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Abstract— Dengue hemorrhagic fever (DHF) is a common disease in tropical countries such as Indonesia that is often fatal. Early 

predictions of DHF case numbers help reduce the risk of community transmission and help related authorities develop prevention plans 

and strategies. Previous research shows that temperature, rainfall, and humidity indirectly affect DHF spread patterns. Therefore, this 

research uses and compares three machine learning models—restricted Boltzmann machine-backpropagation neural network (RBM-

BPNN), artificial neural network-genetic algorithm (ANN-GA), and artificial neural network-particle swarm optimization (ANN-

PSO)—to predict DHF case numbers in DKI Jakarta, the capital of Indonesia, which is in the DHF red zone. RBM and PSO are used 

to calculate optimal initial weight and bias before starting the prediction stage with ANN; meanwhile, GA updates weight and bias 

during the backward pass in ANN. The data includes temperature, rainfall, and humidity, plus previous DHF case data for five districts 

in DKI Jakarta from Jan. 6, 2009, to Sept. 25, 2017. We used Arima, Autocorrelation, and Pearson correlation for pre-processing data. 

The DHF case data fluctuates strongly and requires the moving averages method. The data consists of 70% training data and 30% 

testing data. The results show that each district requires different model architectures for the best predictions. `The best RMSE 

prediction of DHF cases with RBM-BPNN in Central Jakarta is 3,78%; the best RMSEs using ANN-GA in North and East Jakarta are 

5,65% and 5,99%, respectively. The ANN-PSO model had the largest RMSE value in every district, with an average of 8,43%.  

Keywords—Dengue hemorrhagic fever; machine learning; restricted boltzmann machine – backpropagation neural network; artificial 

neural network – genetic algorithm; artificial neural network – particle swarm optimization. 
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I. INTRODUCTION

Dengue hemorrhagic fever (DHF) is a contagious disease 
that affects humans and is spread by the Aedes aegypti 

mosquito, the primary vector in some parts of the world, and 
A. albopictus, which is a secondary vector [1]. DHF is most
common in tropical countries such as Indonesia and is often
fatal. According to Maula et al. [2], Southeast Asia and the
western Pacific are where the majority of DHF cases are
found. Indonesia has one of the highest DHF case numbers in
the world due to its tropical climate, which is ideal for
mosquito growth. The overall case-fatality and morbidity
rates for DHF in Indonesia are relatively high [3]. Therefore,
an outbreak in a densely populated city will adversely affect
the social life and economy in that city. The Health Ministry

[4] announced that in 2019, twice as many DHF cases were
recorded in Indonesia (over 110,000) than were the previous
year, with the province of DKI Jakarta having the fourth-
highest number of cases. In DKI Jakarta, the Health
Department recorded 971 DHF cases in the first quarter of
2020, with West Jakarta having the highest cases with 269
cases [5]. Some of the factors that affect the spread of DHF
include rainfall [6], air temperature [6], humidity [6], soil type
[6], elevation [7], population density [7], and amount of
sunlight [8]. According to Lai [8], climate factors play a
crucial part in the transmission cycles of DHF. Climate can
also help or hinder the growth and development of mosquitoes
[7]. According to Herath et al. [9], humidity affects
mosquitoes as it determines the resilience of the tracheas
through which they breathe. Based on this explanation, much
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research has been done to predict the number of DHF cases 
using weather variables. 

Machine learning is a popular tool for prediction-making. 
It uses data for learning and uses the results to obtain 
information. Machine learning algorithms are ideally suited 
for such tasks. Indeed, they have a profound impact across a 
wide range of application fields because of their ability to aid 
learning and discovery. One such complex system is the 
interplay of human, climate and mosquito dynamics that give 
rise to the transmission of mosquito-borne diseases such as 
dengue [10], and yields information in the form of a 
prediction of DHF case numbers. One such form of machine 
learning research was carried out in Colombia by Zhao et al. 
[1], comparing artificial neural networks (ANN) and random 
forrest to predict the probable number of DHF cases based on 
environmental and meteorological conditions predictors. 
Another research by Herath et al. [9] involved designing an 
ANN model based on the effects of average temperature and 
humidity with a lag of 1-4 weeks, cumulative rainfall with a 
lag of 4 weeks, and the number of previously reported cases 
to predict the number of DHF cases in Sri Lanka. 

