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Abstract— Several Indonesian life insurance companies recently faced financial problems due to inadequate pricing and idealistic 

investment expectation. Growing market and insurtech implementation might lead to worse conditions in the future. The current 

mortality table and investment return assumption are too ideal, so more conservative assumptions are required to get a more reasonable 

annual pure premium range. This research estimated complete life tables from abridged life tables by truncated Heligman-Pollard and 

Makeham model, when a lognormal stochastic process estimated annual investment return. Parameters for mortality models and return 

distribution are estimated using Bayesian method with Metropolis-Hasting’s algorithm. Data from the abridged life table was 

bootstrapped due to insufficient number for statistical parametric modeling. Good accuracy for estimated abridged mortality rates was 

reached by referring to the Mean Absolute Percentage Error (MAPE) metric for both males and females, also for the young ages group 

(new-born to twenty-nine years old) and old ages group (thirty to eighty-four years old). The parameters were satisfactory to estimate 

the complete life table and extrapolate annual mortality rates calculation until age ninety-nine. A log-normal distribution was found to 

fit the monthly inflation rates satisfactorily. Assuming that investment return is close to the inflation rates, the annual investment return 

is anticipated for both profitable and losing situations. Therefore, insurance companies can win the customers’ decisions without 

compromising their financial stability. 
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I. INTRODUCTION

Indonesian insurance law mandates the formation of an 

institution to guarantee customers' policies’ payment although 

their insurers are bankrupt. Its urgency increases after 

financial problems that hit two state-owned insurance 

companies, Asabri and Jiwasraya [1]. A reliable life table and 

investment return assumption are needed to determine 

whether premiums charged to customers are appropriate or 

not. The government also needs a reference to decide whether 

insurance companies have set profitable premium tariff or not 

and charge how much they have to pay to the policy guarantor 
institution. 

Society of Actuaries of Indonesia published 4th Indonesian 

Mortality Table (TMI IV) based on an experience study from 

52 domestic insurance companies’ data during 2013 to 2017. 

Data on insureds who had passed the underwriting process to 

ensure that they were healthy and doing activities safely were 

used to form this table. In other words, TMI IV is a select 

mortality table and cannot be treated as a population mortality 

table. 

In line with efforts to increase number of customers and 
widen insurtech implementation, the underwriting process 

will be loosened up. As we mentioned in the previous 

paragraph, TMI IV is not suitable to be generalized to 

represent the whole Indonesian population. Generalization 

from that table could result in adverse selection and too low 

premiums to be charged. Infant mortality rate and life 

expectancy calculation support the previous statement with 

numbers in Table I. 

Without adequate data to build a complete life table 

provided by the government, we sought available third-party 

life tables that might be more reliable in representing the 
population. To the best of our knowledge, the best available 

table is the abridged life table for 2015 – 2020 period [2], [3]. 

The rates provided are more reasonable as it comes closer to 

the population estimate provided by the Indonesian Central 
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Bureau of Statistics, but annual mortality rates are still 

estimated. 

TABLE I 

INDONESIAN INFANT MORTALITY RATE AND LIFE EXPECTANCY 

Metric Source 
Study period 

and population 
Value 

Infant mortality 

rate (q0) 

Indonesian Central 

Bureau of 

Statistics [4] 

2017 (both 

sexes) 
0.024 

TMI IV 

2013 – 2017 

(males) 
0.00524 

2013 – 2017 

(females) 
0.00266 

Newborn life 

expectancy (e0) 

Indonesian Central 

Bureau of 

Statistics [5] 

2019 (males) 
69.44 

years 

2019 (females) 
73.33 

years 

TMI IV 

2013 – 2017 

(males) 

78.40 

years 

2013 – 2017 

(females) 

81.95 

years 

 

Another problem regarding premium determination is an 

idealistic high investment return assumption set to lower the 

premiums. For example, many Indonesian life insurance 

companies charge an annual premium equal to ten times that 

of a monthly paid premium. By assuming a uniform 

distribution of deaths for fractional ages to be applied to the 

TMI IV, we found that they have to realize an annual 

investment return of at least 36.33% in order to get an equal 
value of money. It could lead to portfolio formation of junk 

financial market products in order to reach the high return 

target, but the risk implied is also too high. Although long-

term historical trend supports this assumption, the market 

contains its uncertainty and is going to a long-term 

equilibrium state. Compared to the data obtained from Rosha 

[6] and BPS [7], this assumption had never been at least 

equaled by the year-on-year return obtained by Jakarta 

Composite Index (JCI) in the last nine full years (2011-2019). 

It is even worse than the inflation rate beating the increase rate 

of JCI five times in nine occurrences, including for the last 
two years. 

From a theoretical point of view [8], industry 

competitiveness tends to bring companies down into zero-

profit long-run equilibrium. In this situation, revenues only 

cover industrial costs, implying that industrial growth should 

not be more than increase of their costs. Therefore, we argue 

that a more reasonable option for this study is assuming the 

return is equal to the national inflation rate. 

