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Abstract—Using time-frequency representation techniques, projecting 1D sEMG signals onto a 2D image space can help diagnose 

several muscle activities. The acquired sEMG signal can provide valuable representative information about the muscle activity firing 

rates during muscle contraction. Different phases of muscle activity can be discernible via the sEMG signals by extracting 

discriminating features. The behavior of muscle activity was acquired in measurements of five muscles, i.e., RF, BF, VM, ST, and FX. 

Previous attempts to visualize lower limb analysis to extract sEMG features adopted One-dimensional (1D) sEMG segments. This work 

proposes a comparative experiment between three time-frequency representation techniques. The three time-frequency representation 

techniques, scalogram, spectrogram, and persistence spectrum, were used to map muscles' (1D) sEMG signal straightening the knee. 

The two-dimensional (2D) projected images are then fed into a convolutional neural network (CNN) model for detecting knee 

abnormality. The experiments are performed via 10-fold cross-validation. The number of kernels is incremented along with model 

layers. The fully connected layers were adjusted according to the loss value. Besides, tuning the hyper-parameters of the dropout 

parameters and the ReLU activation function to verify optimal performance. This research shows that the scalogram image 

representation gives significantly better performance than the spectrogram and persistence spectrum in recognizing knee abnormality. 

In addition, this study may help in guiding the diagnosis of several human muscle activities via the sEMG signal. A more diverse of 

muscles can be further investigated and can be useful for future work to enhance the diagnosis accuracy. 

Keywords— sEMG; CWT; STFT; Scalogram; Spectrogram; Persistence spectrum; Lower Limb Analysis; muscle abnormality; time-

frequency representations. 
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I. INTRODUCTION

Surface Electromyography (sEMG) is a muscle activity 

recording that is detectable on the body surface upon the 

muscle [1]. It is considered that sEMG is produced by changes 
in active muscle fibers [2]. Recent detection techniques have 

explored the sEMG frequency responses during muscle 

actions [3]. The acquired sEMG signal can provide valuable 

information about various characteristics of muscle activity 

firing rates during voluntary isometric contraction [4]. 

Different muscle activity phases can be discernible via the 

sEMG signals by extracting discriminating features by deep 

learning classification schemes [5]. 

Few attempts have been made to improve lower limb 

analysis of the non-invasive surface electromyographic 

(sEMG) signals [6]. Previous methodologies have investigated 
sEMG features based on One-dimensional (1D) sEMG 

segments [7]. This work uses different time-frequency 

representation techniques to generate a two-dimensional (2D) 

spectrogram from (1D) sEMG segments. The two-dimensional 

(2D) spectrogram images are then fed into a convolutional 

neural network (CNN) model for detecting knee abnormality. 

This paper judges the performance of lower limb 

classification by setting up comparative experiments for three 

time-frequency representation techniques. The three time-

frequency representation techniques are scalogram, 

spectrogram, and persistence spectrum. The spectrogram 
generated by wavelet transform is known as a scalogram [8]. 

Continuous wavelets transform (CWT) preserves time shifts 

and time scale in terms of variable time-frequency resolution 

[9], as shown in Fig. 1. The spectrogram is generated by Short-

Time Fourier Transform (STFT) is a linear representation in 

terms of frequency and time that is convenient in the analysis 

of nonstationary multicomponent signals [10] as shown in Fig. 

2. The persistence spectrum is computed based on the time

percentage that a given frequency persists within the signal

[11]. It is a histogram-based spectrum represented by power

frequency [12]. The longer frequency presents in a signal, the
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higher its percentage of time and, thus, the brighter its color 

in representation [13], as shown in Fig. 3. 
 

 
Fig. 1  Scalogram image representation in terms of time and frequency for a 

sample sEMG signal 

 

 

Fig. 2  Spectrogram image representation in terms of time and frequency for 

a sample sEMG signal 

 

 

Fig. 3  Persistence spectrum image representation in terms of frequency and 

power spectrum for a sample sEMG signal 

 

The main objective of this paper is to develop a diagnostic 

approach that could help in detecting knee abnormality. Three 

movements associated with the knee muscle are analyzed: leg 

extension, gait from flexion of the leg up, and the sitting 

position. The sEMG signal is picked up through surface 

electrodes from the stump of the subject [14]. Data acquisition 

was conducted with four electrodes and the goniometer in the 

knee [5]. The targeted muscles are Recto Femoral (RF), 

Femoral Biceps (BF), Vastus Medialis (VM), Semitendinosus 

(ST), and Flexion at the knee (FX). Data augmentation was 

also performed using a time series generator to segment the 
samples and their targets [13]. The augmentation step resulted 

in 1056 records of sEMG segment signal for the five 

corresponding muscles. 

