
Vol.11 (2021) No. 5

ISSN: 2088-5334

Development of an Application for Interactive Research and Analysis

of the N-Queens Problem

Velin Kralev a,*, Radoslava Kraleva a, Dimitar Chakalov a
a Department of Informatics, South-West University "Neofit Rilski", Blagoevgrad, 2700, Bulgaria

Corresponding author: * velin_kralev@swu.bg

Abstract— This paper presents a study on the N-Queens Problem. Different approaches to its solution discussed in the scientific

literature are analyzed. The implementation of an algorithm based on the backtracking method is also presented. The algorithm is

optimized to find solutions in a specific subset of configurations among all possible ones. With this approach, the computational

complexity of the algorithm is reduced from exponential to quadratic. In this way, the algorithm finds all possible solutions in a shorter

time: fundamental and their symmetrical equivalents. The methodology for conducting the experiments is presented. The purpose of

the study, the tasks to be performed, and the conditions for conducting the experiments are presented as well. In connection with the

research, an application that implements the presented algorithm has been developed. This application generated all the results obtained

in this study. The experimental results show that with a linear increase in the number of queens (equivalent to a quadratic increase in

the number of fields on the board, the number of recursive calls made by the algorithm increases exponentially. Similarly, the number

of possible solutions, as well as the execution time of the algorithm (in the different modes of the application - internal, interactive, and

combined), also increases exponentially. However, the algorithm's execution time in the internal mode is significantly shorter than in

the other two modes - interactive and combined. The future guidelines for the study are presented.

Keywords— N-queens problem; backtracking algorithm; decision problem; software development; application programs.

Manuscript received 19 Feb. 2021; revised 21 May 2021; accepted 10 Jun. 2021. Date of publication 31 Oct. 2021.

IJASEIT is licensed under a Creative Commons Attribution-Share Alike 4.0 International License.

I. INTRODUCTION

The N-Queens problem (NQP) is a classical, combinatorial

optimization problem that has been actively studied in the

recent years [1]–[4]. This problem was originally known as

Eight Queen Problem (EQP). The size of a standard

chessboard is a square measuring 8*8 squares. In solving this

problem, the case in which the size of the board is greater than
or equal to 4*4 squares is usually considered. It is easy to

check that if the size of the board is less than or equal to 3*3

the problem has no solution.

A condition of the task for chess queens is to place Q (or

N) queens on a square board so that none of them attacks any

of the others. In other words, the goal is to place the pieces on

the board so that they do not endanger each other (which in

turn means that there can be at most one queen on each

horizontal, vertical, and diagonal). The large number of

scientific publications related to the research and analysis of

this problem leads to the use of already known benchmark
solutions in another scientific research [5].

There is a wide variety of possible methods for solving

NQP and NQP’s different formulations [6], [7]. Many of these

methods are discussed in the scientific literature, comparing

different approaches and publishing improved versions of

existing algorithms [8], [9]. Published results show that

genetic algorithms [10] and their modifications based on

improved genetic operations [11] generate a large part of all

possible solutions at a predetermined board size. In other

scientific publications, a comparative analysis is made

between different approaches and algorithms comparing the

number of generated solutions and the time for their
generation [12]. Some efficient metaheuristic approaches [13],

[14] show that they can find solutions for NQP in a very short

time. These approaches are based on combining evolutionary

algorithms with different heuristic techniques. The same

heuristic approaches are successfully used in solving many

classes of combinatorial optimization problems [15], [16].

These studies show that combined approaches, in some cases,

have significantly better computational times than basic

heuristic techniques. Approaches based on neural networks

Montoro et al. [17] and Lapushkin [18] are also used in

solving NQP.

1811

Other studies show that the N-Queens problem can be

successfully solved by other techniques, such as simulated

annealing [19], methods based on local search [20], heuristic

and meta-heuristic approaches [21], [22]. In order to improve

the speed of solving NQP, parallel algorithms are being

developed, such as those based on multicore architecture [23],

those based on parallel computing [24], and others based on

specific computational models [25]. To increase productivity,

methods of using the hardware capabilities of the computer

systems on which the respective algorithms are executed are

used [26], [27]. Also, methods based on accelerated execution
in solving the N-Queens problem by using the ability for

communication between the cores and threads of the CPU [28]

are used. Software products that implement the NQP task in

the form of a game (puzzle) have been developed. One such

application used in the field of education is presented in [29].

Fig. 1 shows two (asymmetric) solutions of the N-Queens

problem at a board size of 9 x 9. With this board size all

possible solutions are 352 of which only 46 are unique (i.e.,

asymmetric).

