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Abstract— The effect of music on the heart is reflected in variables such as heart rate and electrocardiographic (ECG) signals. ECG is 

a record of heart electrical activity and is a useful tool in diagnosing various cardiopathies. Artificial intelligence techniques have 

recently been implemented to analyze ECG and RR-interval data and are used thus in the present study to examine the influence on 

the heart of harmonic musical intervals and colored noise. Harmonic intervals were chosen because of their emotional response, while 

noise has been linked to positive responses such as improved sleep quality. A deep learning system was implemented, employing the 

ResNet-18 and GoogLeNet pre-trained networks to discriminate 31 different classes of ECG and RR-interval responses to the sound 

stimuli. Following an exploratory approach, deep learning was selected as an alternative to traditional analysis with the expectation 

that it could be incorporated into future music perception research. Classification revealed the ability of the implemented system to 

demonstrate heart response to the stimuli. ECG signals performed best, with 97% accuracy and Matthew’s coefficient of 0.97, while 

RR-interval achieved a 93% accuracy and Matthews coefficient of 0.93, suggesting that the considered stimuli of harmonic musical 

intervals and noise produced different responses in the heart. Moreover, the Matthews coefficient values above 0.7 and close to 1 imply 

a correlation between the two types of stimuli and the heart response, as measured by ECG and RR-interval signals.  
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I. INTRODUCTION

Heart health and the heart's response to medicines or 
stimuli are often evaluated using the electrocardiogram 
(ECG) [1]. A clinical record of the heart's electrical activity, 
ECG is usually recorded as an analogue signal [2] and 
employed in diagnosing cardiopathies. ECG has been used to 
discover the effect of music on the heart, using measurements 
of heart rate (HR) and heart rate variability (HRV) [2] [3]. 
Responses to music can be both psychological (e.g., 
subjective perception) and physiological (HRV parameters) 
[4]–[6]. Changes in HRV parameters have shown an increase 
in parasympathetic tone [7] and a reduction in sympathetic 
tone [8]. HRV has revealed that music can be used to support 
oncological therapy [8], [9]. Both health [10] and engineering 
[11] areas have researched responses of the heart and HRV to
music. Research on music and its effect on the human body

indicates multiple benefits, including the influence of music 
on infant brain activity [12] and the effects of music on HRV 
and pain relief in elderly patients with total knee replacement 
[13]. More recent studies indicate the influence of music on 
HRV parameters [14]. HRV has played a role in classifying 
emotions evoked by music [15], differentiating between 
distinct types of music [5], [16], and states of exposure to 
music and non-music [17], [18]. 

Concerning the use of artificial intelligence techniques, 
machine learning algorithms have proved useful tools for 
ECG data, e.g., neural networks [16] and support vector 
machines [19]. Meanwhile, deep learning deals better with 
large amounts of data [20] and has been used to analyze 
physiological signals such as ECG data. Thereby avoiding the 
feature extraction process of traditional techniques [20], and 
advancing the detection of arrhythmias [21] and classification 
of heart diseases [22]. Meanwhile, as a training technique, 
transfer learning is able to take advantage of knowledge 
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embedded in algorithms pre-trained with deep learning 
techniques and reuse it in a particular application different 
from that of the training. Transfer learning has been used to 
implement deep learning algorithms (overcoming the need for 
a large volume of data in the training stage [23], [24], 
classifying normal and abnormal ECG signals [25], and ECG 
arrhythmias [23]. Few applications of deep learning 
techniques on HRV have been found to date. Elsewhere, 
spectral representation of HRV has been used to predict 
mental stress [26] and intervals between R-peaks (RR-
intervals - RRI) to detect congestive heart failure using multi-
input deep learning networks [27], LSTM-based deep 
networks [28], and convolutional neural networks [29].  