This study aims to produce a fair annual pure premium 

range estimation for Indonesian life insurance. Two main 

components that are required in the pure premium range are 

the mortality rates and investment returns, which need to be 
estimated beforehand. Thus, this study consists of three main 

processes: estimation of Indonesian abridged mortality rates, 

estimation of investment return, and estimation of fair annual 

pure premium range as the ultimate result. 

This study's novelties are in optimizing the abridged life 

table as a substitute for the unavailable Indonesian 

population's recent complete life table for estimation of 

Indonesian mortality rates and the procedures developed to 

overcome the limitations of the abridged life table in the 

estimation process. While other studies fit one model for all 

age ranges, we argue that different patterns of mortality rates 

might occur in different age ranges. Thus, upon empirical 

assessment of the mortality rates, we propose modifying the 

Heligman-Pollard model, namely the truncated Helligman-

Pollard model. Furthermore, we introduced the so-called 

intermediary parameters to overcome the complexity of 

constructing prior distributions for the modified model. And 

finally, we define the best- and worst-estimate of qx, the 

mortality rate at age �,  as approximations for the complex 

non-closed posterior distributions. These are explained 
further in the subsequent sections.  

II. MATERIALS AND METHOD 

This section explains our objectives and compares them 

with previous related works. We also describe our data and 

explain the methodology and mathematical models to fit the 

data. 

A. Objectives and Related Works 

The first objective of this study is to estimate the 

Indonesian complete life table based on United Nations’ 

abridged life table for the period 2015-2020 with the 

assumption of compliance with a parametric mortality model. 

Since we are not confident enough that the samples involved 

in estimating that the abridged life table fully represents the 

population, we implement Bayesian method to result in a 

more reasonable range of estimated annual mortality rates. 

This is due to the nature of the Bayesian approach, where the 
inference is not solely based on data but also incorporates 

experts’ judgment through the prior density. In this way, an 

optimal result is still obtained even under low-qualified data 

[9]–[12].   

The second objective of this study is to estimate a 

reasonable range of investment returns by considering the 

probability of loss. This approach is superior to mitigating 

risks coming from unexpected negative situations, such as 

disease pandemics, economic slowdown, political chaos, and 

trade war. When the value of an investment portfolio 

plummets, insurance companies still have a reasonable buffer 
to protect themselves from investment loss. This investment 

return range is needed in pricing, reserving, and scenario 

testing.  

A study for estimating a complete life table from an 

abridged life table was initiated by Heligman and Pollard [13]. 

They proposed using the full Heligman-Pollard mortality 

model and estimated the parameters using the Bayesian 

method. This approach is considered superior to the standard 

least squares method to avoid overparameterization and the 

possibility of illogical parameter estimates. The statistical 

inference could also be derived for complete and incomplete 

life tables. They tried to estimate population size in every age 
group, given the total population size. However, it is hard to 

verify the results because mortality tables are published 

without the underlying data to construct them. Prior 

distributions in their study were also decided based on focus 

group discussion of mathematical researchers and not 

involving professionals with a demographic or medical 

degree, rather than using the results of previous studies. Later, 

we found that their 98% confidence interval for prior 

distributions of A, B, C, and E is too small, but their domain 

for parameter F is too wide at the same time. It is also strange 
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that their lower limit exceeds the upper limit for mortality 

rates of toddlers (see Fig. 5 in [13]).  

A study on Malaysian population [14] used the 

interpolation method without assuming any parametric 

mortality model, but the results only pointed to estimations 

rather than interval estimations. Li went one step ahead with 

fitting simplified Gompertz model for old ages but still based 

on the interpolation from young ages data [15]. The results 

were also in the form of point estimations. However, there is 

no reason we should expect a point estimate from a given 

sample to be exactly equal to the condition of the population, 
although we have large samples [16]. It is preferable to 

determine an interval estimate which we would expect to find 

the value. 

B. Data Description 

The first data to estimate the complete life table is the 

Indonesian abridged life table for the 2015 – 2020 period, 

each male and female population, which was published as a 

part of World Population Prospects 2019 and downloaded 
from the United Nations [2], [3]. In this research, we treated 

q0, 4q1, 5q5, 5q10, 5q15, 5q20, 5q25, 5q30, 5q35, 5q40, 5q45, 5q50, 5q55, 

5q60, 5q65, 5q70, 5q75, and 5q80 as data to fit the mortality model. 

While 5q85, 5q90, and 5q95 were considered to evaluate our 

model ability in extrapolation.  

The second data to estimate a reasonable range of 

investment return is Indonesian monthly inflation rates for 

January 2006– December 2019 [17]. It consists of 168 records 

of monthly inflation rate data. Considering some previous 

studies [18]–[27], this period is adequate to capture the ups 

and downs of Indonesian economy. Indonesia faced long-term 

effects of Great Moderation of Chinese Economics, great 

recession of global economics and also bankruptcy of Century 

Bank in 2008, and enactment start of ASEAN-China Free 
Trade Agreement (ACFTA) in 2010. Indonesia also 

experienced significantly increased of subsidized fuel price in 

2013, change of national leadership in 2014, Brexit process 

since 2016, and Policy Normalization by The Federal Open 

Market Committee (FOMC) of United States since 2017. 