The most often used machine learning model is an artificial 
neural network (ANN) with a backpropagation (BP) 
algorithm, also referred to as a backpropagation neural 
network (BPNN). BPNN is adapted from the mechanism 
underpinning the human nervous system and is highly 
effective in studying large-scale input data [9]. This 
adaptation is the mechanism by which an ANN transmits 
information between neurons through weighted connections. 
However, the main drawback of a BPNN is that it randomly 
determines the initial weight of connections [11]. This can be 
overcome with pre-training using restricted Boltzmann 
machines (RBM) [12] during the early training stage before 
training with the BPNN. 

Another problem with implementing an ANN that can be 
encountered during predictions is its slow convergence with 
the use of gradient descent-based backpropagation in the 
training process, and it is likely to be stuck in a local 
minimum. Therefore, the use of well-developed metaheuristic 
methods can yield a solution. One of these is particle swarm 
optimization (PSO), as proposed by Kennedy and Eberhart. 
PSO algorithms are widely used for training neural networks. 
In addition, PSO-based ANN has a superior training 
performance with faster convergence rates and better 
prediction capabilities than any traditional ANN [13]. 

Chiang et al. [14] aver that ANN-BP does not often 
determine the global minimum of an error function, and one 
of the methods that can determine this during the ANN 
training process is the genetic algorithm. However, according 
to Chiang et al. [14], its computational capabilities are slower 
and more laborious due to finding the fitness value for every 
chromosome of every generation. One of the researchers who 
used ANN-GA for the dengue fever problem is Sabara et al. 
[15], who used ANN-GA to classify the diagnosis of dengue 
fever in Tegal City, Indonesia, who used ANN-GA to predict 
a DHF outbreak in Malaysia. 

Based on the increasing number of DHF cases in DKI 
Jakarta, this research compares the implementation of three 
machine learning methods—RBM-BPNN, ANN-GA, and 
ANN-PSO—to predict the number of DHF cases in DKI 
Jakarta (excluding Kepulauan Seribu Regency). In RBM-

BPNN, RBM is used in pre-training, or RBM precedes 
BPNN. In ANN-PSO, PSO is used to calculate optimal initial 
parameters before moving on to the prediction stage with 
ANN. Finally, unlike the previous two models, ANN-GA 
updates weight and bias during the backward pass. To that 
end, two forms of secondary data were used: the daily weather 
data in each district in DKI Jakarta, as obtained from the 
Department of Meteorology, Climatology, and Geophysics 
from Jan. 1, 2008, to Dec. 31, 2018, and the daily number of 
DHF cases from Jan. 1, 2008, to Dec. 31, 2017, as obtained 
from the Epidemiology Surveillance Section website [16]. 

This article is presented as follows. Section II describes 
the material and methods (RBM-BPNN, ANN-GA, and 
ANN-PSO). Section III, the proposed method, includes 
determining the pre-processing data, smoothing data, and 
hyperparameters. The results and discussion are presented in 
section IV. The result is divided into two parts: first, the 
results are based on each model's evaluation in five districts. 
Second, we use some visualizations to compare the DHF case 
predictions obtained from each best model in every district. 
Finally, section V shows some conclusions. 

II. MATERIALS AND METHODS 

A. Materials 

This research used two sets of secondary data. One of these 
is the daily weather data from the Meteorology, Climatology 
and Geophysics Agency (BMKG) as recorded from five 
observation stations, one for each district in Jakarta: Halim 
(East Jakarta), Tanjung Priok (North Jakarta), Pondok Betung 
(South Jakarta), Kemayoran (Central Jakarta) and 
Cengkareng (West Jakarta) from Jan. 1, 2008, to Dec. 31, 
2018. These data consist of average temperature (in degrees 
Celsius), rainfall (in millimeters), and humidity (%). The 
other data set is the daily DHF case number, as taken from the 
website of the Epidemiology Surveillance Section of the 
Health Department of DKI Jakarta [16]. This data is the 
number of DHF sufferers as recorded in 163 hospitals in DKI 
Jakarta, sorted into the same five districts as the first data set, 
and spans the period from Jan. 1, 2008, to Dec. 31, 2017. 