Fig. 1 Two solutions of the NQP with a board size of 9 x 9

The present study will use an approach to generate all

solutions by examining only a certain subset among all

possible candidates for a solution. When using this approach,

it is very important to apply a method that reduces the number

of analyzed individual cases of the problem. This can be done

by omitting entire branches from the recursion tree, for which

it is certain at an earlier stage that they will not lead to an

acceptable solution. The idea of the algorithm that will be

presented in the next section is just such one.

II. MATERIAL AND METHOD

In this section, an implementation of a recursive algorithm

for solving the NQP will be presented. This algorithm uses the

backtracking approach. Initially, a variable named

QueenCount is initialized with a value of 1. The next step is

to check if QueenCount queens are successfully placed on the

board. If this is true, a test is made to place the next queen on

the board (i.e., QueenCount + 1). However, the next queen

must be placed in such a square on the board that it does not
fall into a common horizontal, vertical or diagonal with the

queens already located on the board (which are exactly

QueenCount in number). This is the step forward of the

algorithm. If at the last (successful) placement of a queen on

the board it turns out that the placed queens are exactly N (i.e.,

QeueenCount = N), then this means that an acceptable

solution has been found. However, if there is no free position

for the queen with the QueenCount number, then the

algorithm performs a step back (backtracking), after which it

starts looking for another suitable square for placing the queen

with the number (QueenCount - 1).

Both local and global data structures (variables and arrays)
can be used when performing an algorithm. The algorithm

manipulates these structures (stored in the computer's RAM)

during its execution. Global data structures are accessible

from all functions (methods) of the application. Fig. 2 shows

the global declarations of the variables and dynamic arrays

that the NQP solution algorithm uses.

01 const
02 │ Size = 8;
03 var
04 │ Start, Finish: Cardinal;
05 │ QueenCount: Integer;
06 │ SolutionCount: UInt64;
07 │ RecursionCount: UInt64;
08 │ RowsArray: array[1..Size] of Byte;
09 │ ColsArray: array[1..Size] of Byte;
10 │ RightDiagonal: array[1..2 * Size-1] of Byte;
11 │ LeftDiagonal: array[1..2 * Size] of Byte;
12 │ Fields: array[1..Size, 1..Size] of Byte;
13 │ Solution: array[1..Size, 1..Size] of Byte;

Fig. 2 Source-code of the global declarations

The size constant (of Integer type) determines the size of

the board and the number of queens to be placed on the board.

The variables Start and Finish (of Cardinal type) are used to

record the time to find a solution (i.e., how long the algorithm

has been running). The QueenCount variable (of Integer type)

stores the current number of the queens placed on the board.

The SolutionCount variable (of UInt64 type) can only accept

positive values and store the current number of solutions
found. The RecursionCount variable (also of UInt64 type)

stores the current number of recursive calls that the algorithm

has made. The 1-dimensional arrays RowsArray, ColsArray,

1812

RightDiagonal and LeftDiagonal (of Byte type) store the

indexes of the fields on which queens are placed (respectively

in row, column and both diagonals). The 2-dimensional Fields

array (of Byte type) stores information about the "attacked"

fields on the board. The values used are as follows: 1 - the

field is "attacked", 0 - the field is not "attacked". The Solution

array (also of type Byte) stores a partial or complete solution

of the problem, as the values used are as follows 1 - there is a

queen placed in this field and 0 otherwise.

Fig. 3 shows the source-code of the DisableFields method,

which is used to mark as disabled all "attacked" fields on the
board by the placed queens.

01 procedure DisableFields(ACol, ARow: Integer);
02 var
03 │ Col, Row, DCol, DRow: Integer;
04 begin
05 │ Solution[ACol, ARow] := 1;
06 │ for Col := 1 to Size do
07 │ │ if (Fields[Col, ARow] <> 1) then
08 │ │ Fields[Col, ARow] := 1;
09 │ for Row := 1 to Size do
10 │ │ if (Fields[ACol, Row] <> 1) then
11 │ │ Fields[ACol, Row] := 1;
12 │ DCol := ACol - Size; DRow := ARow - Size;
13 │ repeat
14 │ │ Inc(DCol); Inc(DRow);
15 │ │ if ((DCol >= 1) and (DRow >= 1) and
16 │ │ │ (DCol <= Size) and (DRow <= Size)) then
17 │ │ │ if (Fields[DCol, DRow] <> 1) then
18 │ │ │ Fields[DCol, DRow] := 1;
19 │ until ((DCol >= Size) or (DRow >= Size));
20 │ DCol := ACol + Size; DRow := ARow - Size;
21 │ repeat
22 │ │ Dec(DCol); Inc(DRow);
23 │ │ if ((DCol >= 1) and (DRow >= 1) and
24 │ │ │ (DCol <= Size) and (DRow <= Size)) then
25 │ │ │ if (Fields[DCol, DRow] <> 1) then
26 │ │ │ Fields[DCol, DRow] := 1;
27 │ until ((DCol <= 1) or (DRow >= Size));
28 end;