Trade war between United States and China since 2018, 

geopolitical issues in The Middle East since 2019, and the 

beginning of COVID-19 outbreak in the end of 2019 also 

influenced Indonesian economy. The subsequent sections 

discuss the method and mathematical formulation constructed 

in this study. Summary of the procedures is depicted in Fig.1. 
 

 

 

Fig. 1  Flowchart of the research method. 

 

C. Bootstrapping and Mortality Modelling 

Two parametric models that are considered to produce 

good fits on annual mortality rates for all ages are Heligman-

Pollard model [13] and Siler model [28]. Siler model is more 

compact than Heligman-Pollard model but fails to capture 

accident humps. While, Heligman-Pollard model ensures a 

good fit with data but is often overparameterized [29]. 

Heligman-Pollard model could capture a hump and dynamic 

trend, i.e., a repeated pattern of rising and fall of the mortality 

trend. While in the Siler model, there are no humps nor a 

dynamic trend, and instead, the mortality rates are directly 

increasing after ending its decreasing movement. 
Abridged life tables contain a small amount of data. 

Although the estimated values produced by Bayesian method 

are considerably better than those from the frequentist method 

in a small sample size, the estimates are sensitive to prior 

distribution specifications, and inappropriate handling can 
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lead to worse estimation than that of frequentist methods [11]. 

In this research, we handle a small sample size by generating 

more samples based on the data with the bootstrap procedure 

as described below. 

 For every age group, a pseudo population of size 

100,000 are generated. The probability of death in the 

data is multiplied by 105 and then floored to get the 

number of deaths in the interval, and the rest should be 

survivors. It can be accepted historically and 

mathematically for these two reasons. 

Historically, mortality rates are expressed in the ratio 
per number of populations. The number used often is 

1,000 and the example institution used it is [30]. 

Another number that is often used is 100,000 with 

Global Health Observatory as an example [31]. 

Mathematically, Agresti and Min [32] suggested that to 

have probability variation of binomial distribution, the 

minimum of successes and fails are ≥15. In this case, 

we define success events as deaths and failed events for 

the survivors. For all age groups, our procedure 

satisfied the condition. The minimum number of 

successes in an age group is 203, and the minimum 
number of fails in an age group is 50,626. 

We chose 100,000 for all age groups, and this practice 

is only for creating bigger sample sizes of the mortality 

rates. The supposedly different proportions for each age 

group are already represented by the probability of 

death in the data.  Some may wonder if the population 

at younger ages will be more than that at older ages. We 

would have further consideration for this point in our 

mathematical model. 

 From the pseudo populations, 100,000 samples of 

individuals are taken with repetition. The proportion of 
deaths were calculated and saved as final samples from 

bootstrap procedure. 

 For every age group, 100 final samples of mortality 

rates are gathered. 

Observing the pattern of bootstrapped abridged mortality 

rates, there is a tendency of slowing mortality growth in age 

interval (20, 25) for males and (15, 20) for females. 

Empirically, we believe that there is accident hump in both 

mortality patterns and the evidence is shown in Fig. 2. for the 

male population. The Heligman-Pollard model is more 

suitable for this case than the Siler model. 

 

 
Fig. 2  Abridged mortality rates pattern for male population with n = 1 for x 

= 0, n = 4 for x = 1, and n = 5 for other x values. Left graph is for age 0 – 84, 

when right graph is restricted for age 0 – 34. 

Instead of directly applying the full Heligman-Pollard 

model to the data, this research splits the fitting process into 

two phases. The first phase tests the presence of accident 

hump in young ages, and the second phase is learning 

exponential growth of mortality rate in old age. The initial 

Heligman-Pollard model was defined such that A and B 

determine mortality rate for babies, C determines mortality 

rate decline for childhood, D, E, and F explain accident hump 

phenomenon for adolescence, and G and H determine old ages 

mortality f. The model is written as (1), with qx representing 

the annual mortality rate for an individual with exact age at x. 

 
������ = A�	
��
 + D exp �−E �log �	

����� + GH	 (1) 

Following Alexopoulos et al [33], logical range of values 

for each parameter are as the following: A ∈ (0,1), B ∈ (0,1), 

C ∈ (0,1), D ∈ (0,1), E > 0, F ∈ (10,40), G ∈ (0,1), and H > 

0. According to Wunsch et al. [34], A is a crude 

approximation to q1, B is a crude approximation of the 

difference between q0 and q1, C reflects the speed of 

childhood mortality rate decline, D measures hump severity, 

E measures hump width, and F is mean of age to have 

mortality rate surge due to accident, respectively. G and H 

parameters are derived from the Gompertz mortality model. 

By looking at all the definitions, we determined that the 
ranges given are plausible and proceed further with them. 

1)  Mortality Modelling for Young Ages:  We considered 

that old mortality has a small correlation with young mortality. 

We also assumed that mortality rates must be increasing for 

ages over thirty. Therefore, we could truncate Heligman-

Pollard model by restricting implementation only for x ≤ 29 

and removing two parameters, G and H. We proposed the 

truncated model to further check whether the hump happened 

or not. If F ≥ 30, there is no hump, and the mortality rate is 

surely increasing once an individual leaves the childhood 

phase. If F < 30, there is a hump, and we assume that mortality 
rates will not increase before the individual leaves late 

adolescence phase. Our formula for estimating mortality rates 

for young ages as the following: 

 
������ = A�	
��
 + D exp �−E �log �	

����� (2) 

 

Our bootstrapped data was considered to be enough. 