Due to the complexity and sensitivity to noise, different 

sEMG signals may not be discernible due to a lack of 

discriminative features [15]. Detecting muscle abnormality 

using deep learning by 1D CNN can extract features 

automatically from  ECG 1-D signal [16]. This detects 

features in the time domain while ignoring characteristics in 

the frequency domain [17]. The deep model can extract deep 

architecture that generally forms a multilevel of features from 
the projected images [18]. Unlike previous studies for muscle 

classification, which focused on using an additional feature 

extraction process to extract features [5], [19-20].  

The classification performance in processing 2-D images 

using the CNN model has been better than that in the 1-D 

time-domain signal. [21]. This research proposes using 

automatic deep feature extraction in learning the model 

without additional feature extraction. Projecting (1D) sEMG 

segments onto two-dimensional (2D) spectrogram images can 

help in developing a deep-learning model-based sEMG signal 

[12]. The mapped images can then be fed into a convolutional 
neural network (CNN) model for detecting knee abnormality. 

This approach improves lower limb analysis of sEMG signals 

through (2D) scalogram format rather than (1D) sEMG signal. 

Classification of knee abnormality through (2D) scalogram 

format can increase discrimination performance through the 

new automatic feature extracted via deep learning architecture 

[22]. 

A. Many researchers in the literature have demonstrated 

improving the classification of different activities based on 

different forms of acquired signal signals. Some of the 

literature methods classified different types of muscle 

movements based on sEMG signals. Jiang et al. [23] 
presented an sEMG signals analysis method using discrete 

Wavelet Transform (DWT) for detecting and characterizing 

signal patterns. They adopted traditional feature extraction 

techniques using an external feature extraction process. They 

applied wavelet function based on signal-to-noise (SNR) and 

the signals' mean square difference (RMSD) values. The raw 

signals were used to calculate Sym and Bior wavelets with 

four decomposition levels. The signal database was recorded 

from two triceps brachii, biceps, and upper arm muscles. 

Three levels were calculated with a maximum time of 3s of 

force contraction, i.e., low, medium, and high. They evaluated 
the performance of the algorithms of the SEMG signal. The 

result shows a suitable classification analysis of sEMG 

signals of different arm motions with an accuracy of 88.90%. 

However, their traditional framework still faces many 

problems. 
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Zhang et al. [7] employed the wavelet transform in based 

EMG signals in analyzing physical situations. The method 

uses traditional Fourier methods in signal processing and 

feature extraction. Their model was designed to characterize 

three movement patterns related to the forefoot: toes, tiptoe, 

and upwarp. To obtain the wavelet coefficients, they 

decomposed the original sEMG signal into five levels via the 

db4 wavelet. They trained the signals of each movement using 

the backpropagation network through gradient descent and a 

varying learning rate. They also tested the model with the rest 

of the samples and achieved an identification rate of 93.33%. 
Ibraheem et al. [24] investigated the diagnosis of 

Patellofemoral (PF) osteoarthritis based on sEMG signal. 

Their predictive model adopts extracting discriminative 

features in the classification process. sEMG signals were 

recorded for five muscles from healthy adult patients while. 

The targeted muscles' offset, onset, and time duration features 

were used to construct the discriminatory training model. This 

training model of muscle features is used to train the 

classifiers of several large margins. Their results show that the 

fast large-margin classifier reached higher results than 

support vector machines (SVMs) and other classifiers. Their 
model reached an average accuracy of 98.8%. 

These techniques adopted the traditional technique of 

extracting discriminating features of sEMG signals and 

constructing a classification model. Others adopted the novel 

technique, mapping the signal from one-dimensional space to 

a two-dimensional matrix. However, these employed other 

types of signals, i.e., EEG, ECG, and respiratory sound. Some 

of these publications are as follows: 

Xu et al. [25] used wavelet frequency-time transform and 

convolutional network to diagnose motor imagery (MI) EEG 

hand movement signals. They evaluated their model on 
Dataset from a Brain-computer interface (BCI) competition. 