B. Artificial Neural Network and Backpropagation 

An artificial neural network (ANN) is a machine learning 
model that adapts a biological neural network [17]. There are 
several types of ANN [17]. This research used feedforward 
neural networks (FFNN) in which the network connects to the 
output without an inner loop. Specifically, a subset of FFNN 
is called the multi-layer perceptron (MLP). MLP is an ANN 
with a hidden layer with a non-linear activation function 
between the output and input layers. An ANN with a 
backpropagation (BP) algorithm is called a backpropagation 
neural network (BPNN). backpropagation is used for weight 
updating and bias in ANN. 

C. Restricted Boltzmann Machine – Backpropagation 
Neural Network 

RBM is a form of unsupervised learning and means of 
neural network learning that can detect and extract input data 
features for use in pre-training prior to supervised learning 
[12]. RBM uses a visible layer as the input layer and a hidden 
layer. Both layers are used for determining the connection 
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weight and initial bias for BPNN. In mechanical statistics, 
RBM uses the concept of energy in which energy is related to 
the probability of the connection between units in the visible 
and hidden layers. In RBM-BPNN, pre-training with RBM is 
used to obtain the connection weight between the visible and 
hidden units as well as the bias for the hidden unit. Connection 
weight and bias are used to initiate the BPNN process. The 
RBM-BPNN scheme is shown in Fig. 1 below: 

 

 
Fig. 1  RBM-BPNN Scheme 

 

The general architecture of an RBM is shown below in Fig. 2. 
 

 
Fig. 2  The general architecture of an RBM [18] 

 

Based on Fig. 2, the RBM has two layers: a visible layer ���  and a hidden layer �ℎ�  where �� � ���, �	, �
, … , ��� 
and ℎ� � �ℎ�, ℎ	, ℎ
, … , ℎ
� . While �  and �  are the vector 
biases for the visible and hidden units, respectively. 
According to Fig2, � � ��� and � � ���. Therefore, �� � � 
for every �  and �� � �  for every �, � � 1,2, . . . , �, � �  1, 2,. . . , �. These initial bias values are the ones most often used 
[19]. The bias values for each neuron can differ in line with 
the learning process. The connection between the visible (��� 
and hidden units (ℎ�� is a line with a connection weight of ���.  

The probability of the connection between units in the 
visible and hidden layers can be calculated using the 
following energy function [12]: 

���� , ℎ�� � � � ����



��� � � ��ℎ�
�

��� � � � �����ℎ�
�

���



��� , (1) 

where � is the number of nodes in the visible layer, and � is 
the number of nodes in the hidden layer. In RBM learning, 
equation (1) must be minimized; therefore, we must find data 
for � and ℎ that minimizes equation (1). 

This requires implementing the positive and negative 
phases in Gibbs sampling as follows [12]: 

1) Input data �� � ���, �	, �
, … , ���  consists of � �

4 variables: temperature, rainfall, humidity, and 
previous incident numbers. Randomly determine the 
connection weight ��� , bias ��  and ��  with a value 
between 0 and 1. 

2) Positive Phase 
Let   be an iteration for Gibbs sampling starting from  � 0 , where � � ��"� . Calculate #���  for every � 
[27,28] as follows: 

#$ℎ��"� � 1%&' � ()*∑ ,-./-0-121 3 ()*∑ ,-./-0-12 . (2) 

After that, take a sample ℎ��"�using Gibbs sampling with 
the following rule: 

ℎ��"� � 41, #$ℎ��"� � 1%&' 5 6��"�,0, #$ℎ��"� � 1%&' 7  6��"�, (3) 

where 6��"�
 is the hidden unit generator value at  �0 which was randomly determined on (0,1).  

3) Negative Phase 
Calculate #�ℎ�  using the previous results of sample ℎ��"�, so that ℎ� = ℎ��"�, for every � using the following 
formula 

#��� � 1|9� � (:*∑ ,-.;.<.121 3 (:*∑ ;.,-.<.12 . (4) 

Henceforth, take a sample �����using Gibbs sampling 
based on the following rules: 

����� � 41, #��� � 1|9� 5 =��"�,0, #��� � 1|9� 7 =��"�, (5) 

where =��"�
 is the initial visible unit value at  �0 which was randomly determined on (0,1). 