Following a recommendation in some previous studies [35]–

[38], we had 700 observations, and it is more than their rule 

of thumb that the required data varies around 300 to 350 

observations. The data size is also more than enough 

compared to the number of parameters in the formula; as [39] 

recommended, an ideal sample size ratio to the number of 

parameters is 20:1.  

We consider prior specification studies [40], [41]. Since 

their results vary and we do not have enough data to determine 
the exact form of prior distributions, we robustly defined them 

for our research, so the probability for values observed in 

prior research lie between 70% and 99.5% (except for 

parameter F) with their domains match the definition in 

Alexopoulos et al. [33]. Therefore, selected prior distributions 

are two-parameters beta, uniform, and gamma with 

parameterization [42]. 

Since our data is in the form of probabilities and the exact 

population size to construct the abridged life table is unknown, 

beta distribution is chosen for the sampling model. Beta 

distribution is considered to be more suitable than binomial or 
Poisson distribution due to unknown population size and 
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flexibility of determining mean-variance relationship. We 

denoted QY as a set of seven abridged mortality rates for 

young ages that contains q0, 4q1, 5q5, 5q10, 5q15, 5q20, and 5q25. 

We expected that the mean of sampling model for each age 

group is equal to the mean of bootstrapped samples from [2] 

and [3]. Large variances are expected to represent our low 

trust in the data without computational problems during 

iteration. The low trust is considered because of the possibility 

of inadequate sample size and variation of sample 

characteristics, inappropriate sampling technique, and 

measurement errors. If qY,i represents mortality rate for ith age 
group, then: 

 �Q!,#|A, B, C, D, E, F�~beta �1, ���-,.�-,/ � (3) 

The truncated Heligman-Pollard model in (2) could only 

calculate annual mortality rates. Yet, we need the abridged 

mortality rates for the calculation in the sampling model. 

Therefore, except for qY,1 (which represents q0), the abridged 
mortality rates should be calculated using formula (4). 

  1q	 = ∑ q4| 	1��456  (4) 

By assuming every pair of abridged mortality rates is 

independently distributed, the joint distribution in the 

sampling model can be expressed as a product of each 

observation density. By multiplying prior densities and 

sampling model, we obtained our posterior, ignoring the 

normalizing constant, Posterior ∝ a�.�6����1 − a�=�.>?@>c=.B6�B>�1 − c��?.@C6@
 

d=.C@@�@�1 − d�>?��.@>e=.@E�=E exp �− e2.14625� 

 ∏ K L� MN-,.�
L�MON-,.N-,. � Pq!,#Q MN-,.��P1 − q!,#Q MN-,.��R@#5�  (5) 

The posterior which was described in (5) made us difficult 

to obtain full posterior conditional distribution for every 

parameter, so any analytical calculation, simple Monte-Carlo 

simulation, or Gibbs sampling algorithm could not be 

implemented. Therefore, a more sophisticated Metropolis-

Hastings (MH) algorithm, as defined in Section 10.4.1 [43] 

was implemented to estimate the posterior distributions of 

each parameter.  

We were inspired by the random jump proposing method 

[44], but our parameters’ ranges could not satisfy the domain 

of normal distribution. Thus, we considered other 

distributions that were constructed by transforming a normal 
distribution, except for parameter F with values ranging in a 

closed interval. Once again, except for parameter F, we aimed 

the expected value or mode for the next proposal equals the 

current iteration value. The proposal variations were 

determined by looking at each parameter's 95% confidence 

interval width, depending on which one is easier to calculate 

in closed form.  

Since it was hard to obtain posterior distribution of annual 

mortality rates (qx), we estimated the expected value of these 

quantities by substituting the expected value of every 

parameter into (2). Annual mortality rates are strictly 
increasing function of A, strictly decreasing function of B, 

increasing function of C (for x = 0). However, it also 

decreasing function of C (for x ≥ 1), strictly increasing 

function of D, and strictly decreasing function of E. Relation 

of qx and F is quite complicated, it is increasing function of F 

if x > F, and otherwise when x < F. Hence, for constructing 

the range, we defined best and worst estimate generally based 

on matching 2.5-percentile and 97.5-percentile with the 

characteristic of mortality rate’s function. 

2)  Mortality Modelling for Old Ages: Makeham model is 

often considered for industrial practitioners to estimate 

mortality rates for old ages with its extrapolation ability. Two 

life tables that were constructed by implementing Makeham 

model are the Japanese Standard Mortality Table (2018) [45] 
and the 4th Indonesian Mortality Table (2018). According to 

Bowers et al. [46] and Dickson et al. [47], Makeham model is 

defined by expressing the force of mortality at age x (µx) as: 

 μ	 = A + BC	 (6) 

Domain for the parameters are {(A, B, C) | A > -B, B > 0, 

C ≥ 1}. According to [48], parameter values are commonly 

contained in this set: {(A, B, C) | 0.001 < A < 0.003, 10-6 < B 

< 10-3, 1.08 < C < 1.12}. Usually, good fit occurs for the 30 

to 80 years old population when mortality rates are increasing 

exponentially in age. After that, the growth rate can still be 
the same or a bit decreasing, which is assumed by the 3rd 

Heligman-Pollard model as written [40] and concluded from 

the explanation by Bebbington et al. [49]. Similar to Section 

II.C.1, our bootstrapped data was considered enough by 

following recommendations [35]–[38]. 