Fig. 3 Source-code of the DisableFields method

The DisableFields method receives the variables ACol and

ARow as input parameters. These parameters contain the

position (column and row) on which the next queen of the

solution is placed. In the declarative part of the DisableFields

method, the local variables Col, Row, DCol and DRow (of

Integer type) are declared (line 03). The first code that the
DisableFields method executes is to fix in the two-

dimensional array the solution that a queen is already placed

at the ACol, ARow position (line 05). The next code that

executes the DisableFields method is to disable (i.e. mark as

"attacked") all non-disabled fields from column ACol (lines

06-08), all non-disabled fields from row ARow (lines 09-11),

all non-disabled fields from one of the left diagonals, which

contains the field ACol, ARow (lines 12-19) and all non-

disabled fields from one of the right diagonals, which also

contains the field ACol, ARow (lines 20-27).

An inefficient approach to solving NQP is to test all
possible combinations of queen’s placements on the board.

Each time the required number of queens is positioned on the

board, it is checked whether they all fulfill the condition of

the task and if this is not fulfilled, the specific combination is

rejected. However, this approach can be optimized. Since

there can be at most one queen on each row and column of the

board, it is sufficient to check only those combinations in

which there is exactly one queen on each row and column.

The algorithm can be improved by checking only those fields

on the board that are not "attacked" by already placed queens.

The implementation of the algorithm follows.

Fig. 4 shows the source-code (a) and the flowchart (b) of

the FindSolutions recursive method. This method checks if it

is possible to position the next queen on any of the free fields

on the board. The number of the next queen is passed as an

input parameter of the method - this is the variable QNumber.

01 procedure FindSolutions(QNumber: Byte);
02 begin
03 │ Inc(RecursionCount);
04 │ if QNumber > Size then begin
05 │ │ QueenCount := Size;
06 │ │ Inc(SolutionCount);
07 │ │ for var Col: Integer := 1 to Size do
08 │ │ │ for var Row: Integer := 1 to Size do
09 │ │ │ │ if (RowsArray[Row] = Col) then
10 │ │ │ │ DisableFields(Col, Row)
11 │ │ │ │ else Solution[Col, Row] := 0;
12 │ │ Exit;
13 │ end;
14 │ for var I: Integer := 1 to Size do begin
15 │ │ if ((ColsArray[I] <> 0) and
16 │ │ │(RightDiagonal[QNumber + I] <> 0) and
17 │ │ │(LeftDiagonal[Size+QNumber-I] <> 0)) then
18 │ │ begin
19 │ │ │ ColsArray[I] := 0;
20 │ │ │ RightDiagonal[QNumber + I] := 0;
21 │ │ │ LeftDiagonal[Size+QNumber - I] := 0;
22 │ │ │ RowsArray[QNumber] := I;
23 │ │ │ FindSolutions(QNumber + 1);
24 │ │ │ ColsArray[I] := 1;
25 │ │ │ RightDiagonal[QNumber + I] := 1;
26 │ │ │ LeftDiagonal[Size + QNumber - I] := 1;
27 │ │ end;
28 │ end;
30 end;

Fig. 4 (a) Source-code of the recursion-based method FindSolutions

Fig. 4 (b) Flowchart of the recursion-based method FindSolutions

1813

The number of recursive calls to FindSolutions is stored in

the global variable RecursionCount. The first code that

executes the FindSolutions method is to increase by 1 the

value of the variable RecursionCount (line 03). Then, the

method checks whether the required number of queens has

already been placed on the board (line 04). If this is done, the

number of solutions found is increased by 1 (line - 06) and the

two-dimensional arrays Fields and Solutions are filled (lines

07 - 11). The two-dimensional Fields array stores information

about the "attacked" fields, and the two-dimensional Solution

array stores information about the current solution. Then, the
execution of the method is terminated (line 12). In this

interruption, the control of the computational process is

actually transferred from the last call of the FindSolution

method (stored in the stack) to the previous one. In this case,

if there are more solutions to find, the recursive process will

continue to find them. If the exact number of queens has not

yet been placed on the board, the FindSolution method

initializes a loop (lines 14 – 28). For each value (from 1 to

size) of the local variable I checks whether there is no queen

in the column with index I or in some of the two diagonals. If

a free position is found, a queen is placed at that position and
the FindSolution method (line 23) is called recursively. On

this call, the FindSolution method receives as a parameter the

number of the next queen (QNumber + 1). However, if no free

position can be found for the current queen, the algorithm

takes a step back (backtracking). In this way, the algorithm

starts a new search process for another free position of the

previous queen (i.e. the one with number QNumber - 1). This

process is repeated until all possible solutions are generated.