They first performed preprocessing to remove the noise from 

1D ECG signals. Then, they used wavelet transform time-

frequency image to map 1D to 2D image space. The projected 

images were fed into a 2-Layer convolutional neural network 

of different sizes. The obtained accuracy reached 90% by 

evaluating the performance of the proposed approach on the 

BCI dataset. 

Byeon et al. [22] compared deep models and scalograms in 

characterizing electrocardiograms (ECG). They transformed 

signals of ECG into a frequency domain using a wavelet. 

They investigated using the ECG scalogram as input to deep 
convolutional networks to classify morphological imagery. 

They used pre-trained deep models in training data. They 

performed their experiments on Physikalisch-Technische 

Bundesanstalt (PTB)-ECG database for performance 

evaluation. They observed performance ranges from 0.73%—

0.94% using ResNet and AlexNet pre-trained models. 

Salles et al. [26] used a pre-trained Alexnet CNN to predict 

respiratory disorders. They investigated the conversion of 

respiratory sound segmented signal into scalogram format. 

These converted segments into scalograms are fed into the 

CNN pre-trained architecture for training and testing. They 
evaluated the model performance on a dataset of four different 

categories, i.e., lung sounds, normal, wheezes (monophonic 

& polyphonic), crackles (coarse and fine), and low-pitched 

wheezes (Rhonchi). Their proposed approach reached 79.04 

% to 81.27 % validation accuracy, up to 83.78 % accuracy. 

Kim et al. [27] proposed a user recognition method that 

utilizes deep ensemble networks in the recognition of three 

different signals, i.e., electromyogram (EMG), 

electroencephalogram (EEG), and electrocardiogram (ECG). 

They first performed preprocessing step for (1-D) ECG 

signals to remove noise or distortion by frequency filtering. 

Subsequently, they projected 1-D ECG signals onto a 2D 

image space format. The transformed 2-D ECG signals are 
fed into an ensemble-network-based user recognition system. 

They used the ECG database of  MIT-BIH NSRDB. This data 

was acquired with 128 sampling points for 18 samples. Five 

were men aged 26 to 45 years, and thirteen were women aged 

from 20 to 50 years. They partitioned data into 4,500 samples 

for training data, 2700 for data validation, and 1800 for 

testing. The results show that the ensemble networks give 

higher results than a single network. Particularly, the o 

ensemble networks performance reached up to 13% higher 

compared to the single network. 

Sannino et al. [19] investigated the recognition of 
shockable rhythms (ShR) based on the surface 

electrocardiogram (ECG). They used continuous wavelet 

transform (CWT) to recognize ShR from a signal. They 

employed converting (1D) ECG segments into 2D time-

frequency by time-frequency representations technique. They 

used CWT to feed CG signal into the convolutional neural 

network (CNN) model. A 12-layer CNN model was used for 

the automatic detection of ShR. The proposed algorithm was 

evaluated with 115 ECG records and achieved a performance 

accuracy of 98.82%. 

The techniques that adopted mapping the signal to the 2-D 
space employed other signal types, i.e., EEG, ECG, and 

respiratory sound. sEMG has a complex signal due to its 

sensitivity to several external artifacts that result from muscle 

motion or electrode location over the surface of the muscles. 

This research demonstrates mapping the time-frequency 

representations of the sEMG signal into the two-dimensional 

matrix.  

The proposed architecture feeds the 2-D representations of 

sEMG signal into the convolutional neural network (CNN) 

model for detecting lower limb muscle abnormality. This 

would open the door for detecting other muscle abnormalities 

during different movement types, which may be a potential 
clinical tool. The rest of this work is organized as follows. 

Section 2 demonstrates the diagnostic approach for detecting 

knee abnormality. Section 3 gives a brief description of the 

dataset used and the results reached. Finally, Section 4 

concludes the proposed approach. 

II. MATERIALS AND METHOD  

In this section, the steps of characterizing lower limb 

muscle abnormality using the time-frequency representations 
approach. The proposed characterization model consists of 

the subsequent steps, as shown in Fig. 4. 
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Fig. 4  The Lower Limb Muscle Abnormality Characterization Framework based sEMG 

 

A. sEMG Signal Acquisition 

Data was acquired via the placement of 4 electrodes (biceps 

femoris, rectus femoris, semitendinosus, and vastus medialis) 

on the muscle of interest and the goniometer in the knee. 