4) The last step of Gibbs sampling is to determine the final 

reconstructed value of ℎ���� using equation (3) with  �1,  and the results of  ����  as the value of � .  After 
obtaining the required values of �  and ℎ , update the 
connection weight ���, bias ��, and ��using the gradient 
ascent method: 

���> � ��� 3 ?$���"�ℎ��"� � �����ℎ����', (6) ��> � �� 3 ?$���"� � �����', (7) ��> � �� 3 ?$ℎ��"� � ℎ����', (8) 

where ? is the learning rate. 

Resume the process with BPNN training process consisting 
of the forward and backward passes as follows: 

1) Forward Pass: 
Calculate the hidden unit @� as follows:  
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@� � A$B�' � A C� D���� 3 ��



��� E ,
@� ∈ �0,1� 

(9) 

where ��� is the initial weight value for the connection 
between the input and hidden layers, which uses ���>  
from RBM, and �� uses the hidden unit bias value from 
RBM ���>� . The function A  is a sigmoid function 
determined as follows: 

A�D� � 11 3 (GH , D ∈ ℝ. (10)

Calculate the output unit J values as follows: 

J � A�BK� � A C� @��K� 3 �

��� E ,
@� ∈ �0,1� 

(11) 

where �K� is the initial weight value for the connection 
between the hidden and output layers, and � is the output 
unit bias value. Both �K�  and �  are randomly 
determined on (0,1). 

2) Backward Pass:   

A Calculate the changes in connection weight ���, bias �� with the following gradient descent: 

���> �  ��� � α MN�O, P�M��� , (12)

��> � �� � α MN�O, P�M�� , (13)

 
where N�O, P�  is the loss function (RMSE) in which N�O, P� �  �A�BK� � J�	  and J  is the target data,  � �1, 2, . . . , �, � �  1, 2, . . . , �. In this case, the target data 
is the incident numbers. Repeat the BPNN training 
process until an optimal output is obtained. Note that the 
value of ��>  in equation (7) is not used in the process 
since the BPNN model does not need a bias vector in the 
input layer. 

D. Artificial Neural Network with Genetic Algorithm 

Unlike RBM-BPNN, ANN-GA updates weight and bias 
during the backward pass. In ANN training with a GA, a gene 
in a genetic algorithm is represented with weight and bias and 
consists of multiple chromosomes, while an individual 
chromosome is represented as a matrix that already has a 
weight and bias that is used in the existing neural network. 
The fitness function is the loss function of the ANN. The end 
goal of using GA in ANN training is to determine the best 
individual (chromosome) with the smallest fitness value. The 
fitness value is determined by RMSE.  

Based on the data used, ANN-GA training follows the 
procedure outlined below: 

1) Input an Q ×  �  matrix D  and a vector   J �[J�, J	, … , JT]V  , where n is the number of input 

variables, and N is the amount of data. Matrix D  
consisting of variables of temperature, rainfall, 
humidity, and previous incident numbers. Data target J 

consists of the numbers of incident data. 
2) Determine the population size, the number of 

generations, retain rate (#), crossover probability (W)), 
and mutation probability (W�). 

3) Set the number of generations to 0. 
4) Randomly determine the initial population (every 

chromosome has a matrix with weight � �[��, �	 , … , �
]V  and a bias parameter �" ), where n is 
the number of neurons in the input layer. 

5) Use a forward pass on the ANN for every chromosome 
in the population, where � � 1,2, . . . , Q: 

X� � � ��D��



��� 3 �", 
(14)@� � A�X��, (15)

where the activation function A is a sigmoid function as 
in equation (10). Furthermore, determine the prediction 
error of @�  on target  J  with 

YZB� � [1Q ��@� � J��	T
��� . (16) 

6) Use a backward pass on the ANN by updating the weight 
and bias with a genetic algorithm begin with selecting 
the numbers of chromosomes for the next generation 
based on the fitness value (RMSE) according to the 
retained value of p (truncation selection [20] is used 
here). Place the results of the chromosome selection in 
the reproduction pool. After that, create a new 
population by conducting a gene evolution through 
crossover and mutation. The crossover operation uses 
discrete crossover [21] and uses the crossover 
probability value of W) � 0.7.  The mutation operation 
uses uniform mutation [22] on the chromosomes 
resulting from crossover and uses the mutation 
probability value of W� � 0.25. Repeat the process until 
the reproduction pool is the same size as the initial 
population before selection. 