Where do the problems lie? Most research classifies 
emotions elicited by music through recording physiological 
variables [30], [31], considering music with a broad brush as 
a complete element, without examining parts [5] [32], such as 
harmonic intervals. Pentatonic music, for example, produced 
observable changes in some HRV parameters [33], producing 
a parasympathetic response in infants. Studies have also 
pointed to the effects of monochord music on HRV [34]; the 
influence of tempo on signals of EEG [35], HRV [36], [37], 
and baroreflex changes [38]; the production of changes in 
psychophysiological variables [39] and changes in specific 
elements of physiological signals such as ECG [40] by 
rhythm, frequency characteristics, and music-excerpts; and 
the influence of sound quality on HRV [41]. When research 
considers music from a broad viewpoint, it is only possible to 
observe general mechanisms of how music affects the 
variables of interest [18], [32]. The door to new research on 
this topic is very much open. 

Considering that previous research has observed the effects 
of music - and some particular elements it comprises - on the 
heart's activity, the aim of this study is, through an exploratory 
approach, to show changes in the cardiac response to sound 
stimuli using deep learning techniques. Making use of such a 
deep learning system, the goal of this research is to classify, 
via ECG and RRI (tachogram), the heart response to stimuli 
of harmonic musical intervals (HMI) and colored noise, 
harmonic intervals being two musical sounds played at the 
same time [42]. Harmonic intervals were chosen as they form 
a fundamental part of music and evoke an emotional response 
[43], while the use of noise has been related to positive 
responses, such as sleep improvement [44] and attention-
deficit/hyperactivity disorder [45]. ECG and RRI, categorized 
according to sound stimuli, provide relevant information and 
could be used to determine whether or not the heart is 
influenced by the harmonic musical interval's size and the 
noise's frequency content.  

Following a pre-processing procedure, the signals were 
transformed into a bidimensional spectrum using continuous 
wavelet transform [46] for presentation to the deep learning 
system, developed to discriminate 31 and later 30 different 
ECG and RRI classes as responses to different types of HMI 
and noise. The system used the ResNet-18 [47] and 
GoogLeNet [48] pre-trained convolutional neural networks; 
deep learning allows for dealing with several dependencies at 
once, such as all classes of stimuli in the study. These 
pretrained networks were selected due to the high accuracy 
performance, a low number of operations, and density of 
parameters to be configured compared to other models [49]. 

The system was trained following a transfer learning 
approach and an interpatient scheme [50], with 70% of the 
data for training and 30% for testing. 

System performance was evaluated using accuracy, the 
Cohen's kappa coefficient (κ), and the Matthews correlation 
coefficient (MCC). However, a further metric of classification 
cost was also proposed to take account of the nature of the 
classes (harmonic intervals and noise), the quality of 
consonance and dissonance (harmonic intervals), and the 
frequency content (high and low octaves in harmonic 
intervals, and high, low, or all frequencies in noise). The cost 
was determined assuming that each stimulus type would 
influence heart response (ECG and RRI) differently. By 
similar stimuli producing similar heart responses; incorrect 
classifications of responses to stimuli that are similar in 
consonance or frequency content will have a lower cost than 
those responses to completely different stimuli – harmonic 
intervals and noise, consonant and dissonant intervals, or 
noise with high and low frequencies. The research hypothesis 
is that the stimuli will produce different responses in the heart, 
revealed using deep learning, contributing to understanding 
the hearing process. 

The rest of this manuscript is organized as follows: Section 
2 presents the materials and methods, which include the 
experimental procedure, auditory stimuli, data processing, 
classification system, and evaluation. The results and their 
discussion are reported in Section 3. Finally, Section 4 
concludes this document. 