The InitializeAndStart method starts the NQP solution

search process (Fig. 5).

01 procedure InitializeAndStart;
02 var
03 │ I: Integer; Msg: String;
04 begin
05 │ QueenCount:=0; SolutionCount:=0;
06 │ RecursionCount:=0;
07 │ for I:=1 to Size do ColsArray[I]:=1;
08 │ for I:=1 to 2*Size-1 do RightDiagonal[I]:=1;
09 │ for I:=1 to 2*Size do LeftDiagonal[I]:=1;
10 │ Start := GetTickCount;
11 │ FindSolutions(1);
12 │ Finish := GetTickCount;
13 │ Msg := IntToStr(SolutionCount) + ', ' +
14 │ IntToStr(RecursionCount) + ', ' +
15 │ IntToStr(Finish-Start) + ' ms';
16 end;

Fig. 5 Source-code of the InitializeAndStart method

In the declarative part of the InitializeAndStart method,

two local variables are declared - I and Msg (line 03). The

integer variable I is used as the control variable for the loops

initializing the arrays ColsArray, RightDiagonal and

LeftDiagonal (lines 07 - 09). This method also initializes the

variables QueenCount, SolutionCount, and RecursionCount

by setting each of these variables to 0 (lines 05 - 06). Before
calling the FindSolutions method, the Start variable stores the

time to start the NQP solution search process (line 10). Once

the FindSolution method has finished, the Finish variable

stores the end time of the calculation process. The time is

obtained from the GetTickCount function. This function

returns the time from the start of the computer's operating

system (in milliseconds). The difference between the values

of the variables Finish and Start is actually the execution time

of the FindSolution method (in milliseconds). Finally, the

InitializeAndStart method concatenates in the string variable

Msg the number of generated solutions (the SolutionCount

variable), the number of recursive calls (the RecursionCount

variable), and the execution time of the whole process.

The complexity of the algorithm, after optimization,

remains exponential and is respectively O(n!).

III. RESULT AND DISCUSSION

A. Development of an Application for Conducting

Experiments

There are many programming languages and application

development environments. Some of them provide the

possibility to compile the same code for different operating

systems. These integrated development environments enable

the application's interface to be visually designed. However,

the various functions of this application are implemented with

event-oriented programming. In this way, different types of

applications (such as mobile, desktop, services, etc.) can be
developed in a short time. These applications can perform

various tasks (data analysis, data processing, graphic design,

etc.). In addition, these applications can be run on different

target platforms (operating systems and servers). These

capabilities of application development environments are

referred to as Cross-Platform Application Development [30]–

[32] or Multi-Device Application Development [33].

Application development is usually done in two stages -

application design and programming. During the application

design stage, the application's graphical user interface (GUI)

is created. This is done by positioning (arranging) controls on

the forms (also called windows) of the application [34]. Each
form of an application can be considered as a container for

controls. During the application design stage, the developer

(designer) creates the layout of the application. During the

programming stage, the developer creates the functionality of

the application. This is done by implementing user functions

with a specific purpose or by implementing event handlers.

Event handlers are functions that are called by the application

when certain events occur. The application receives the event

as a message sent by the operating system.

For the purposes of the study, an application was developed

to perform the planned experiments. The N Queens Problem
Application is shown in Fig. 6.

Fig. 6 Session of work whit the N Queens Problem Application

1814

The developed application provides some important

functions. In the [Cols \ Rows] section, the board size can be

set, with possible values ranging from 4 to 26. In the [Square

Size] section, the field size of the board can be set, with

possible values ranging from 44 to 66. In the [Square Colors]

section, different colors can be selected for the "dark", "light"

and "attacked" fields on the board. In the [Queen Figure]

section, the image for the queens can be selected. The [Start]

and [Stop] buttons start and stop the solution search process,

respectively. When the [Use Interactive Mode] checkbox is

checked, a new solution will be displayed immediately. When
the [Save Solutions] checkbox is checked, the new solution

will be saved (added) in the [Solutions] list. The text labels

"Solutions", "Recursions" and "Time (in ms)" show the

number of solutions found, the number of recursive calls and

the elapsed time for finding all solutions, respectively. When

a solution is selected from the "Solutions" list, the application

immediately visualizes it.