7) Set generation = generation + 1, and repeat from step 5, 
until the required number of generations has been 
reached.  

8) Determine the best chromosome that has the best weight 
and bias values to be used in the forward pass. 

After ANN-GA training, continue the process with a 
forward pass on the testing data using the weight and bias 
from the best chromosome from the training process. 

E. Artificial Neural Network – Particle Swarm Optimization 

RBM The basic concept of the PSO algorithm is a 
simulation of a swarm of animals. As with RBM, PSO is used 
to calculate optimal initial weight and bias before moving on 
to the prediction stage with ANN. In the PSO algorithm, we 
need some parameters: inertia weight ( ^ ), acceleration 
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coefficient of the cognitive component ( �� ), and the 
acceleration coefficient of the social component (�	), where 
both �� and �	 are positive. In this research, the ranges for ��, �	  and ^  are 0.5-1.5, 0.5-2, and 0.4-1.2, respectively. The 
optimal weight and bias values are the ones linked to the PSO 
output with the best fitness function (RMSE) value. The other 
parameters in the PSO algorithm are _�  and _	  which are two 
random uniformly distributed numbers in [0, 1]. The number 
of hidden neurons and bias in an ANN must be determined 
previously. Based on the data, the ANN-PSO procedure is as 
follows [23]: 

1) Input the numbers of data as the swarm population (Q), 
number of iterations (`), inertia weight (^), acceleration 
coefficient of the cognitive component (��), acceleration 
coefficient of the social component (�	), and the target 
variable data a in the DHF case data. The number of 
particles in one population is dependent on the number 
of variables on weather data and the target variable a, 
and the architecture of the corresponding ANN. 

2) For every particle in the population, in each iteration   
do step from 3-9 below. 

3) Randomly create all weight value set and bias value set 
in PSO model and denoted as the position components 
(b�V�). Initialize the speed component (=�V�) randomly. =�V�are called the initial positions for every particle. 

4) For each particle j, calculate the following formulas by 
using the c � d��, �	, … , �efg, which is weather data 
and DHF case data, and the target variable data a is the 
DHF case data. The initial values for �� , � � 1,2, . . . , h 
is randomly selected. 

X� � � ���� 3 �"
e

��� , (17)

@� � A$X�', (18)

where �"  is the bias parameter and ��  is the weight and A is the sigmoid function. 
Henceforth, evaluate the objective function i�W��, 
which are the prediction results of @� on target @j� using 
the following RMSE:  

 

i$W�', � [1Q �$@� � @j� '	T
V�� , (19) 

 where N is the amount of data.  
5) Determine the particle best ( W:klV ) and global best 

( Wm:klV ) parameters. W:klV  is the position of the � th 

particle that yields the smallest evaluation value of the 
objective function i�W��  until the � � 1� th iteration; Wm:klV is the best position among all particles that yields 
the smallest value of the objective function W:klV . For the 
first iteration, W:klV  is the initial position of every 
particle. 

6) Create two random vectors _�  and _	 . The number of 
random vectors is equal to the number of particles. 

7) Update the speed =�V� and position b�V� components on 
the tth iteration for every individual as follows:  

=�V� � ^�V�=�VG�� 3 n��_�$W:klV � b�VG��'3 �	_	$Wm:klV � b�VG��'o, (20) b�V� � b�VG�� 3 =�V�. 
 (21) 

The initial individual speed =�"� was chosen randomly. 
 Use the results of step 7 to update the weight and bias 
parameter. 

8)  Repeat steps 3-7 until an optimal result is obtained or 
the required number of iterations T has been reached. 

9) Use the optimal weight and bias parameter sets from 
PSO as the weight and bias parameter sets in ANN. This 
ANN only requires one forward pass. The activation 
functions for ANN are the Tanh and ReLU functions on 
the hidden and output layers, respectively. 

During implementation, 10 ANN-PSO simulations were 
carried out; each one had 10 iterations of 15 possible model 
combinations, each with between 3 and 7 hidden neurons, and 
populations of 20, 40, or 60 individuals. The ANN-PSO 
model selected was the one that yielded the smallest average 
RMSE value from all 10 simulations. 