Thus, five-time series resulted corresponding to four 
electrodes on the targeted muscles besides the flexion at the 

knee. Each series contains five motion repetitions for each 

subject. Each data file contains five columns for the muscles 

being measured, i.e., Recto Femoral (RF), Femoral Biceps 

(BF), Vastus Medialis (VM), Semitendinosus (ST), and 

Flexion at the knee (FX). To visualize the behavior of the knee 

muscle, three movements were concerned: gait, flexion of the 

leg up, and leg extension from a sitting position. Typical 

sEMG signals of normal and abnormal knee acquired from 

five targeted muscles are shown in Fig. 5,6,7,8,9. 
 

  
Fig. 5  The typical sEMG signals of the (A) abnormal knee and (B) normal acquired from Biceps Femoris muscle (BF). 

 

  

Fig. 6  The typical sEMG signals of the (A) abnormal knee and (B) normal acquired from Rectus Femoris muscle (RF). 
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Fig. 7  The typical sEMG signals of the (A) abnormal knee and (B) normal acquired from Vastus Medialis muscle (VM) 

 

  
Fig. 8  The typical sEMG signals of the (A) abnormal knee and (B) normal acquired from Semitendinosis muscle (VM) 

 

  
Fig. 9  The typical sEMG signals of the (A) abnormal knee and (B) normal acquired from flexion at the knee  (FX) 

 

 

B. Signal Preparation and Pre-processing 

The raw data files contain 22 samples. Eleven of them are 

normal, and the other 11 with knee pathology. Each subject 

has three different shots. The resulting dataset contains 66 

records for knee Abnormality along with normal ones in terms 

of five attributes describing the corresponding muscles 
measured. For each muscle attribute, the data are gathered in 

a specified muscle data file. Thus, the resulting data files are 

10 muscle data file for muscle's normal and abnormal 

measurements. After data preparation, a preprocessing step is 

applied to remove any artifacts, so that minimum signal loss 

occurs [18]. The dataset was also augmented using a time-

series generator to extend data samples and their targets [9]. 

The augmentation step resulted in 1056 records of sEMG 

sequence signal in terms of the five corresponding muscles. 

Figure (10) shows the preparation and preprocessing of the 

proposed model  

 
Fig. 10  The algorithm for the preparation and preprocessing steps 
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C. 2-D Mapping Generation using Time-Frequency 
techniques 

As reported in the literature review, extracting 

discriminative features from 1-D ECG signals ignores their 

frequency domain characteristics and lacks discriminatory 
features [6-7], [23]. Moreover, performing the classification 

via 2D images format has reached higher than using the 1D 

time-domain signal. Thus, mapping the 1D sEMG signal in 

time series into 2D space can help explore all discriminatory 

features in both frequency and time domains [11], [16], [22], 

[25], [27]. The knee muscle time-domain segments were 

mapped into 2D time-frequency space using three time-

frequency representation techniques. The three time-

frequency representation techniques are scalogram, 

spectrogram, and persistence spectrum.  

1) The scalogram is generated by continuous wavelet 
transform (CWT). CWT preserves time shifts and time scales 

in terms of time-frequency resolution [11]. Wavelet transform 

can analyze the sEMG signals in the time and frequency 

domain and defined by the mother function given by (1) [26]: 
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The wavelet function can be shifted and scaled by a and b 
parameters. The continuous wavelet transform (CWT) can be 

obtained by mapping the wavelet function [25]. The scale 

parameters of the wavelet function can be used to dilate the 

time causing the opposite frequency domain effect as given 

by (2) [26]:  

 ���, �� =  � ��,� ���  ������ =  ��,� 
�

� � � (2) 

In CWT, the scale parameter is equivalently proportional 

to the time scale and inversely proportional to the frequency 

scale [15]. Thus, the scalogram is better at analyzing sEMG 

signals thanks to the adaptive characteristic of wavelet 
transform [22]. The following figure shows 2D time-

frequency map examples that were generated from the sEMG 

segments for one of five muscles; RF in the two cases is 

normal and abnormal, as shown in Fig. 11.  

