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Abstract— This paper presents a study on the N-Queens Problem. Different approaches to its solution discussed in the scientific 

literature are analyzed. The implementation of an algorithm based on the backtracking method is also presented. The algorithm is 

optimized to find solutions in a specific subset of configurations among all possible ones. With this approach, the computational 

complexity of the algorithm is reduced from exponential to quadratic. In this way, the algorithm finds all possible solutions in a shorter 

time: fundamental and their symmetrical equivalents. The methodology for conducting the experiments is presented. The purpose of 

the study, the tasks to be performed, and the conditions for conducting the experiments are presented as well. In connection with the 

research, an application that implements the presented algorithm has been developed. This application generated all the results obtained 

in this study. The experimental results show that with a linear increase in the number of queens (equivalent to a quadratic increase in 

the number of fields on the board, the number of recursive calls made by the algorithm increases exponentially. Similarly, the number 

of possible solutions, as well as the execution time of the algorithm (in the different modes of the application - internal, interactive, and 

combined), also increases exponentially. However, the algorithm's execution time in the internal mode is significantly shorter than in 

the other two modes - interactive and combined. The future guidelines for the study are presented. 
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I. INTRODUCTION

The N-Queens problem (NQP) is a classical, combinatorial 

optimization problem that has been actively studied in the 

recent years [1]–[4]. This problem was originally known as 

Eight Queen Problem (EQP). The size of a standard 

chessboard is a square measuring 8*8 squares. In solving this 

problem, the case in which the size of the board is greater than 
or equal to 4*4 squares is usually considered. It is easy to 

check that if the size of the board is less than or equal to 3*3 

the problem has no solution. 

A condition of the task for chess queens is to place Q (or 

N) queens on a square board so that none of them attacks any

of the others. In other words, the goal is to place the pieces on

the board so that they do not endanger each other (which in

turn means that there can be at most one queen on each

horizontal, vertical, and diagonal). The large number of

scientific publications related to the research and analysis of

this problem leads to the use of already known benchmark
solutions in another scientific research [5].

There is a wide variety of possible methods for solving 

NQP and NQP’s different formulations [6], [7]. Many of these 

methods are discussed in the scientific literature, comparing 

different approaches and publishing improved versions of 

existing algorithms [8], [9]. Published results show that 

genetic algorithms [10] and their modifications based on 

improved genetic operations [11] generate a large part of all 

possible solutions at a predetermined board size. In other 

scientific publications, a comparative analysis is made 

between different approaches and algorithms comparing the 

number of generated solutions and the time for their 
generation [12]. Some efficient metaheuristic approaches [13], 

[14] show that they can find solutions for NQP in a very short

time. These approaches are based on combining evolutionary

algorithms with different heuristic techniques. The same

heuristic approaches are successfully used in solving many

classes of combinatorial optimization problems [15], [16].

These studies show that combined approaches, in some cases,

have significantly better computational times than basic

heuristic techniques. Approaches based on neural networks

Montoro et al. [17] and Lapushkin [18] are also used in

solving NQP.
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Other studies show that the N-Queens problem can be 

successfully solved by other techniques, such as simulated 

annealing [19], methods based on local search [20], heuristic 

and meta-heuristic approaches [21], [22]. In order to improve 

the speed of solving NQP, parallel algorithms are being 

developed, such as those based on multicore architecture [23], 

those based on parallel computing [24], and others based on 

specific computational models [25]. To increase productivity, 

methods of using the hardware capabilities of the computer 

systems on which the respective algorithms are executed are 

used [26], [27]. Also, methods based on accelerated execution 
in solving the N-Queens problem by using the ability for 

communication between the cores and threads of the CPU [28] 

are used. Software products that implement the NQP task in 

the form of a game (puzzle) have been developed. One such 

application used in the field of education is presented in [29]. 

Fig. 1 shows two (asymmetric) solutions of the N-Queens 

problem at a board size of 9 x 9. With this board size all 

possible solutions are 352 of which only 46 are unique (i.e., 

asymmetric). 
 

 

 
Fig. 1 Two solutions of the NQP with a board size of 9 x 9 

 

The present study will use an approach to generate all 

solutions by examining only a certain subset among all 

possible candidates for a solution. When using this approach, 

it is very important to apply a method that reduces the number 

of analyzed individual cases of the problem. This can be done 

by omitting entire branches from the recursion tree, for which 

it is certain at an earlier stage that they will not lead to an 

acceptable solution. The idea of the algorithm that will be 

presented in the next section is just such one. 

