b) 
Regression 

Fig. 9a shows a statistically significant difference in the 
means between levels of both DM and TD. The highest mean 

difference of RMSE is noticed with TD ">14" across all DMs 
followed by "4-6". Although the mean difference for TD of 7-
9 and 1-3, respectively, are statistically insignificant across 
DM levels, 7-9 class earned the least RMSE in all DMs 
followed by 1-3. It follows that when the TD is between 1-3 
or 7-9, DMs produce statistically equivalent RMSE values. 
That is, a change in the distance measure does not produce a 
significantly different RMSE value.  

However, for TD between 4-6, RMSE values associated 
with EU, MA, and MI metrics differ insignificantly among 
themselves but depict a significant variation from RMSE 
values related to CHE (p=0.001) and FI (p=0.000) metrics and 
produce relatively low RMSE values. TD > 14 produces an 
average RMSE that differs significantly from CHE and FI 
distance measures, while the performances are relatively 
better and similar for EU, MA, and MI DMs. 

Factor interaction for regression task (fig. 9b-d), shows 
significant variation in the means of RMSE across DMs. Fig. 
9b describes the interaction of NOA and DM in the regression 
scenario. The three levels of NOA (4-6, 7-9, >10) exhibited 
diverse patterns across DMs. Worse performance was noticed 
with CHE in conjunction with "7-9" class, followed by MA 
with "4-6". The RMSE values resulting from DMs for 
NOA>10 showed no statistically significant difference, even 
when they expressed relatively mid-range performance. MA 
produced the worse performance for datasets with 4-6 NOA, 
while other DMs exhibited statistically equivalent 
performance. 

 

 
Fig. 9  Visualized feature interaction Pattern. a) TD-DM, b)  NOA-DM, c) 
SS-DM, d) AF-DM 

On the strength of the relationship of DM on kNN 
performance, Fig. 9(c) reveals a significant variation 
dependency on DM (F=16, p=0.015). This was noticed in the 
0-500 dataset group, with CHE and MA producing the highest 
mean difference while FI metric earned the least mean RMSE 
in this category. In the other SS groups, the differences do not 
change significantly across DMs, although higher values are 
exhibited by 501≤SS≤1000 followed by 1000≤SS≤1500, and 
levels >7000, respectively.  

Fig. 9(d) and Table 6 show that DM–RMSE relationship 
significantly depends on the diversification of AF levels 
(F=2.09, p=0.020). Although results from categorical, mixed 

 

7-94-61-3>14
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and real AF individually do not deviate significantly across 
DMs, categorical attributes performed best, followed by 
mixed and real attribute formats. For integer AF, there is a 
substantial variation of performances, with CHE giving the 
worse RMSE while FI yielded the lowest RMSE values. 

(c) K-Relationship Pattern Analysis: The pattern of the 
relationship between k and other principal factors in both 
classification and regression problems exhibits no meaningful 
variance (p>0.05) at 95% level (Table 7). The behavior of 
RMSE, due to varying levels of k in conjunction with other 
features for classification datasets (Figure 10), shows 
relatively high RMSE for k=1 in all dataset properties. For K-
DM interaction, there is a steady marginal rise in RMSE for k 
neighbors>3 in all DMs. A similar pattern is displayed by k-
TD effect, except TD between "1-3" where there is a slight 
improvement in performance up to k=30. This implies that 
k=3 produces the best results when the DMs levels vary. An 
opposite trend was observed for the k-SS relationship, where 
RMSE is almost the same as k increases in all SS categories. 
As shown in figure 10a-c, although, no reasonable difference 
in RMSE is noticed with the variation of k levels, any value 
of 10≤k≥3 would be optimally suitable for classification 
problems. 

 

  
 

Fig. 10  Plot of k interaction pattern in the classification task 

 
Regarding regression problems (Fig.11), the impact of k-

neighbors on the mean performance produces a relatively 
lowest RMSE at k=1 for all DMs except CHE. The trend also 
depicts a gradual insignificant rise in mean RMSE for all DMs 
except MA, which is near uniform RMSE values for levels of 
K>7. An SS ≤500 produces significantly the highest mean 
RMSE values for levels of K>1, followed by 501≤SS≤1000 
while SS in the range 7000≤SS≤8000 is the best-performing 
class. Since the evaluation of statistical significance produced 
p>0.05 for all categories, the difference in means induced by 
the factor levels may only occur by chance. 
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Fig. 11  Plot of k interaction pattern in the regression task 
 