 

  

Fig. 11  The scalogram was generated from sEMG for (A) abnormal knee and (B) normal RF muscle. 

 

The scalogram figure includes discriminative 

characteristics in both frequency and time domains [11]. 
Moreover, the obtained time-frequency map of each sEMG 

segment was fed into the subsequent CNN layers to extract 

the deep features automatically and accurately to classify 

normal and abnormal knees. 

The scalogram is the absolute value of the wavelet 

coefficients of the sEMG signal [10]. It can transform the 

signal from the frequency to the time domain [17]. The 2-D 

matrix from the 1D signal can then be analyzed on 

multiresolution. The scalogram representation can be more 

comprehensive than the time domain, which is limited and 

cannot represent infinite time [8]. The frequency and time-
space representation within the scalogram shows the signal 

distribution in terms of phase and frequency so that complex 

signals can be analyzed efficiently and easily [11].  

In other words, the scalogram representation helps to 

visually determine the signals at various scales and 

frequencies and investigate various hidden features in the 

frequency–time-domain [22]. The mapped scalogram image 

format is then fed into subsequent CNN layers, which reveal 

better performance in multiresolution imagery classification 

[11]. 

2) The spectrogram is the squared magnitude generated by 

Short-Time Fourier Transform (STFT) [16]. STFT is a linear 
frequency-time representation of a signal that maps 1-D time 

signal into 2-D time and frequency representation [18]. Thus, 

it can also help in analyzing and synthesizing sEMG signals. 

STFT gives the spectral information at diverse time signal 

segments, providing an estimation of time and frequency and 

can be defined by (3) [2]: 

 �������, ��  =  �   �!� ��! − ��#�$% &��!
�

� �  (3) 

where   �!� denotes the sEMG signal,  ��! − ��  denotes the 

observation window. The variable � slides the window over 

the signal   �!�. The spectrogram, the squared magnitude of 

the can be expressed as [18]: 

 ����, ��  =  '�   �!� ��! − ��#�$% &��
� �

'
$

�! (4) 

where   �!� denotes the sEMG signal,  ��! − ��  denotes the 

observation window. The variable � slides the window over 

the signal   �!�. 

Spectrogram can be used to visualize the energy 
distribution and power of the signal along with the frequency 

B B 
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and time domain [15]. In sEMG processing, energy 

distribution can isolate muscle activation from the baseline 

[28]. The mapped spectrogram image format is also used as 

input to CNN of deep learning to classify knee muscle 

abnormality. The following figure shows 2-D time-frequency 

map examples generated from the sEMG segments for one of 

five muscles; RF in the two cases is normal and abnormal, as 

shown in Fig. 12. 
 

 

Fig. 12  The spectrogram was generated from sEMG for (A) abnormal knee and (B) normal of Rectus Femoris (RF) muscle. 

 

  

Fig. 13  The persistence spectrum generated from sEMG for (A) abnormal knee and (B) normal Rectus Femoris muscle. 

 

3) The persistence spectrum is another method for the 

frequency analysis of signals. It is computed based on the time 

percentage that a given frequency persists within a signal [29]. 
The persistence spectrum sharpens the localization of spectral 

estimates and can also shrink the time-frequency maps around 

instantaneous frequency curves [30]. This method is 

especially appropriate for tracking and extracting the signal's 

ridges of time-frequency [13]. The following figure shows a 

2D time-frequency map generated from the sEMG segments 

for one of five muscles; RF in the two cases is normal and 

abnormal, as shown in Fig. 13. 

Converting signals into the frequency domain to overcome 

the sensitivity of sEMG signals to noise has been done using 

three frequency analysis techniques. Feeding the mapped 

image format to the convolution network provides meaningful 

sEMG signal classification.  

D. Lower Limb Abnormality Characterization 

This work explores the classification of lower limb 

abnormality via deep features of 2D sEMG frequency-time 

space with various diversity levels. The developed 2D deep 

CNN model can achieve more accurate classification than in 

classical learning approaches via manually extracted features. 

Novel deep learning techniques can provide a discriminative 

model by adjusting all information about the input data. Thus, 
defining the features manually for sEMG samples disturbed 

by various noise types is useless. The comprehensive features 

via the hidden conventional deep learning layers can 

efficiently generate implicit knowledge schemes for a more 

reliable classification basis [16]. 