II. MATERIAL AND METHOD 

In this section, an implementation of a recursive algorithm 

for solving the NQP will be presented. This algorithm uses the 

backtracking approach. Initially, a variable named 

QueenCount is initialized with a value of 1. The next step is 

to check if QueenCount queens are successfully placed on the 

board. If this is true, a test is made to place the next queen on 

the board (i.e., QueenCount + 1). However, the next queen 

must be placed in such a square on the board that it does not 
fall into a common horizontal, vertical or diagonal with the 

queens already located on the board (which are exactly 

QueenCount in number). This is the step forward of the 

algorithm. If at the last (successful) placement of a queen on 

the board it turns out that the placed queens are exactly N (i.e., 

QeueenCount = N), then this means that an acceptable 

solution has been found. However, if there is no free position 

for the queen with the QueenCount number, then the 

algorithm performs a step back (backtracking), after which it 

starts looking for another suitable square for placing the queen 

with the number (QueenCount - 1). 

Both local and global data structures (variables and arrays) 
can be used when performing an algorithm. The algorithm 

manipulates these structures (stored in the computer's RAM) 

during its execution. Global data structures are accessible 

from all functions (methods) of the application.  Fig. 2 shows 

the global declarations of the variables and dynamic arrays 

that the NQP solution algorithm uses. 
 
01 const 
02 │ Size = 8; 
03 var 
04 │ Start, Finish: Cardinal; 
05 │ QueenCount: Integer; 
06 │ SolutionCount: UInt64; 
07 │ RecursionCount: UInt64; 
08 │ RowsArray: array[1..Size] of Byte; 
09 │ ColsArray: array[1..Size] of Byte; 
10 │ RightDiagonal: array[1..2 * Size-1] of Byte; 
11 │ LeftDiagonal: array[1..2 * Size] of Byte; 
12 │ Fields: array[1..Size, 1..Size] of Byte; 
13 │ Solution: array[1..Size, 1..Size] of Byte; 

Fig. 2 Source-code of the global declarations 
 

The size constant (of Integer type) determines the size of 

the board and the number of queens to be placed on the board. 

The variables Start and Finish (of Cardinal type) are used to 

record the time to find a solution (i.e., how long the algorithm 

has been running). The QueenCount variable (of Integer type) 

stores the current number of the queens placed on the board. 

The SolutionCount variable (of UInt64 type) can only accept 

positive values and store the current number of solutions 
found. The RecursionCount variable (also of UInt64 type) 

stores the current number of recursive calls that the algorithm 

has made. The 1-dimensional arrays RowsArray, ColsArray, 
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RightDiagonal and LeftDiagonal (of Byte type) store the 

indexes of the fields on which queens are placed (respectively 

in row, column and both diagonals). The 2-dimensional Fields 

array (of Byte type) stores information about the "attacked" 

fields on the board. The values used are as follows: 1 - the 

field is "attacked", 0 - the field is not "attacked". The Solution 

array (also of type Byte) stores a partial or complete solution 

of the problem, as the values used are as follows 1 - there is a 

queen placed in this field and 0 otherwise. 

Fig. 3 shows the source-code of the DisableFields method, 

which is used to mark as disabled all "attacked" fields on the 
board by the placed queens. 
 
01 procedure DisableFields(ACol, ARow: Integer); 
02 var 
03 │ Col, Row, DCol, DRow: Integer; 
04 begin 
05 │ Solution[ACol, ARow] := 1; 
06 │ for Col := 1 to Size do 
07 │ │ if (Fields[Col, ARow] <> 1) then  
08 │ │     Fields[Col, ARow] := 1; 
09 │ for Row := 1 to Size do 
10 │ │ if (Fields[ACol, Row] <> 1) then  
11 │ │     Fields[ACol, Row] := 1; 
12 │ DCol := ACol - Size; DRow := ARow - Size; 
13 │ repeat 
14 │ │ Inc(DCol); Inc(DRow); 
15 │ │ if ((DCol >= 1) and (DRow >= 1) and 
16 │ │ │   (DCol <= Size) and (DRow <= Size)) then 
17 │ │ │    if (Fields[DCol, DRow] <> 1) then  
18 │ │ │        Fields[DCol, DRow] := 1; 
19 │ until ((DCol >= Size) or (DRow >= Size)); 
20 │ DCol := ACol + Size; DRow := ARow - Size; 
21 │ repeat 
22 │ │ Dec(DCol); Inc(DRow); 
23 │ │ if ((DCol >= 1) and (DRow >= 1) and 
24 │ │ │   (DCol <= Size) and (DRow <= Size)) then 
25 │ │ │    if (Fields[DCol, DRow] <> 1) then  
26 │ │ │        Fields[DCol, DRow] := 1; 
27 │ until ((DCol <= 1) or (DRow >= Size)); 
28 end; 