F. The Proposed Method 

The data used is the daily data from Jan. 6, 2009, to Sept. 
25, 2017, which omits data from cases between Jan. 1, 2008, 
to Jan. 5, 2009, due to missing values. Arima is used to replace 
missing values in both data sets since Arima could generate a 
time-series model from the existing data to replace the 
missing values. For the average relative temperature and 
humidity variables, determine the average weekly value for 
each week; for the average rainfall and case numbers, find the 
cumulative value for each week. After missing values and 
noise have been accounted for, convert the daily data (3185 
observations) into weekly data (455 observations).  

After pre-processing, determine the time lag for each 
predictor variable concerning the weekly case numbers as the 
target variables. This is necessary due to the time it takes for 
weather variables to affect DHF case numbers based on the 
life cycle of mosquitoes that are DHF vectors (which are also 
affected by weather variables). The time lag is between 1 and 
8 weeks based on research by Guo et al. [24]. We used 
autocorrelation to calculate the time lag between the case 
number for the current week and those of previous weeks [25]. 
We used cross-correlation using Pearson correlation [25] to 
calculate the time lag between the number of cases for the 
current week and previous average temperature, average 
rainfall, and humidity, respectively. 

The final stage is data normalization before it is used in the 
ANN training process [26]. This is done by mapping input 
data to a certain scale using the min-max normalization as 
follows [26]: 

D
pq� � D � D��
D�rH � D��
 , (22) 

where D is the data to be normalized on the scale [0,1], D
pq� 
is normalized data, and D�rH and D��
 are the maximum and 
minimum values of D, respectively. 
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The DHF case data fluctuates strongly, prompting the use 
of moving averages. A moving average is a form of time-
series data made by taking the average from several sequential 
values of another time-series data [27]. According to Raudys 
et al. [27], moving averages can be used to show trends in 
fluctuating data to smooth it out, thus improving the stability 
of the prediction results and removing random variables. The 
simplest moving average formula is as follows: 

ZsV
 � 1� � DV*�G�



��� , (23) 

where t � D�, D	, D
, … , Du  is time-series #  data, �  is the 
moving average period, and   is the index of the smoothed 
time series data. 

We designed the best RBM-BPNN, ANN-GA, and PSO-
ANN during the implementation stage through 
hyperparameter tuning using a grid search. The 
hyperparameters for RBM-BPNN are the moving average, the 
number of neurons in the hidden layer, and the learning rate. 
The other two models do not require a learning rate. However, 
ANN-GA and PSO-ANN have population hyperparameters 
of 20, 40, and 60 individuals each. Whereas ANN-GA has 400 
generations, PSO-ANN does not need this parameter. The 
ranges of moving average periods and neurons for all three 
models were 2 to 5 and 3 to 7, respectively. The RBM-BPNN 
learning rates were 0.05, 0.025 and 0.01, respectively. 

A good model has a small training error with minor 
differences between the training and testing errors [28]. 

Therefore, this research determines the five best 
hyperparameter combinations based on training error, 
ultimately selecting the hyperparameter combination with the 
smallest absolute difference between training and testing 
errors (gap). The model evaluation uses root mean squared 
error (RMSE) [29], whose formula is as follows: 

YZB� � v∑ �w� � w�>�	
��� � , (24) 

where � is the number of observations, w� is the actual value, 
and w�>  is the predicted value. RMSE is interpreted as the 
standard deviation �σ� that shows the distribution of values 
for a data set from the expected value. 

III. RESULTS AND DISCUSSION 

The analysis is divided into two parts: first, we compare the 
model evaluation from each model in five districts. Second, 
we compare the DHF case predictions obtained from each 
best model in every district using some visualizations. Tables 
1, 2, and 3 show the RMSE for incidence prediction using 
RBM-BPNN, ANN-GA, and ANN-PSO, respectively, in 
each district with 70% training data (313 data) and 30% 
testing data (134 data). Here, we use a 70%/30% proportion 
since the empirical studies show that 20-30% testing data and 
70-80% training data yields the best results [30]. The three 
tables also show information about the hyperparameter 
resulting from the grid search related to the best model.