Based on the CNN architecture, this work develops a CNN 

model of 12- layers to characterize sEMG segments into 

normal and abnormal ones automatically. The CNN model is 

developed to efficiently utilize the 2D structure of the mapped 

input images to perform binary classification. The proposed 

deep model is designed to input the mapped images format of 
sEMG frequency-time instead of time segments of sEMG. 

The scalogram, spectrogram, and persistent spectrum formats 

feed the CNN model in a 2D matrix.  

Four convolutional layers are designed after the input 

layer; each has a correspondent pooling layer. The 

convolutional layers are then followed by three fully 

connected layers for accurate learning and deep feature 

extraction. The sizes of the convolution kernel, the strides, 

and the feature map are given in Fig. 14.  
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Fig. 14  The proposed 2D CNN model for detecting abnormal knee muscle 

 

Moreover, the training of the deep model is mainly 

dependent on fine-tuning hyperparameters to overcome the 

problem of overfitting [6]. Parameter fine-tuning is adjusted 

to optimize the training and avoid the overfitting problem. 

The experiments are performed using 10-fold cross-validation 

for all eight models on the dataset. The number of kernels was 

designed increasingly along with model layers. Besides, the 

fully-connected layers were performed according to the loss 
value to verify optimal performance. Moreover, the dropout 

parameter was set to 0.5 for all CNN layers to avoid 

overfitting problems, and the activation function used was 

ReLU.  

The proposed architecture and the hyper-parameters were 

adjusted using 10-fold cross-validation across experiments. 

Moreover, the mapped image format was randomly shuffled 

and divided into ten subsets. Ninety percent of the sEMG 

maps were used as training sets, and the remaining ten percent 

of the images were used as testing sets. Moreover, 80% of the 

training images were used to train the proposed deep model, 
and the remaining 20% was used for validating the model. 

Particularly, the performance of the proposed CNN models 

was evaluated using the sEMG database by calculating 

performance metrics such as accuracy (ACC), loss, validation 

loss (Val loss), and validation accuracy (Val acc). The 

performance metrics are calculated based on the true negative 

(TN), false negative (FN), true positive (TP), and false 

positive (FP). 

III. RESULTS AND DISCUSSION 

A. Experimental Environment 

In this study, different environments were experienced to 

reach the proposed lower limb muscle abnormality 

characterization framework: 

Scalogram, spectrogram, and persistence spectrum creation 

were done using the MATLAB 2017 Time-Frequency Gallery. 

Besides, reading data and noise removal. Deep learning 

experiments were performed using google (Colab) 

Collaboratory. Colab is a GPU-centric application for 

accelerating deep learning. The runtime hardware 

configuration that was used to execute the model was 12 GB 
RAM, GPU Nvidia K80, and 2496 CUDA cores. 

B. Experimental Results 

For evaluating results, 22 samples of knee pathology each 

have three different shots. The dataset has 66 records for knee 

abnormalities and normal ones in terms of five attributes 

describing the corresponding muscles measured. For each 
muscle attribute, the data are gathered in a specified muscle 

data file. The augmentation step resulted in 1056 records of 

sEMG sequence signal for each of the five muscles measured. 

A sampling frequency of 1000Hz was used for acquiring Real-

time Datalog to the internal computer storage. 

Various performance metrics are adopted to evaluate the 

significance of the proposed lower limb characterization 

framework. The accuracy (Acc), loss, Validation Loss (Val 

Loss), and Validation Accuracy (Val Acc) is calculated based 

on the true negative (TN), true positive (TP), false negative 

(FN), and false positive (FP). 