III. RESULTS AND DISCUSSION 

In some previous studies highlighted in this work, the range 
of k neighbors selected is arbitrary and large, with the 
difference between the k values hardly well defined. However, 
since the choice of k values are an exclusive decision of Ma 
and Zhou [37]; the k Neighbors adopted in this study follow a 
simple addition of 2, 3 or 5 to the preceding value to get the 
successive k value. In the state-of-the-art submission by 
Kumbure and Luukka [16], the performance of their proposed 
method was tested with eight datasets from different fields 
and benchmarked to kNN and three other regression methods 
using the RMSE metric for performance evaluation.  

On the other hand, our work performs classification 
experiments with twenty real-world datasets and further 
undertook regression experiments with twelve other publicly 
available datasets. The relationship between the kNN 
performance and the principal factors in classification and 
regression tasks in our study is modeled by fitting the 
generalized linear models to examine the combined effects of 
factors on RMSE, a direction not considered in Kumbure and 
Luukka [16].  

The variation of k while holding other performance 
determining factors constant; produces an RMSE behavior 
that posits low accuracies for k=1 in most investigated 
datasets in the classification task (fig. 10). Considering the 
individual impacts of the distance measures and k values in 
the classification task (fig. 8a), the most effect from the 
distance measure was observed with EU distance, followed 
by MA, MI, CH and FI distance respectively. A mean RMSE 
of 0.8 is returned when k =7, 10 or 13 while the mean RMSE 
obtained is 0.9 when k = 5, 17 and 20; and the worst 
performance is observed at k=1.  

For the regression task, a similar result is obtained when 
k=1, and had the least RMSE when k=30. These results are in 
agreement with the position that large k values returns high 
accuracies with different dataset, and is in tandem with the 
submissions in some previous studies [3], [19], [68]. In terms 
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of the DM, MA produced the least effect, while CH had the 
best impact with 10 neighbors. Looking at variation in RMSE 
values; the dataset parameters collectively caused 74.54% 
variability of the RMSE values, while no reasonable 
difference in RMSE was observed with the variation of k 
levels, meaning that any value of k greater than or equal to 3 
and less than or equal to 10 would be optimally suitable for 
classification problems (Fig. 10). Above all, these results 
imply that distance metrics affects the performance of kNN 
more than the k values and that the k neighbors only affect the 
performance of the algorithm individually.  

Dataset characteristics identified as performance-affecting 
variables analyzed for classification, and regression tasks 
showed similar response patterns, especially where a rapid 
increase is observed for 9000<SS≥500 (Fig. 8). This response 
peaked at SS of 500 – 700 in the classification experiment and 
at 0 – 500 for the regression experiment. In both tasks, the 
most significant performance is recorded by kNN when SS is 
7000 – 9000. In terms of the direct effect of the number of TD 
on kNN performance, the classification task showed optimal 
performance when the TD was 1≤ TD ≤3 and 7≤ TD ≤9. With 
an RMSE =1.4; the least effect of TD on kNN performance is 
observed when TD >14, signifying that kNN performs better 
with a smaller TD even though the best performance was not 
returned when 1≤ TD≤3. In addition, the individual 
interactions of dataset performance attribute with DM 
illustrated in Fig. 9 show that distance metrics are more 
interactive with integer datasets.  

The interactions of the other dataset properties and, 
ultimately, the mean RMSE does not change exponentially 
with a change in the distance measure. The results indicate 
that the two dataset components that contributed the most 
significantly to the variance in RMSE are TD and SS. For 
classification, the degree of impact of TD on kNN 
performance depends significantly on the level of the DM, 
while the combined effect between SS and k neighbors does 
not depend on the DM used; except when the dataset SS is 
between 0≤SS≤500. The results in Fig. 9 (a-d) show that FI 
distance is a metric of choice for 0≤SS≤500 groups 
considering its corresponding low RMSE values across all 
dataset properties investigated, while other distance measures 
would produce impressive results for other categories. 