B. Experimental results

The N Queens Problem Application generated the

experimental results. The application was run on a computer

with 32-bit Windows 10 Pro operating system and hardware

configuration as follows: processor: Intel(c) Core i5-10400

(2.9/4.3 GHz, 12M); RAM memory: 8 GB DDR4 2666 MHz.

For conducting the experiments, 14 (fourteen) sizes of

boards were selected, respectively from the standard size 8x8

to 21x21. Table 1 shows summary information for the input

data.

TABLE I
SUMMARY INFORMATION FOR THE INPUT DATA

No Board

Size

Fields

Count

Fundamental

Solutions (F)

All

Solutions (A)

Ratio

F/A

Ratio

F/(F-1)

1 8 х 8 64 12 92 0.130 2.0000

2 9 х 9 81 46 352 0.131 3.8333

3 10 х 10 100 92 724 0.127 2.0000

4 11 х 11 121 341 2680 0.127 3.7065

5 12 х 12 144 1787 14200 0.126 5.2405

6 13 х 13 169 9233 73712 0.125 5.1668

7 14 х 14 196 45752 365596 0.125 4.9553

8 15 х 15 225 285053 2279184 0.125 6.2304

9 16 х 16 256 1846955 14772512 0.125 6.4793

10 17 х 17 289 11977939 95815104 0.125 6.4852

11 18 х 18 324 83263591 666090624 0.125 6.9514

12 19 х 19 361 621012754 4968057848 0.125 7.4584

13 20 x 20 400 4878666808 39029188884 0.125 7.8560

14 21 x 21 441 39333324973 314666222712 0.125 8.0623

The "Ratio (F/A)" column shows the ratio between the

number of fundamental solutions and the number of all

solutions. It can be seen that after a board size of 12x12, the

values of this ratio are 12.5%. This ratio shows that the

number of fundamental (asymmetric) solutions represents

12.5% of the number of all possible solutions. Also, this value

shows that the number of symmetric solutions is 8 times

greater than the number of fundamental solutions. This can be
calculated from the reciprocal value A/F. This dependence is

a consequence of the fact that there are exactly 8 ways to turn

and/or rotate a square symmetrically. Two ways horizontally,

two ways vertically; two ways on the main diagonal and two

ways on the secondary diagonal. The "Ratio (F/(F–1))"

column shows the increase in the number of fundamental

solutions relative to the number of fields on the board

(respectively the size of the board). It can be seen that these

values increase linearly in contrast to the number of

fundamental solutions, which increase exponentially.

The purpose of this study is to analyze the three different

modes - internal, interactive and combined, in terms of the

application execution time. Table 2 shows the results of the

experiments. The values in the "Internal", "Interactive" and

"Combined" columns are arithmetic mean of four different

application runs (for each of the modes).

TABLE IIIII
RESULTS OF THE EXPERIMENTS PERFORMED

Fields

Count

All

Solutions

Recursion

Calls

Time

Internal

Time

Interactive

Time

Combined

64 92 2057 0.02 s 0.24 s 0.38 s

81 352 8394 0.02 s 1.02 s 1.45 s

100 724 35539 0.03 s 2.66 s 3.22 s

121 2680 166926 0.14 s 10.17 s 13.08 s

144 14200 856189 0.75 s 55.35 s 1 min. 46 s

169 73712 4674890 4.08 s 7 min. 19 s 19 min. 54 s

196 365596 27358553 23.84 s 43 min. 20 s 2 h. 1 min

225 2279184 171129072 2 min. 37 s 5 h. 19 min 15 h. 27 min

256 14772512 1141190303 20 min. 14 s 17 h. 48 min > 3 days

289 95815104 7473578112 2 h. 43 min N/A N/A

For each of the input sizes, four tests were made in the three

different modes of application - internal, interactive and

combined. In the internal mode, the application does not
visualize and does not save the found solutions. Both the "Use

Interactive Mode" and "Save Solutions" checkboxes are

unchecked in this mode. The "Use Interactive Mode"

checkbox is checked in the application's interactive mode, but

the "Save Solutions" checkbox is unchecked. In this mode,

when a solution is found, it is immediately visualized. Both

checkboxes - "Use Interactive Mode" and "Save Solutions"

are checked in combined mode. In this way, when a solution

is found, it is immediately visualized and stored into the

"Solutions" list.