Fig. 3 Source-code of the DisableFields method 
 

The DisableFields method receives the variables ACol and 

ARow as input parameters. These parameters contain the 

position (column and row) on which the next queen of the 

solution is placed. In the declarative part of the DisableFields 

method, the local variables Col, Row, DCol and DRow (of 

Integer type) are declared (line 03). The first code that the 
DisableFields method executes is to fix in the two-

dimensional array the solution that a queen is already placed 

at the ACol, ARow position (line 05). The next code that 

executes the DisableFields method is to disable (i.e. mark as 

"attacked") all non-disabled fields from column ACol (lines 

06-08), all non-disabled fields from row ARow (lines 09-11), 

all non-disabled fields from one of the left diagonals, which 

contains the field ACol, ARow (lines 12-19) and all non-

disabled fields from one of the right diagonals, which also 

contains the field ACol, ARow (lines 20-27). 

An inefficient approach to solving NQP is to test all 
possible combinations of queen’s placements on the board. 

Each time the required number of queens is positioned on the 

board, it is checked whether they all fulfill the condition of 

the task and if this is not fulfilled, the specific combination is 

rejected. However, this approach can be optimized. Since 

there can be at most one queen on each row and column of the 

board, it is sufficient to check only those combinations in 

which there is exactly one queen on each row and column. 

The algorithm can be improved by checking only those fields 

on the board that are not "attacked" by already placed queens. 

The implementation of the algorithm follows. 

Fig. 4 shows the source-code (a) and the flowchart (b) of 

the FindSolutions recursive method. This method checks if it 

is possible to position the next queen on any of the free fields 

on the board. The number of the next queen is passed as an 

input parameter of the method - this is the variable QNumber. 
 
01 procedure FindSolutions(QNumber: Byte); 
02 begin 
03 │ Inc(RecursionCount); 
04 │ if QNumber > Size then begin 
05 │ │ QueenCount := Size; 
06 │ │ Inc(SolutionCount); 
07 │ │ for var Col: Integer := 1 to Size do 
08 │ │ │ for var Row: Integer := 1 to Size do 
09 │ │ │ │ if (RowsArray[Row] = Col) then  
10 │ │ │ │     DisableFields(Col, Row) 
11 │ │ │ │  else Solution[Col, Row] := 0; 
12 │ │ Exit; 
13 │ end; 
14 │ for var I: Integer := 1 to Size do begin 
15 │ │ if ((ColsArray[I] <> 0) and  
16 │ │ │(RightDiagonal[QNumber + I] <> 0) and 
17 │ │ │(LeftDiagonal[Size+QNumber-I] <> 0)) then 
18 │ │ begin 
19 │ │ │ ColsArray[I] := 0; 
20 │ │ │ RightDiagonal[QNumber + I] := 0; 
21 │ │ │ LeftDiagonal[Size+QNumber - I] := 0; 
22 │ │ │ RowsArray[QNumber] := I; 
23 │ │ │ FindSolutions(QNumber + 1); 
24 │ │ │ ColsArray[I] := 1; 
25 │ │ │ RightDiagonal[QNumber + I] := 1; 
26 │ │ │ LeftDiagonal[Size + QNumber - I] := 1; 
27 │ │ end; 
28 │ end; 
30 end; 

Fig. 4 (a) Source-code of the recursion-based method FindSolutions 
 

 
Fig. 4 (b) Flowchart of the recursion-based method FindSolutions 
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The number of recursive calls to FindSolutions is stored in 

the global variable RecursionCount. The first code that 

executes the FindSolutions method is to increase by 1 the 

value of the variable RecursionCount (line 03). Then, the 

method checks whether the required number of queens has 

already been placed on the board (line 04). If this is done, the 

number of solutions found is increased by 1 (line - 06) and the 

two-dimensional arrays Fields and Solutions are filled (lines 

07 - 11). The two-dimensional Fields array stores information 

about the "attacked" fields, and the two-dimensional Solution 

array stores information about the current solution. Then, the 
execution of the method is terminated (line 12). In this 