In Fig. 10, the sensitivity and response of dataset properties 
(TD and SS) to change in k values during the classification 
experiment; and the interaction of distance metrics with 
varying k Neighbors is shown. Figure 10a shows more 
interaction when TD was 4-6. This interaction is comparable 
to the dynamics shown when TD>14. Nevertheless, the 
performance of kNN algorithm would be better when TD is 
of the former range. In each of the TD ranges considered, the 
greatest changes in performance are observed when k changes 
from 1 to 3 and when k > 20. In other instances of k, the 
performance change is relatively insignificant. In figure 10b, 
kNN performed best with an RMSE of 0.4; when the SS was 
greater than 9000. Although the SS between 501 – 1000 also 
produced a seemingly equivalent interaction with k variation; 
its sensitivity to k increase from 1 to 3 is notably large; 
compared to the sensitivity noticed in SS >9000. This implies 
that if SS of 501≤ TD ≤3 is to be used in data classification 
experiment; then k ≥ 3 is desired for optimal accuracy to be 
obtained.  

A similar performance change to that expressed by TD is 
shown in Fig. 10c where DMs were observed during k 
variation. From the results, the best performance in the 
classification task could be seen in MI and MA distances with 
slight overlaps at  � = 1, 3, 15 +&, � = 30 , where MI 
performed better when k = 1 and k=3, as against when k was 
15 and 30. The performance of EU is better and less sensitive 
to the change in k compared to the FI distance metric. The 
only instance CH was observed to perform best was when k 
=3, at that point; it produced a lesser RMSE than the FI metric 
in the classification experiment. With these results, a 
combination of MI with TD between 7–9 and SS > 9000 
would produce optimal classification results.  

In the regression experiment, however, the least mean 
RMSE for all values of k are obtained with FI DM (Fig. 11a). 
The result obtained in the regression task presents CH as the 
most sensitive to k variation, such that optimal performance 
depends greatly on the use of small k values. This 
corroborates the submission of [18]  about choosing DM 
being able to affect the classification accuracy of kNN 
algorithm. In this study, CH negatively influenced the kNN 
algorithm's accuracy when the k value was varied upwards. 
For SS between 0≤SS≤500 in Fig. 11b; the increasing mean 
RMSE indicates a reduction in accuracy while the mean 
RMSE dynamics of the 501≤SS≤1000 indicate improved 
performance.  

Apart from these two sample sizes, others showed minimal 
or no interaction with the increase in k-neighbors. Although 
all considered DM showed variation in performance with 
increasing k values, Chebyshev had the worst performance 
both in the classification (Fig. 10c) and regression (Fig. 11a) 
experiments. Consequently, the almost parallel interaction 
pattern between the MI and MA distances observed in the 
classification experiment does not repeat in the regression 
task. Instead, EU distance maintained almost similar 
dynamics in its mean RMSE closeness to those of the MI 
metric. But at k=3, Euclidean distance performed better than 
MI distance. This means that the tendency of enhancing kNN 
performance is higher with MI distance as long as the value 
of k ≠ 3. 

IV. CONCLUSION 

This work has presented a data-driven approach to discover 
desirable parameters for enhanced performance of kNN using 
eleven k-Neighbors, five DMs, and four dataset properties. 
From the results, the type of task (regression or classification) 
is the main determinant of the accuracy of kNN followed by 
DM. Changes in the number of k neighbors affected the kNN 
performance arbitrarily in both regression and classification 
tasks. However, the combination of parameters yielded a 
significant pattern-driven effect on accuracy. From the results, 
optimal interaction was noticed when the TD range was in the 
range 1 ≤ TD ≤ 3 and 7 ≤ TD ≤ 9; leading to the conclusion 
that kNN performs better with a smaller TD, preferably 3 ≤k≤ 
14. Regarding SS interaction with k-Neighbors for optimal 
kNN performance, we obtained the best RMSE of 0.4 when 
SS > 9000 during classification and ranges from 7000 ≤ SS ≤ 
8000 in the regression task. The DM tuning experiment 
showed that MI distance had the least RMSE in the 
classification task, even though it had almost parallel readings 
with the MA distance metric. FI distance produced the best 
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performance for the regression experiments, while CH had the 
worst performance in the classification and regression 
experiments. 

The large gaps between the performances of kNN upon 
using different DM for the classification and regression 
experiments confirmed its importance to kNN's performance. 
However, combining DM and dataset characteristics produces 
interestingly significant patterns for achieving optimal kNN 
performance. These patterns would form the basis for 
weighing the performance of kNN against other notable 
classification and regression algorithms, including support 
vector machines, random forests, logistic regression, decision 
trees, and deep neural networks, as future works. 
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