II. MATERIALS AND METHOD

A. Experimental procedure

During the experimental stage, 17 males and 9 females,
with a mean age of 25.3 years (SD=7.1), were voluntarily 
enlisted to participate in the experimental phase. After an 
explanation of the experiment, participants signed the consent 
form. The Internal Ethical Committee of Universidad del 
Cauca approved the experimental procedures and the research 
was carried out in accordance with the approved protocol and 
Declaration of Helsinki. The subjects, while remaining in a 
supine position, listened to 30 sound stimuli of 10 seconds 
each: 6 different types of noises and 24 harmonic musical 
interval sounds in octaves 2 and 4 (Fig. 1 and Table 1).  

Fig. 1  Diagram of the experimental procedure 
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TABLE I 
STIMULI IN THE EXPERIMENTAL PHASE 

Type of stimulus Description 

Silence Noise-cancelling headphone output 
Noise Blue 

Brown 
Grey 
Pink 
Purple 
White 

Harmonic interval 
(Octaves 2 and 4) 

Minor second (2m) 
Major second (2M) 
Minor third (3m) 
Major third (3M) 
Perfect fourth (4) 
Augmented fourth (4aug) 
Perfect fifth (5) 
Minor sixth (6m) 
Major sixth (6M) 
Minor seventh (7m) 
Major seventh (7M) 
Octave (8) 

In order to reduce carryover effects [51], the sounds were 
separated by a period of 15 seconds of silence, and they were 
presented in random order using noise-canceling headphones. 
During the experiment, ECG signals from lead II were 
recorded. Lead II is an electrode configuration that reveals the 
electrical activity from the perspective of the inferior wall of 
the heart. In this configuration, the right arm (negative pole) 
is connected with the left leg (positive pole) [52].  

The color of noise is assigned as analogous to colors in the 
visible spectrum, in which each color has a different power 
spectrum: the frequency content of noise is expressed as 
follows [53]: 

f2 for purple noise 
f for blue noise 
1 for white noise 
1/f for pink noise 
1/f2 for brown noise 
The frequency content of grey noise is similar to that of 

pink noise, but the loudness in the whole spectrum is 
normalized [54]. 

B. Data Processing

The signal processing step comprised six stages: pre-
processing, dataset augmentation, signal cutting, signal 
windowing, continuous wavelet transform representation 
(CWT), and classification. In the pre-processing stage, the 
signal trend was removed by subtracting the output of a third-
order one-dimensional median filter from the original signal. 
In this case, the baseline is removed to reduce the effect of 
issues with electrodes, movement of the subject, and 
breathing [55]. In the dataset augmentation stage, the wavelet-
based shrinkage filtering method was implemented [56], in 
which two mother wavelets were included for filtering the 
signals: Daubechies 4 (db4) and Daubechies 6 (db6); for each 
signal, two new signals were generated. Data augmentation is 
carried out to improve performance and reduce overfitting in 
machine/deep learning algorithms [57]. Following signal 
augmentation, the ECG signals were cut to a duration of 10 
seconds to maintain the order of presentation of the stimuli.  

After the signal cutting, a Hamming windowing process of 
five seconds was performed on the ECG signals. This window 
duration was chosen since, at a “normal” heart rate, it is 
possible to find between 4 and 8 heartbeats [58]. Each signal 
was split into segments, and the cuts were made from 0 to 5, 
2.5 to 7.5, and 5 to 10 seconds. This process was performed 
to inspect the signals in more detail; thus, they were analyzed 
in segments instead of taking the signals as unique elements. 
After signal windowing, the R-peaks were segmented; 
commonly, the R-peak is the dominant peak in ECG signals, 
and its duration is about 30 ms in lead II [1]. The Pan-
Tompkins algorithm was utilized to segment the R-peaks 
[59]; undetected peaks were marked manually. The RRI 
signal was extracted by computing the time difference 
between R-peaks [60] to measure R-distances in milliseconds 
[61] [62].

Finally, CWT was obtained from each signal segment in
both the ECG and RRI signals. CWT was computed to 
transform time-domain signals into time-frequency domain 
signals [63]. At the end of the signal processing stage, there 
were a total of 7254 instances. 