Fig. 7 shows the influence of the number of fields (x-axis)
on the number of all solutions (y-axis).

Fig. 7 Influence of the number of fields on the number of all solutions

Fig. 8 shows the influence of the number of fields (x-axis)

on the number of recursive calls (y-axis).

1815

Fig. 8 Influence of the number of fields on the number of recursive calls

From the charts of Fig. 7 and Fig. 8, with a linear increase

in the size of the board (respectively the number of fields on

the board), the number of all solutions and the number of

recursive calls increase exponentially. The ratio between the

number of recursive calls and the number of all solutions

changes from 22 times (for an 8 x 8 board) to 78 times (for a

17 x 17 board). Fig. 9 shows the influence of the number of

fields (x-axis) on the algorithm's execution time (y-axis) in the

internal mode.

Fig. 9 Influence of the number of fields on the execution time of the algorithm

in the internal mode

Fig. 10 Influence of the number of fields on the algorithm's execution time,

summarized in the three modes.

Fig. 10 shows the influence of the number of fields (x-axis)

on the execution time (y-axis) summarized in the three modes.

From the charts of Fig. 9 and Fig. 10, with a linear increase in

the number of fields on the board, the execution time on the

algorithm in the internal mode increases exponentially. It is

important to specify that the values on the y scale in Fig. 10

are on a logarithmic scale. This chart shows that the combined

mode and the interactive mode are comparable in terms of the

algorithm's execution time. In contrast, the internal mode is

significantly faster, with differences in values of the order of

hundreds of times. Therefore, the internal mode should be
preferred in future studies of the N-Queens problem.

IV. CONCLUSION

In this paper, a study of the N-Queens Problem was

presented. Different approaches to its solution, which are

discussed in detail in the scientific literature, were analyzed.

The implementation of an algorithm based on the

backtracking method was also presented. The algorithm was
optimized to find solutions in a specific subset of

configurations among all possible ones. With this approach,

the computational complexity of the algorithm was reduced

from exponential to quadratic. In this way, the algorithm finds

in a shorter time all possible solutions, both fundamental and

their symmetrical equivalents. The definitions of the various

global variables and the dynamic data structures - vectors

(arrays) and matrices (two-dimensional arrays) that the

algorithm uses were also described. The source codes of the

implemented methods (procedures and functions) were

presented and analyzed. The method for measuring the

execution time of the algorithm used by the start-up procedure
takes into account the multitasking mode of the operating

system.

The methodology for conducting the experiments was

presented. The purpose of the study, the tasks to be performed

and the conditions for conducting the experiments were

presented as well. As part of the methodology, 14 board sizes

were presented, from 8 x 8 (standard chessboard) to 21 x 21,

respectively. The ratios between the number of fundamental

solutions and the number of all solutions for each of the

selected board sizes were calculated. For all solutions, the

incremental step between every two consecutive values was
calculated. In connection with the research, an application

was developed that implements the presented algorithm. Its

main functions were summarized. All results obtained in this

study were generated by this application.

The experimental results showed that with a linear increase

in the number of queens (equivalent to a quadratic increase in

the number of fields on the board), the number of recursive

calls made by the algorithm increased exponentially.

Similarly, the number of possible solutions, as well as the

execution time of the algorithm (in the different modes of the

application - internal, interactive and combined), also
increased exponentially. However, the execution time of the

algorithm in the internal mode was significantly shorter than

in the other two modes - interactive and combined. The ratio

between the number of recursive calls and the number of all

solutions was also calculated. This ratio varied between 22

times (with a board size of 8 x 8) to 78 times with a board size

of 17 x 17.

1816

ACKNOWLEDGMENT

This work was supported by the South-West University

"Neofit Rilski" in Bulgaria.

REFERENCES

[1] K. Pratt, "Closed-form expressions for the n-queens problem and

related problems," International Mathematics Research Notices, vol.

2019, no. 4, pp. 1098-1107, Feb. 2019, 10.1093/imrn/rnx119.

[2] K. C. Buño, F. G. C. Cabarle, M. D. Calabia, and H. N. Adorna,

"Solving the N-Queens problem using dP systems with active

membranes," Theoretical Computer Science, vol. 736, pp. 1-14, Aug.

2018, 10.1016/j.tcs.2017.12.013.

[3] M. A. Ayub, K. A. Kalpoma, H. T. Proma, S. M. Kabir, and R. I. H.

Chowdhury, "Exhaustive study of essential constraint satisfaction

problem techniques based on N-Queens problem," in Proc. 20th

International Conference of Computer and Information Technology,

ICCIT 2017, Dhaka, Bangladesh, 2018, pp. 1–6.