TABLE I 

THE PERFORMANCE EVALUATION IN TERMS OF ACCURACY FOR THE THREE 

COMPARATIVE 2D- INPUT FORMATS TO CNN  

2D- input 

format to CNN  
Accuracy 

RF BF VM ST FX 

Scalogram  0.865 0.863 0.845 0.893 0.857 

Spectrogram 0.839 0.834 0.865 0.814 0.835 

Persistence 

Spectrum 

0.776 0.771 0.886 0.764 0.847 

TABLE II 

THE PERFORMANCE EVALUATION IN TERMS OF VALIDATION ACCURACY  FOR 

THE THREE COMPARATIVE 2D- INPUT FORMATS TO CNN  

2D- input 

format to CNN  
Validation Accuracy 

RF BF VM ST FX 

Scalogram  0.824 0.844 0.832 0.832 0.787 

Spectrogram 0.803 0.886 0.829 0.803 0.787 

Persistence 

Spectrum 

0.718 0.741 0.867 0.731 0.775 

 

To evaluate the model's performance, a comparative 

experiment is performed for three time–frequency 

representation techniques: scalogram, spectrogram, and 

persistence spectrum. Table I and II show the lower limb deep 
model classification accuracy and loss using different 2D input 

format for sEMG for each of the five knee muscles. 
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Tables III and IV show the lower limb deep model 

validation accuracy and loss using different 2D input formats 

for sEMG. 

TABLE III 

THE PERFORMANCE EVALUATION IN TERMS OF LOSS  FOR THE THREE 

COMPARATIVE 2D- INPUT FORMATS TO CNN  

2D- input format to 

CNN  
Loss 

RF BF VM ST FX 

Scalogram  0.111 0.157 0.218 0.268 0.261 

Spectrogram 0.214 0.318 0.221 0.101 0.156 

Persistence Spectrum 0.147 0.226 0.264 0.171 0.258 

TABLE IV 

THE PERFORMANCE EVALUATION IN TERMS OF VALIDATION LOSS FOR THE 

THREE COMPARATIVE 2D- INPUT FORMATS TO CNN  

2D- input format to 

CNN  
Validation Loss 

RF BF VM ST FX 

Scalogram  0.212 0.216 0.279 0.135 0.287 

Spectrogram 0.244 0.260 0.284 0.260 0.213 

Persistence Spectrum 0.217 0.276 0.175 0.173 0.274 

C. Discussion 

The comparison measurements are listed in table V. The 

results of the proposed deep model using scalogram frequency 

representation are ACC 86.4%, Val Acc 86.4%, loss 0.203, 

and Val Loss 0.225. While the results of the proposed deep 

model using spectrogram frequency representation are ACC 

83.7%, Val Acc 82.1%, loss 0.202, and Val Loss 0.248. On the 
other hand, the results of the proposed deep model using 

persistence spectrum frequency representation are ACC 

80.8%, Val Acc 766%, loss 0.211, and Val Loss 0.223.  

TABLE V 

THE AVERAGE PERFORMANCE  FOR THE THREE COMPARATIVE 2D- INPUT 

FORMAT TO THE CNN MODEL 

2D- input format 
to CNN  

ACC Val Acc Loss Val Loss 
 

Scalogram  86.4% 86.4% 0.203 0.225 

Spectrogram 83.7% 82.1% 0.202 0.248 

Persistence 

Spectrum 

80.8% 76.6% 0.2113 0.223 

 
Fig. 15  The loss curves for training and validation over epochs 

 

The results of the proposed model using scalogram 

representation outperform other frequency representation 

techniques. The scalogram frequency representation method 

shows higher results because of its ability to multi-scale 
analysis and avoids selecting the window size as in the STFT 

method. The loss curves for training and validation are 

constructed to visualize the performance for the proposed 

lower limb abnormality detection model. Fig. 15 displays the 

loss curves for training and validation over epochs, and the 

graph figures a stable evaluation score over the training 

epochs.  

IV. CONCLUSION 

This paper proposes a comprehensive sEMG-based model 

detecting lower limb muscle abnormality. The developed 

model mainly depends on mapping the sEMG signal into 2D 
space and then feeding it to the CNN deep model. Detecting 

knee muscle abnormality is done by extracting deep features 

during CNN training. The performance of lower limb 

classification was evaluated by setting up a comparative 

experiment using three time-frequency representation 

techniques. Scalogram, spectrogram, and persistence spectrum 

generate 2D image format from sEMG signal. The proposed 

model's results using scalogram representation outperform 

other frequency representation techniques. The scalogram 

frequency representation method shows higher results because 

of its ability to multi-scale analysis and avoids selecting the 
window size as in the STFT method. The 2D image 

representation can help explore all informative features in both 

frequency and time domains. This technique could be a 

potential clinical tool for detecting other muscle abnormalities 

during different types of movement for future work. 
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