Regarding previous explanation in Section II.B, we used 

5qo data to fit the model with O = {30, 35, 40, …, 75, 80} and 

tried to extrapolate the 5-year mortality rates until x = 95. If 

we accurately estimated them, we could proceed to calculate 

annual mortality rates for age intervals [30, 99]. Considering 

previous research [45], [50],  also looking at G and H values 

in prior research with the full Heligman-Pollard model (which 
have similar meanings respective to B and C in (6)), we tried 

to maximize the probability of observed values in prior 

research.  

However, finding a simple distribution for representing A 

and C was not easy. Therefore, we did not directly estimate A 

and C, but incorporated two intermediary parameters. First, 

we knew that A > -B and their general values are very small. 

So, A + B must be a positive number that values very small. 

Instead of directly estimating A, we define a new parameter α 

= A + B. Second, C is slightly over 1, so C – 1 is a little over 

0. Rather than directly estimating C, we would prefer to define 
a new parameter Ϛ = C – 1. Therefore, selected prior 

distributions are exponential and gamma with 

parameterization [51]. 

We would follow a similar fashion when defining our 

sampling model for young ages. Now we denoted QO as a set 

of abridged mortality rates for old ages that contain 5q30, 5q35, 

5q40, …, until 5q80. We expected the mean of sampling model 

for each age group is equal to the mean of bootstrapped data. 

We also accommodate the fact that the population size 

decreases in terms of age. Furthermore, the variances were 

maximized to represent our low trust in the data without 

computational problems during iteration. Thus, if qO,i 
represents mortality rate for ith age group, then: 

 �QT,#|α, B, Ϛ�~beta �1, ���W,.�W,/ � (7) 
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Notice that we use similar sampling model for young-aged 

and old-aged population. If the abridged mortality rate is q, 

mean and variance of the sampling model equals q and 
������MXNY

. 

Since q is probability of individual death, Q is fit to proportion 

data of the population, actually, the values of both q and Q are 

random, also we assume independent lives in the population, 

we could consider that Q is mean of q and the population 

consists of 
�
�

�  lives. The population size decreases in term of 

age as the mortality rate increases and it converges to two, 

strengthen the facts that we consider greater variability for 

older ages and we put very low trust on our data. 

Since statistical independence is assumed for every pair of 

abridged mortality rates, calculation for full data sampling 

model can be simplified by just multiplying sampling model 
of each data. Our posterior is obtained by multiplying prior 

densities and sampling model. 

Posterior ∝ exp �− α0.02347 − b0.00627 − ϛ0.00189� × 

 ςB�.CC?C ∏ K L� MNW,.�
L�MONW,.NW,. � PqT,#Q MNW,.��P1 − qT,#Q MNW,.��R��#5�  (8) 

 

Since every element of QO should be five-year mortality rates 

and we have changed our parameterisation for Makeham 

model, now they should be calculated as: 

  Bq	 = 1 − exp �−5�α − B� − ��ϛ
�����ϛ
��c���
def�g
�� � (9) 

The likelihood in (8) is also tedious, so we could not do 

analytical method to get the posterior distribution of the 

parameters. It is also hard to find full conditional posterior 
distribution for each parameter, so we could not use Monte-

Carlo simulation with Gibbs sampling algorithm. In this case, 

we would implement Metropolis-Hastings algorithm.  

Because it is hard to obtain posterior distribution of qx, we 

would estimate expected value of qx by substituting the 

expected value of α, B, and Ϛ into: 

 q	 = 1 − exp �−�α − B� − �ϛ�ϛ
���
def�g
��� (10) 

Using calculus, (the proof is omitted) we can see that qx is 

an increasing function of α, B, and Ϛ. Hence, we could define 

best-estimate of qx by substituting 2.5-percentile of α, B, and 

Ϛ into (10), also worst-estimate of qx by substituting 97.5-

percentile of α, B, and Ϛ into (10). 

D. Investment Return Estimation 

According to International Monetary Fund [52], it is hard 

to identify the fluctuation trend of inflation, especially for 

countries with transitioning economics. Seasonal trends that 

appeared graphically can be occurred by natural variation (e.g. 

weather) and artificial variation (e.g. price setting by 

government). In practical analysis, seasonal trend is generally 

ignored to diminish inaccuracy and confusing situation in 

interpreting the fluctuation. Appropriate procedure to 

consider seasonal trend also needs exact knowledge of 

product availability time after time in the market to make 
proper adjustments. However, only analyzing annual inflation 

is also unwise because we might understate the inflation rate 

itself in the medium term. 