TABLE I 
RMSE FOR INCIDENCE PREDICTION USING RBM-BPNN (70%/30%) 

Districts 
Moving 

Average 

Hidden 

Neuron 

Learning 

Rate 

Root Mean Square (RMSE) 

Training Testing Gap 

North Jakarta 5 6 0.025 0.027067 0.056797 0.029730 

West Jakarta 5 6 0.025 0.034840 0.058598 0.023758 

East Jakarta 5 7 0.05 0.017893 0.061574 0.043681 

Central Jakarta 5 5 0.01 0.027109 0.037857 0.010748 

South Jakarta 5 5 0.05 0.016683 0.037300 0.020616 

Table 1 shows the best hyperparameter combinations of the 
RBM-BPNN model in each district based on the training error. 
The table shows that not all districts yield the same RBM-
BPNN model, as shown in their differing numbers of hidden 
neurons and learning rates. This also applies to the other two 
models in Tables 2 and 3. In this table, the smallest gap of the 

RBM-BPNN model is in Central Jakarta with training and 
testing RMSEs of 0.027109 and 0.037857, respectively. The 
largest gap is in East Jakarta, with a value of 0.043681. This 
shows that RBM-BPNN is not yet optimal for studying 
incidence in West Jakarta.  

TABLE I 
RMSE FOR INCIDENCE PREDICTION USING ANN-GA (70%/30%) 

Districts 
Moving 

Average 

Hidden 

Neuron 

Population 

Size 
Root Mean Square (RMSE) 

 Training Testing Gap 

North Jakarta 5 5 60 0.026585 0.056518 0.029933 
West Jakarta 5 5 60 0.035100 0.056398 0.021298 
East Jakarta 5 5 60 0.016933 0.059954 0.043021 

Central Jakarta 5 6 60 0.027709 0.038510 0.010801 
South Jakarta 5 3 60 0.016046 0.040496 0.024450 
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Table 2 shows the best hyperparameter combinations of the 
ANN-GA model in each district based on the training error. 
The smallest gap of the ANN-GA model is also in Central 
Jakarta, with a value of 0.010801 with training and testing 

RMSEs of 0.027709 and 0.038510, respectively. The largest 
gap is in East Jakarta, with a value of 0.043021. The best 
models all have the largest population size of 60, requiring the 
model to learn sufficiently from the data to predict testing data. 

TABLE II 
RMSE FOR INCIDENCE PREDICTION USING ANN-PSO (70%/30%) 

Districts 
Moving 

Average 

Hidden 

Neuron 

Population 

Size 
Root Mean Square (RMSE) 

 Training Testing Gap 

North Jakarta 5 4 60 0.031110 0.103202 0.072092 
West Jakarta 5 6 40 0.027651 0.145030 0.117379 
East Jakarta 5 4 40 0.021116 0.065179 0.044063 

Central Jakarta 5 4 60 0.042866 0.065109 0.022243 
South Jakarta 5 3 60 0.031305 0.043379 0.012074 

In Table 3, they are the best hyperparameter combinations 
of the ANN-PSO model in each district based on the training 
error. The smallest gap of the ANN-PSO model is in South 
Jakarta with a value of 0.012074 with training and testing 
RMSEs of 0.031305 and 0.043379, respectively. The largest 
gap is in West Jakarta, with a value of 0.117379.  

From the 3 tables above, the best models all use a moving 
average of 5. Unlike the results for ANN-GA in Table 2, the 
best ANN-PSO model does not have to use the largest 
population. In other words, the best model can have a 
population size of 40 or 60, and different numbers of hidden 
neurons (3, 4, or 6). From the 3 tables above, the best RMSE 
prediction of DHF cases with RBM-BPNN in Central Jakarta 
is 0.037857; the best RMSE prediction using ANN-GA in 
North and East Jakarta are 0.056518 and 0.059954, 
respectively. The ANN-PSO model had the largest RMSE 
value in most districts, with an average of 0.08438. 

The five figures below show visualizations from the three 
best models in predicting DHF case data on testing data for 
each district with a data composition of 70% training data and 
30% testing data. Generally, all three models can reasonably 
predict case data on testing data until the 70th week, after 
which they are less effective. Therefore, analysis of the 
visualization of the results of the implementation of the model 
focuses on testing data after the 70th week. 