C. Classification

After the computation of CWT, a deep learning
classification system was developed using the pre-trained 
networks ResNet-18 [64] and GoogLeNet [65]. These 
convolutional neural networks have been trained with more 
than a million images from the ImageNet database [66]. 
ResNet-18 has 18, and GoogLeNet has 22 deep layers, and 
each can classify up to 1000 different image classes [64] [65]. 
In this application, the CWT output served as input to both 
pre-trained networks. This CWT process produced a set of 
images that were adjusted to input from the networks. Thus, 
images were resized to 224x224x3. After image resizing, the 
last fully connected layer and the final classification layer of 
the networks were replaced. The fully connected layer was 
substituted with a new fully-connected layer with 31 outputs, 
and the classification layer was superseded with a new one 
with different class labels. The system was trained following 
an interpatient scheme [50], with 70% of the data for training 
and 30% for testing. In this classification task, 31 classes with 
234 instances each were considered. Classes were associated 
with each stimulus type, and instances were related to the 
number of elements in each class. The first 30 classes 
corresponded to stimuli described in the experimental 
procedure, but a class corresponding to silence or without 
stimulus was also added.  

D. Evaluation

Finally, to evaluate the classification system, accuracy, the
Cohen's kappa coefficient (κ),  and Matthews correlation 
coefficient (MCC) were computed; MCC because it allows 
assessment of the classification performance even with 
unbalanced datasets [67]. MCC represents a correlation 
between observation and prediction in classification tasks and 
can take values between -1 and 1  [68]. A value of 1 indicates 
a wholly correct prediction, -1 represents a wholly incorrect 
prediction, while 0 suggests an almost random prediction.  

In addition to the abovementioned metrics, a cost metric 
was developed. The cost metric can take values between 0 and 
1, where 1 represents the worst-case classification, i.e., the 
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highest cost to pay because of an extremely poor 
classification, and 0 represents the lowest cost due to an ideal 
classification. Thus, values near to 0 are desired. The cost 
metric is based on a cost matrix defined by a set of rules. The 
first establishes that the maximum cost, equal to 1, should be 
divided between the complete range of classification 
possibilities in each instance. The second defines that 
minimum cost, equal to 0, should be assigned to well-
classified instances. The third rule divides the total cost to pay 
between general classes; thus, a cost of 0.5 is assigned to all 
harmonic interval classes and all noise classes. As a result, the 
highest cost will be paid if a harmonic interval class element 
is classified as noise, or a noise class element is classified as 
a harmonic interval. Here, it is crucial to bear in mind that the 
Silence class is considered within the harmonic interval 
classes because the Silence and 8_L classes behave similarly 
in the RRI classification. 

The cost of general classes is divided according to the 
Gompertz function [69] (Equation 1).  
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In this application !  and "  took the values 4 and 0.1, 
respectively. The cost is incremented from minimum to 
maximum value and assigned to each class of the general 
class. For instance, in the case of harmonic interval classes, 
costs take values between 0.000124 and 0.057102 and are 
attributed according to the degree of consonance. Ordering of 
the stimuli by consonance was based on the classification of 
harmonic intervals regarding tonal aspects, following 
proportional theory [70], and is defined (Table 2) from most 
to least consonant. 

TABLE II 
ORDER OF CONSONANCE IN THE HARMONIC INTERVALS

Order of 

consonance 

Interval Order of 

consonance 

Interval 

1 Silence 14 3m_H 
2 8_L 15 6m_H 
3 5_L 16 7m_L 
4 4_L 17 2M_L 
5 6M_L 18 7M_L 
6 3M_L 19 2m_L 
7 3m_L 20 4aug_L 
8 6m_L 21 7m_H 
9 8_H 22 2M_H 
10 5_H 23 7M_H 
11 4_H 24 2m_H 
12 6M_H 25 4aug_H 
13 3M_H 