In this research, we assumed that monthly investment 

return can be predicted from monthly inflation rate. In order 

to keep or increase real purchasing power, investment return 

must keep up with inflation rate. Inflation is widely calculated 

by calculating the movement in price index. We had another 

assumption that monthly price ratios follow a lognormal 

stochastic process. The process could be used for estimating 

investment return since the Indonesian investment market 

follows many assumptions as described by Dickson et al [47]. 

We have both stocks and zero-coupon bonds in our market, 

paid dividends can be easily reinvested in stocks, capital 
market trades are running continuously, transaction fees are 

low, and Indonesian law of capital market law still permits 

short selling practices. 

To ensure that we can use the lognormal stochastic process 

assumption, we observed monthly ratio time-series, yearly 

ratio time-series, and empirical density plot of monthly ratios. 

No linear trend was observed, implying that the movement is 

clearly variative and condition of required data for this study 

was satisfied. Further consideration by running Augmented 

Dickey-Fuller test on R by using Tseries package [53] 

supports the hypothesis of time series stationarity for every α 
≥ 0.01. Therefore, we could proceed with this data. 

Some readers may ask why we denied suggested 

significance of lag-1 autocorrelation as value of r1 is around 

0.4. First, we are not conducting any forecast of future 

monthly ratios. We are only interested in understanding about 

distribution of the monthly ratios and it does not depend on 

time since the time-series is already stationary. From the 

distribution, we are looking for estimating the best and worst 

economic condition possible. Second, it falls in line with 

obtained data and reality in life that past conditions have a 

weak effect on future conditions. We tried to examine 
possibilities of needing more sophisticated ARMA(p, q) 

models by looking at extended autocorrelation function 

matrix calculated by TSA package [54]. After fitting the 

parameters into suggested model specifications, we found that 

the best model by Akaike Information Criterion is ARMA(2, 

3) with AIC value equals -1356.400. When we calculated the 

R2 statistics for this 5-parameters model, we only got the value 

of 0.396 and [55] considered it as a weak effect size. 

The lognormal stochastic process assumption means that 

the logarithm of monthly price ratios follows a normal 

distribution. Thus, we could use a normal model with 

unknown population mean and variance as described by [43] 
(please refer to Section 5.3 for the details). Since we did not 

have any prior research on this topic, we would construct our 

prior distribution by averaging results from frequentist fitting 

methods, including moment matching, maximum likelihood 

estimation, and percentile matching with three choices of 

interval width (70%, 90%, and 95%). With that model, we can 

obtain posterior distribution of both µ and σ. Nevertheless, 

parameters for σ still contain µ. Therefore, we need to 

approximate their values using Monte-Carlo simulations. 

Once again, by assuming that investment return is close to the 

price ratio, we are going to end this subsection with the 
distribution of accumulation factor, which equals one plus the 

return (1+i). Accumulation factor follows lognormal 

distribution with the posterior distributions of µ|σ2 and σ2 are 

going to be written as (11) and (12).  
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 hμ|y�, … , y�>C, σ�l~N �0.0047, no
�EE.E6E�    (11) hσ�|y�, … , y�>Cl~Inverse − Gamma�149.9545,0.0038�(12) 

E. Fair Annual Pure Premium Range Estimation 

We limit our research on calculating fair pure premium 

range for one-year term life insurance that starts from an 

integral age. Theoretically, we assume that benefit payment 

occurs at the moment of insured death or waiting until the end 

of the year, when practical condition is actually in the middle 
of the year. Therefore, it is more plausible for insurance 

companies to have their calculation based on first assumption, 

which in actuarial practices we denote them as A_ 	M:�_ | . By 

assuming constant discount factor during the year, and 

knowing the density function of the mortality model, we can 

calculate the annual pure premium as: 

 A_ 	M:�_ | = v vwf	�t�dt�
6  (13) 

For young ages, we only have function of annual mortality 

rates as written in (2). For old ages, we have the Makeham 

model with a well-defined continuous density function, but 

integral involving it is very hard to be done analytically. 

Hence, rather than using (13) for calculation, we approximate 

its value by: 

 A_ 	M:�_ | ≈ vz�q	 (14) 

In Section II.D, we obtained the distribution of 

accumulation factor, but we have not obtained distribution of 

discount factor �v�. Since the accumulation factor time series 
is assumed to follow a stochastic lognormal process with 

parameters µ and σ, or in another word’s accumulation factor 

is lognormal distributed with parameters µ and σ, we can also 

assume that the discount factor is having the same distribution 

with parameters –µ and σ. 

Practically, the premium must be a constant that is fixed for 

all individuals in a certain age, but our formulation in (14) still 

treats it as a random variable. Therefore, we estimated the 

expected value of pure premium by substituting the expected 

value of qx, µ, σ, and e	:�{| (equal to 1 – qx) as approximation 

for the expected value of Tx (time of death given death 

occurred in that year). For the best estimate, we substituted 

the best estimate of qx, 97.5-percentile of both µ and σ and tx 

to minimize 2.5-percentile value of discount factor 
distribution with respective µ and σ. For the worst estimate, 

we substituted the worst estimate of qx, 2.5-percentile of µ, 

97.5-percentile of σ, and tx to maximize 97.5-percentile value 

of discount factor distribution with respective µ and σ. In 

order to simplify the assumptions, we limit tx value 

corresponding with the number of days, which means that 

death in the morning is considered equal as a death in the night, 

of the same day. 