 

 
Fig. 3  DHF Prediction in North Jakarta with 70% Training Data 

 

In Fig. 3, both the RBM-BPNN and ANN-GA models 
provided better testing data prediction than the ANN-PSO 
model. This prediction is consistent with the results in Tables 
1, 2, and 3, where the ANN-PSO model had the highest 
training and testing RMSE of all three models (0.031110 and 
0.103202, respectively). From the training and testing RMSEs 

shown in Tables 1 and 2, the RMSE of the ANN-GA model 
is slightly less than that of the RBM-BPNN model. 

 

 
Fig. 4  DHF Prediction in West Jakarta with 70% Training Data 

 

The results of the DHF case prediction in West Jakarta for 
all three models show that they struggled to predict the 
significant increase in cases around the 87th week. According 
to Tables 1, 2, and 3, the ANN-PSO model should have the 
smallest training RMSE value of 0.027651. However, the 
testing RMSE is inferior to that of the other two models. This 
result shows that whatever the ANN-PSO model has learned 
is still insufficient for predicting data testing. 

 
Fig.  5  DHF Prediction in East Jakarta with 70% Training Data 

 

Fig. 5 shows that the ANN-GA model is best at predicting 
testing data for the highest number of DHF cases, although its 
prediction is still inferior to that of the RBM-BPNN model in 
subsequent weeks. This result is consistent with the three 
tables above, showing that the ANN-GA model yields the 
smallest training and testing RMSEs in East Jakarta. The 
ANN-PSO model struggled to predict data after the 76th week, 
which is consistent with the results shown in all tables, where 
the ANN-PSO model has the highest training and testing 
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RMSE values in East Jakarta, at 0.021116 and 0.0652179, 
respectively. 

 

 
Fig. 6  DHF Prediction in Central Jakarta with 70% Training Data 

 

Fig. 6 shows that around the 80th and 89th weeks, the RBM-
BPNN and ANN-PSO models coped with the positive spike 
in DHF cases better than the ANN-GA model. However, in 
subsequent weeks, the RBM-BPNN and ANN-GA models 
yielded better predictions than the ANN-PSO model. This 
result is consistent with the three tables above, where the 
RMB-BPNN model had the lowest training and testing 
RMSEs in Central Jakarta. 

 
Fig. 7 DHF Prediction in South Jakarta with 70% Training Data 

 

In Fig. 7, the ANN-GA model yielded the best prediction 
in testing data for the highest number of DHF cases, while the 
ANN-PSO model struggled to do the same. This is consistent 
with the results in Table 1, 2, and 3 above, where the ANN-
PSO model had the highest RMSE value of all three models. 

IV. CONCLUSION 

This research used the RBM-BPNN, ANN-GA and ANN-
PSO models to predict DHF case data in five districts 
throughout DKI Jakarta using weather data variables (rainfall, 
humidity, and temperature) and DHF case numbers. Based on 
RMSE values, the results showed that each district required a 
different best model architecture. The RBM-BPNN model 
had the best RMSE prediction of DHF cases at 3,78% in 
Central Jakarta, while the ANN-GA model had the smallest 
RMSE values in North and East Jakarta, of 5,65% and 0,59%, 
respectively. However, the ANN-PSO model had the largest 
value in nearly every district, with an average RMSE of 
8,43%. Based on the visualization of the implementation of 
the testing data, every model struggled to predict the spike in 
cases in most districts. 

Based on the data, generally, the RBM-BPNN and ANN-
GA models yielded better predictions than the ANN-PSO 
model. However, the model with the smallest training RMSE 

value has yet to guarantee a small testing RMSE. This result 
shows that whatever a model has learned in training data is 
still insufficient for predicting testing data. Based on the 
RMSE values and the visualizations, the results of the RBM-
BPNN and ANN-GA models do not differ significantly from 
each other. Even though the genetic algorithm is a 
metaheuristic method, in ANN-GA, it has updated weight and 
updated bias in the backward phase as in RBM-BPNN. 
Population size affects the results for models with 
metaheuristic methods (ANN-GA and ANN-PSO). The 
results also show improvements as population size increases, 
and this applies to the ANN-GA model, but not the ANN-PSO 
model.  

Moreover, ANN-PSO lacks backpropagation. These 
differences manifest themselves in the superior prediction 
resulting from the ANN-GA model compared to the ANN-
PSO model. To obtain a better result on data with a significant 
spike, a data composition other than 70% training data and 30% 
testing data is recommended. A training data composition that 
can account for large data spikes is recommended for a model 
that can learn more easily from training data. 
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