Stimuli with similar characteristics will have the lowest 
costs, and different characteristics will have the highest costs. 
Thus, in a consonant class such as 4_L, other consonant 
classes such as 8_L, 5_L, 6M_L, and 3M_L will have the 
lowest cost, and dissonant classes such as 2M_H, 7M_H, 
2m_H, and 4aug_H the highest costs. Once the cost matrix is 
established, it is multiplied by the confusion matrix to 
determine the classification cost matrix. All classification cost 
matrix values are then summed to obtain the total cost. 
Finally, to standardize the value between 0 and 1, the total 
cost is divided by the maximum possible cost. Maximum 
possible cost is determined considering the case in each 

instance where classes are classified as the classes with the 
highest cost in the cost matrix. 

III. RESULT AND DISCUSSION

A. Continuous Wavelet Transform

As a result of CWT, a 2D representation was obtained for
each segment of ECG and RRI signal captured during the 
presentation of the stimuli to the subjects (Fig. 2 and 3). Each 
representation corresponds to five seconds (x-axis), 135 
scales (y-axis), and CWT coefficient absolute values changes. 
Time progresses from left to right in the images, while 
frequency increases from bottom to top. Changes, or 
differences, in CWT representations as a response to stimuli 
are difficult to observe with ECG (Fig. 2), but with RRI (Fig. 
3), these changes can be more readily seen, the clearest case 
being the RRI response to Minor Second, in which a 
prominent peak is observed.  

Fig. 2  Continuous wavelet transform of ECG signals for the lowest octave in 
two different subjects (blue = minimum value; red = maximum value) 

Fig. 3  Continuous wavelet transform of RRI signals for the lowest octave in 
two different subjects (blue = minimum value; red = maximum value) 

B. Training Process

Following training on the ECG signals, the ResNet-18
network produced a testing accuracy of 0.89 and κ and MCC 
of 0.89, while the cost was 0.03; with GoogLeNet, accuracy 
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and κ MCC were 0.97 and 0.97, with a cost of 0.01 (Table 3). 
Classification of RRI was also carried out. With the ResNet-
18 network a testing accuracy of 0.73 and, κ and MCC of 0.72 
was obtained, with cost equal to 0.07; while GoogLeNet gave 
an accuracy of 0.71, and κ and MCC of 0.70, with a cost of 
0.07 (Table 3). 

On observing the RRI classification, it is remarkable that 
the system is unable to differentiate between the silence and 

8_L classes. Then, bearing in mind that the best classification 
outcomes were achieved using GoogLeNet, this network was 
used to perform a new RRI classification. This time, however, 
the Silence class was removed (i.e., 30 classes remained). In 
this case, a testing accuracy of 0.93 and κ and MCC of 0.93 
were obtained, with a cost of 0.03 (Table 3).  

TABLE III 
PERFORMANCE OF THE CLASSIFICATION PROCESS OF ECG AND RRI SIGNALS WITH THE RESNET-18 AND GOOGLENET NETWORKS

Network 
ECG RRI 

Accuracy Kappa/Matthews coefficient Cost Accuracy Kappa/Matthews coefficient Cost 

31 classes (including silence) 
ResNet-18 0.89 0.89 0.03 0.73 0.72 0.07 
GoogLeNet 0.97 0.97 0.01 0.71 0.70 0.07 

30 classes (excluding silence) 
GoogLeNet --- --- --- 0.93 0.93 0.03 

C. Discussion

In this manuscript, the ECG and RRI signals of the study
subjects were classified according to the presented stimuli of 
harmonic intervals and noise. The best classifier performance 
with the test set provided an accuracy of 97%, a κ and 
Matthew’s coefficient of 0.97, and a cost of 0.01. These 
outcomes suggest a correlation between the selected stimuli 
and the ECG and RRI measured. In light of the experimental 
design, each stimulus might be considered to produce a 
different response in the heart, manifested through RRI and 
electrical activity registered in the ECG signal. In any case, 
initial indications exist of a direct effect of selected sounds on 
heart behavior; at this early stage, it is neither clear what the 
impact of this is nor its significance. 