Readers may wonder why we do not simply implement 

uniform death distribution (UDD) for fractional ages to obtain 

our expected value of the pure premium. By using UDD, we 

set tx = 0.5 for all integral ages. That means if someone aged 

x is going to die in one year, he/she is expected to die in half 

a year. We consider that this is not appropriate because force 

of mortality must be increasing in term of age. For younger 

ages, tendency and probability of dying in the short term is 

smaller than the older ages. Moreover, old-aged population is 

more exposed to have sudden death because of aging. 

Our results can be extended for stochastic calculation of 
longer-term insurance products, but it is not covered in this 

article. Current digital life insurers still focus on a one-year 

term, when economic difficulties because of the COVID-19 

pandemic imply more people are interested in having less 

long-term products. 

III. RESULTS AND DISCUSSIONS 

This section explains how we check that our models have 
obtained convergence and given acceptable accuracy. We also 

provided our results and how we interpret them for the sake 

of the life insurance business. 

A. Fitting Procedure and Convergence Test Methods 

Dellaportas et al. [13] used 100,000 iterations for burn-in 

and chain thinning for every fifty iterations, with a total of 

2500 values to be kept from the full Heligman-Pollard model. 

Considering their research, we also sampled parameter values 

by 225,000 iterations for our truncated Heligman-Pollard and 
Makeham models, each for males and females. Later, we 

decided not to thin our chains because of inefficiencies [56], 

[57]. 

For every step, we set three chains to ensure that posterior 

estimates do not depend on starting values. Convergence of 

the chains considered by observing results of time-series trace 

plots, Heidelberger-Welch stationarity test with critical p-

value = 0.01, halfwidth test with ϵ = 0.25, Geweke stationarity 

test with critical p-value = 0.01, and Geweke-Rubin 

multichain convergence test. 

B. Posterior Distribution of Mortality Model Parameters 

Young-aged males’ chains converged after 10,000 

iterations. We plot their density functions for the sampled 

iterations in Fig. 3, and it seems that all the parameters are 

positively skewed. The positively skewed distribution implies 

that the modes are lower than the means. The accuracy of 

abridged mortality rates prediction is good [58], with the 

mean absolute percentage error (MAPE) of 12.74% and 

Pearson correlation coefficient (r) of 98.54%. Since real 

values in the data are between their best and worst estimates, 
we believe that our model does not rely heavily on the data. 
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Fig. 3  Estimated posterior distributions for parameters (A and B for babies; C for childhood; D, E, and F for adolescence). 

 
Old aged males’ chains converged after 15,000 iterations. 

For the sampled iterations, we plot their density functions in 

Fig. 4. According to the plots, distribution of | is close to the 

exponential distribution, while distribution for other 

parameters are quite symmetric. 

 

 
Fig. 4  Estimated posterior distributions for parameters -A (top), B (bottom 

left) and C (bottom right)- of old-aged males modified Makeham model 

 
Accuracy of abridged mortality rates prediction in fitting 

data is considerably very accurate with MAPE of 8.66% and 

correlation of 99.97% with real values in the data are between 

their best and worst estimates. Extrapolation accuracy is also 

considered very accurate, with MAPE of 8.92% and 

correlation of 99.69% with real values in the data being 

between their best and worst estimates. 

Young age females’ chains also obtain convergence after 

85,000 iterations. Their density functions show that all the 

parameters are positively skewed, except for parameter F. 

Accuracy of abridged mortality rates prediction is 
considerably good with MAPE of 11.68% and correlation of 

98.23%. Range of best and worst estimates also contain real 

values in the data. 

Last, 10,000 iterations are needed to reach convergence in 

old age females’ chains. Their density functions are having a 

similar shape to the respective model for males. Distribution 

of α is close to the exponential distribution and the rest are 

quite symmetric. Since MAPE is 9.40% and the correlation is 

99.49%, abridged mortality rates prediction in fitting data is 

considered very accurate. 
Real values in the data are also between their best and worst 

estimates. Extrapolation accuracy of mortality rates is also 

considered quite good, with MAPE of 19.62% and r 

correlation of 99.61% with real values in the data are between 

their best and worst estimates. 

C. Estimated Investment Return 

With previous mortality models, we could proceed to 

obtain annual mortality rates. We further proceed to the 

discount factor to consider reasonable investment return 
assumption during product development, pricing, valuation, 

and advertising practices. Generally, it seems feasible to 

assume that the investment return can be maximized for a long 

time of investment, or large loss was incurred when we enter 

the market in a bad condition and have to get out from the 

market soon. It falls in line with our estimate. The best case 

for insurance companies occurs if deaths happen in the end of 

the year (especially if the economic condition is at its best, see 

Fig. 5). 