[4] M. Plauth, F. Feinbube, F. Schlegel, and A. Polze, "Using Dynamic

Parallelism for Fine-Grained, Irregular Workloads: A Case Study of

the N-Queens Problem," in Proc. 2015 3rd International Symposium

on Computing and Networking, CANDAR 2015, Hokkaido, Japan,

2016, art. no. 7424747, pp. 404-407, 10.1109/CANDAR.2015.26.

[5] A. F. J. Al-Gburi, S. Naim, A. N. Boraik, "Hybridization of bat and

genetic algorithm to solve N-queens problem," Bulletin of Electrical

Engineering and Informatics, vol. 7, no. 4, pp. 626-632, Dec. 2018,

10.11591/eei.v7i4.1351.

[6] O. Kolossoski, L. C. Matioli, E. M. R. Torrealba, and J. G. Silva,

"Modular knight distance in graphs and applications on the n-queens

problem," Discrete Mathematics, vol. 343, no. 12, art. no. 112136, Dec.

2020, 10.1016/j.disc.2020.112136.

[7] M. Bača, S. C. López, F. A. Muntaner-Batle, and A. Semaničová-

Feňovčíková, "New Constructions for the n-Queens Problem," Results

in Mathematics, vol. 75, no. 1, art. no. 41, Mar. 2020, 10.1007/s00025-

020-1166-9.

[8] A. Alhassan, "Build and conquer: Solving N queens problem using

iterative compression," in Proc. International Conference on

Computer, Control, Electrical, and Electronics Engineering 2019,

ICCCEEE 2019, Sudan, 2019, art. no. 9070976.

[9] G. Zheng and Y. Xu, "A Hybrid Chemical Reaction Optimization

Algorithm for N-Queens Problem," Advances in Intelligent Systems

and Computing, vol. 1274 AISC, pp. 128-137, 2021, 10.1007/978-

981-15-8462-6_15.

[10] I. A. Humied, "Solving N-Queens problem using subproblems based

on genetic algorithm," IAES International Journal of Artificial

Intelligence, vol. 7, no. 3, pp. 130-137, Sep. 2018,

10.11591/ijai.v7.i3.pp130-137.

[11] V. Jain and J. S. Prasad, "Solving N-queen problem using genetic

algorithm by advance mutation operator," International Journal of

Electrical and Computer Engineering, vol. 8, no. 6, pp. 4519-4523,

Dec. 2018, 10.11591/ijece.v8i6.pp.4519-4523.

[12] A. K. Dubey, V. Ellappan, R. Paul, and V. Chopra, "Comparative

analysis of backtracking and genetic algorithm in n queen’s problem,"

International Journal of Pharmacy and Technology, vol. 8, no. 4, pp.

25618-25623, Dec. 2016.

[13] P. N. Sharief and B. S. Saini, "Metaheuristic techniques on N-Queen

problem: DE VS ABC," International Journal of Applied Engineering

Research, vol. 10, no. 55, pp. 4240-4244, 2015.

[14] E. Masehian, H. Akbaripour, and N. Mohabbati-Kalejahi, "Landscape

analysis and efficient metaheuristics for solving the n-queens

problem," Computational Optimization and Applications, vol. 56, no.

3, pp. 735-764, Dec. 2013, 10.1007/s10589-013-9578-z.

[15] V. Kralev, R. Kraleva, and S. Kumar, "A modified event grouping

based algorithm for the university course timetabling problem,"

International Journal on Advanced Science, Engineering and

Information Technology, vol. 9, no. 1, pp. 229-235, 2019, 10.18517/

ijaseit.9.1.6488.

[16] V. Kralev, "Different applications of the genetic mutation operator for

symetric travelling salesman problem," International Journal on

Advanced Science, Engineering and Information Technology, vol. 8,

no. 3, pp. 762-770, 2018, 10.18517/ijaseit.8.3.4867.

[17] F. Arroyo Montoro, S. Gómez-Canaval, K. Jiménez Vega, and A.

Ortega De La Puente, "A Linear Time Solution for N-Queens Problem

Using Generalized Networks of Evolutionary Polarized Processors,"

International Journal of Foundations of Computer Science, vol. 31, no.

1, pp. 7-21, Jan. 2020, 10.1142/S0129054120400018.

[18] A. A. Lapushkin, "Application of Hopfield neural network to the N-

queens problem," Advances in Intelligent Systems and Computing, vol.

449, pp. 115-120, 2016, 10.1007/978-3-319-32554-5_15.