The deep learning system implemented could differentiate 
all the classes provided. Furthermore, the pre-trained 
networks selected, ResNet-18 and GoogLeNet, were also 
essential in classifying the CWT representations. The general 
performance was better with GoogLeNet than with ResNet-
18; GoogLeNet was similarly reported to obtain better 
accuracy than ResNet-18 [49]. The cost metric, meanwhile, 
was seen to provide a coherent description of the performance 
of the systems and behaved consistently concerning the 
accuracy, κ, and Matthew’s coefficient.  

CWT was employed as a time-frequency representation of 
the ECG and RRI signals. These signals are measurements of 
the electrical activity of the heart and time variability between 
heartbeats, while CWT represents the general behavior of the 
heart. Given that it was possible to infer that the presented 
stimuli affected the behavior or state of the heart, this may 
well affirm that variations can be registered in ultra-short RRI 
and ECG recordings of only five seconds. Such a claim arises 
from the segmenting of signals in the study into periods of 
five seconds. Looking at the results, it is further conceivable 
to conclude that the stimuli used might be affecting subjects 
at a more central level in addition to affecting the peripheral 
ear. As such, the outcomes observed might be explained best 
by theory relating to brain-heart interactions [71], [72].  

In the case of RRI signals, the classification system could 
not differentiate between the silence and 8_L classes. RRI in 
these conditions may be similar. In other words, more 
generally, the RRI response to perfect consonance in the 

lower registers might be similar to that produced under 
conditions of silence. RRI response to perfect consonance in 
the higher frequencies, however, was able to be differentiated 
from the other classes. This was true even on including the 
classes of silence and 8_L (perfect consonance in the lower 
register). Considering the results detailed above, heart 
behavior was discovered to change as the different stimuli 
were presented to the subjects. However, it was impossible to 
determine exactly the nature of those changes. For this reason, 
in terms of future work, it is essential to conduct new analyses 
to determine what elements in ECG and RRI signals are 
affected and also how they are changing, and it is hoped to 
build up an understanding of the perception of more complex 
parts of music, such as harmonic progressions, from the 
ground up [73]. By understanding the response of the heart to 
stimuli, these stimuli could go on to be used to produce a 
desired and controlled response in the hearts of listeners. 

IV. CONCLUSION

The first element to observe from the outcomes is that 
despite CWT not being commonly used to analyze RRI 
signals, it proved to be an efficient tool to represent the signals 
treated in this experiment, ECG and RRI signals. 
Nevertheless, further research would be useful to study other 
ways to represent these types of signals. Secondly, the results 
confirm the hypothesis that the considered stimuli (harmonic 
musical intervals and noise) produce different responses in 
the heart. As regards the evaluation of the system, the 
proposed cost metric presented coherent information about 
the system performance relative to accuracy, Cohen's kappa 
coefficient, and Matthew’s coefficient. The MCC values 
above 0.7 and near to 1 suggest that a correlation exists 
between the stimuli and the heart response measured by ECG 
and RRI signals. Moreover, bearing in mind the experimental 
design, a cause-effect relationship might be inferred between 
the stimuli and the observed effects on the heart. The high 
performance in the classification system particularly means 
that the heart presented different responses to particular 
stimuli such as harmonic musical intervals (two different 
octaves) and colored noise (six different types). This result 
presents quantitative evidence that the stimuli used produced 
changes in heart behavior assessed through ECG and RRI 
signals. It is necessary to explore other data analysis methods 
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to figure out in detail what these effects are and practically 
how their advantages may be taken. Although the 
implemented method does not provide information about the 
nature of the changes produced in the heart, the study 
outcomes open doors to new studies to explore the possibility 
of manipulating or massaging heart behavior using sounds.  
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