On the other side, worst case occurs if deaths happen in the 

first day of protection (especially if the economic condition is 
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at its worst). It is also estimated that insurance companies are 

guaranteed to be safe from investment losses only if deaths do 

not occur in first 58 days of protection. By our calculation, the 

companies should anticipate their return to fall in the range of 

(-5.68%, 6.81%). Since the upper limit is not so high, we 

recommend that insurance companies with unexperienced 

investment managers to put most of their money in safer 

investment instruments: banking deposits, government bonds, 

and high-quality corporate bonds. 

 

 
Fig. 5  Discount factor in the best economic condition. 

D. Estimated Investment Return 

Estimated annual pure premium range for males (M) and 

females (F) at some ages are provided in Table II, specifically 

for age last birthday (denoted as x). Those rates are applicable 

for sum assured worth one million. 

E. Discussions 

Based on our results, we have calculated 100-years life 

expectancy since newborn �e6:�66_____ |�  for both males and 

females. For males, the best estimate is 77.51 years, the 

expected value is 69.74 years, and the worst estimate is 55.46 

years. For females, the best estimate is 81.07 years, the 

expected value is 73.83 years, and the worst estimate is 55.69 

years. Those can be alert for Indonesian to have put high 

concern on healthy lifestyle since worst estimate for both 
males and females are under 56 years old, which is set as 

pension age by Indonesian government for civil servants [59]. 

TABLE II 

ESTIMATED ANNUAL PURE PREMIUM RANGE 

x 
Best estimate Expected value Worst estimate 

M F M F M F 

0  4436 3124 19057 15516 129564 158641 
1  1233   444   3928   4073 10322   14831 
5      60      4    644    452   3585    5196 
10        8      7    322    319   3070    3548 
15       13     77    671    550   3123    2982 

20     129   256   1235    785   3063    2661 
25     473   489   1575    945   2902    2426 
30     841   636   1202    899   1873    1393 
40   1976  1486   2912   2162   4684   3456 
50   4506  3370   6857   5058 11396   8347 
60 10138  7536 15928 11676 27329 19886 
70 22601 16715 36619 26717 64580 46821 
80 49851 36761 82933 60439 148576 108107 

 

We have also calculated the probability of a newborn to 

survive until 100 years old (100p0). For males, the best estimate 
is 3.83%, the expected value is 0.36%, and the worst estimate 

is 0.06‰. For females, the best estimate is 9.28%, the 

expected value is 1.78%, and the worst estimate is 0.93‰. 

Since the best estimate is still over 1% for both males and 

females, importance of preparedness to face longevity risk is 

still significant. 

Assessing the significance of accident hump, previously 

we defined young-aged population as individuals aged 30 

years old or below, so we expected that accident hump 

happens before age of 30 if it occurs. Posterior mode of 

parameter F satisfies that empirical inspection of accident 

hump in age interval (20, 25) exists for males. Even the 

posterior mean and median are higher than 25, they still fall 

below 30. Posterior probability estimate of F is higher than 30 

equals 28.3%, which means that the possibility of having the 
accident hump is higher than not for males. 

However, empirical accident hump for females in age 

interval (15, 20) was not fulfilled by the parameter E of the 

posterior distribution, even the numerical posterior 

probability estimate of F in that range is zero. Further 

checking as to why it happens is required, it might imply the 

lack of our approach in detecting the hump. Other possible 

explanation is that there is no accident hump in Indonesian 

female population since observed posterior mean, median, 

and mode of F are all higher than 30, also posterior probability 

estimate of F is higher than 30 equals 84.8%. Further 
examination at Table II gives us another insight that we must 

be cautious to set premium tariff for males and females. Even 

though, generally females have lower mortality risk for a 

certain age, sometimes they face the opposite. Females have 

higher best estimate of qx for X = {11, 12, …, 24, 25}, higher 

expectation of qx for X = {1, 11}, and higher worst estimate 

of qx for X = {0, 1, …, 12, 13}. 

The interval estimates of pure premium are provided since 

we were not fully certain about the true pattern of mortality 

and investment return in population. This research is based on 

assumption that need to be further examined, thus, a more 
flexible result in the form of interval estimation is preferred 

than the mere point estimation, to allow for some variations 

to the real condition. 

We also recommended more anticipation of negative return 

since economic growth is slowing nowadays and we have to 

anticipate the worst condition. Especially, when this research 

was conducted, the world is facing coronavirus with huge 

effect in economics. 

Beside of our results, internal experience study is still 

needed for insurance companies to determine their quoted 

premium for the customers. However, new companies 

without any self-owned data might consider numbers between 
our expected value and worst estimate in good economic 

conditions. Otherwise, numbers between our best estimate 

and expected value can be considered during economic 

recession and depression to make sure that customers can 

afford the products. 

IV. CONCLUSION 

This article proposed implementation of Bayesian method 
with beta sampling model and Metropolis-Hastings algorithm 

to estimate Indonesian complete life table from its abridged 

life table. We assumed compliance of truncated Heligman-

Pollard and Makeham mortality models to construct 

underlying pattern of yearly mortality rates. We also 

estimated reasonable annual investment return range by 

Bayesian normal model and Monte-Carlo simulation method. 

Estimates from the two independent processes were combined 
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to construct fair annual pure premium range for 0 – 99 years 

old Indonesian population. 
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