[19] V. M. Saffarzadeh, P. Jafarzadeh, and M. Mazloom, "A hybrid

approach using particle swarm optimization and simulated annealing

for N-queen problem," World Academy of Science, Engineering and

Technology, vol. 43, pp. 974-978, 2010.

[20] H. Motameni, S. Bozorgi Hossein, M. Ali Shaban Nezhad, G.

Berenjian, and B. Barzegar, "Solving N-queen problem using

gravitational search algorithm," Life Science Journal, vol. 10, no. 1,

pp. 37-44, Mar. 2013.

[21] D. Chatham, "The n queens problem with forbidden squares," Utilitas

Mathematica, vol. 111, pp. 199-210, 2019.

[22] P. Prudhvi Raj, P. Shah, and P. Suresh, "Faster Convergence to N-

Queens Problem Using Reinforcement Learning," Communications in

Computer and Information Science, vol. 1290, pp. 66-77, 2020,

10.1007/978-981-33-6463-9_6.

[23] S. Saxena, N. Sharma, and S. Sharma, "Parallel computing in genetic

algorithm (GA) with the parallel solution of n Queen’s Problem based

on GA in multicore architecture," International Journal of Applied

Engineering Research, vol. 10, no. 17, pp. 37707-37716, 2015.

[24] C. Jianli, C. Zhikui, W. Yuxin, and G. He, "Parallel genetic algorithm

for N-Queens problem based on message passing interface-compute

unified device architecture," Computational Intelligence, vol. 36, no.

4, pp. 1621-1637, Nov. 2020, 10.1111/coin.12300.

[25] J. Cao, Z. Chen, Y. Wang, and H. Guo, "Parallel Implementations of

Candidate Solution Evaluation Algorithm for N-Queens Problem,"

complexity, vol. 2021, art. no. 6694944, 2021, 10.1155/2021/6694944.

[26] Y. Azuma, H. Sakagami, and K. Kise, "An efficient parallel hardware

scheme for solving the N-queens problem," in Proc. 2018 IEEE 12th

International Symposium on Embedded Multicore/Many-Core

Systems-on-Chip, MCSoC 2018, Hanoi, Viet Nam, 2018, art. no.

8540208, pp. 16-22.

[27] F. J. De Souza and F. L. De Mello, "N-Queens Problem Resolution

Using the Quantum Computing Model," IEEE Latin America

Transactions, vol. 15, no. 3, art. no. 7867605, pp. 534-540, Mar. 2017,

10.1109/TLA.2017.7867605.

[28] A. Maroosi and R. C. Muniyandi, "Accelerated execution of P systems

with active membranes to solve the N-queens problem," Theoretical

Computer Science, vol. 551, no. C, pp. 39-54, 2014, 10.1016/j.tcs.

2014.05.004.

[29] Y. Sasaki, M. Fukui, and T. Hirashima, "Development of iOS software

n-queens problem for education and its application for promotion of

computational thinking," in Proc. 2019 IEEE 8th Global Conference

on Consumer Electronics, GCCE 2019, Osaka, Japan, 2019, art. no.

9015331, pp. 563-565.

[30] K. Vassallo, L. Garg, V. Prakash, and K. Ramesh, "Contemporary

technologies and methods for cross-platform application

development," Journal of Computational and Theoretical

Nanoscience, vol. 16, pp. 3854-3859, 2019, 10.1166/jctn.2019.8261.

[31] M. Cuadros, A. De la Fuente, R. Villalta, and A. Barrientos, "Cross-

platform enterprise application development framework for large

screen surfaces," Smart Innovation, Systems and Technologies, vol.

140, pp. 161-169, 2019, 10.1007/978-3-030-16053-1_15.

[32] M. K. Yahya-Imam, S. Palaniappan, and S. M. Ghadiri, "Investigation

of methodical framework for cross-platform mobile application

development: Significance of Codename One," International Journal

of Computer Aided Engineering and Technology, vol. 11, no. 4-5, pp.

439-448, 2019, 10.1504/IJCAET.2019.100443.

[33] P. S. Mendez, J. C. Silva, and J. L. Silva, "Multi-screen and multi-

device game development," Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), vol. 10272 LNCS, pp. 74-83, 2017,

10.1007/978-3-319-58077-7_7.

[34] M. L. Hamzah, A. A. Purwati, E. Rusilawati, and Hamzah, "Rapid

application development in design of library information system in

higher education," International Journal of Scientific and Technology

Research, vol. 8, no. 11, pp. 153-156, Nov. 2019.

1817