interruption, the control of the computational process is 

actually transferred from the last call of the FindSolution 

method (stored in the stack) to the previous one. In this case, 

if there are more solutions to find, the recursive process will 

continue to find them. If the exact number of queens has not 

yet been placed on the board, the FindSolution method 

initializes a loop (lines 14 – 28). For each value (from 1 to 

size) of the local variable I checks whether there is no queen 

in the column with index I or in some of the two diagonals. If 

a free position is found, a queen is placed at that position and 
the FindSolution method (line 23) is called recursively. On 

this call, the FindSolution method receives as a parameter the 

number of the next queen (QNumber + 1). However, if no free 

position can be found for the current queen, the algorithm 

takes a step back (backtracking). In this way, the algorithm 

starts a new search process for another free position of the 

previous queen (i.e. the one with number QNumber - 1). This 

process is repeated until all possible solutions are generated. 

The InitializeAndStart method starts the NQP solution 

search process (Fig. 5). 
 
01 procedure InitializeAndStart; 
02 var 
03 │ I: Integer; Msg: String; 
04 begin 
05 │ QueenCount:=0; SolutionCount:=0;  
06 │ RecursionCount:=0; 
07 │ for I:=1 to Size do ColsArray[I]:=1; 
08 │ for I:=1 to 2*Size-1 do RightDiagonal[I]:=1; 
09 │ for I:=1 to 2*Size do LeftDiagonal[I]:=1; 
10 │ Start := GetTickCount; 
11 │ FindSolutions(1); 
12 │ Finish := GetTickCount; 
13 │ Msg := IntToStr(SolutionCount) + ', ' + 
14 │        IntToStr(RecursionCount) + ', ' +  
15 │        IntToStr(Finish-Start) + ' ms'; 
16 end; 

Fig. 5 Source-code of the InitializeAndStart method 
 

In the declarative part of the InitializeAndStart method, 

two local variables are declared - I and Msg (line 03). The 

integer variable I is used as the control variable for the loops 

initializing the arrays ColsArray, RightDiagonal and 

LeftDiagonal (lines 07 - 09). This method also initializes the 

variables QueenCount, SolutionCount, and RecursionCount 

by setting each of these variables to 0 (lines 05 - 06). Before 
calling the FindSolutions method, the Start variable stores the 

time to start the NQP solution search process (line 10). Once 

the FindSolution method has finished, the Finish variable 

stores the end time of the calculation process. The time is 

obtained from the GetTickCount function. This function 

returns the time from the start of the computer's operating 

system (in milliseconds). The difference between the values 

of the variables Finish and Start is actually the execution time 

of the FindSolution method (in milliseconds). Finally, the 

InitializeAndStart method concatenates in the string variable 

Msg the number of generated solutions (the SolutionCount 

variable), the number of recursive calls (the RecursionCount 

variable), and the execution time of the whole process. 

The complexity of the algorithm, after optimization, 

remains exponential and is respectively O(n!). 

III. RESULT AND DISCUSSION 

A. Development of an Application for Conducting 

Experiments 

There are many programming languages and application 

development environments. Some of them provide the 

possibility to compile the same code for different operating 

systems. These integrated development environments enable 

the application's interface to be visually designed. However, 

the various functions of this application are implemented with 

event-oriented programming. In this way, different types of 

applications (such as mobile, desktop, services, etc.) can be 
developed in a short time. These applications can perform 

various tasks (data analysis, data processing, graphic design, 

etc.). In addition, these applications can be run on different 

target platforms (operating systems and servers). These 

capabilities of application development environments are 

referred to as Cross-Platform Application Development [30]–

[32] or Multi-Device Application Development [33]. 

Application development is usually done in two stages - 

application design and programming. During the application 

design stage, the application's graphical user interface (GUI) 

is created. This is done by positioning (arranging) controls on 

the forms (also called windows) of the application [34]. Each 
form of an application can be considered as a container for 

controls. During the application design stage, the developer 

(designer) creates the layout of the application. During the 

programming stage, the developer creates the functionality of 

the application. This is done by implementing user functions 

with a specific purpose or by implementing event handlers. 

Event handlers are functions that are called by the application 

when certain events occur. The application receives the event 

as a message sent by the operating system. 

For the purposes of the study, an application was developed 

to perform the planned experiments. The N Queens Problem 
Application is shown in Fig. 6. 
 

 
Fig. 6 Session of work whit the N Queens Problem Application 
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The developed application provides some important 

functions. In the [Cols \ Rows] section, the board size can be 

set, with possible values ranging from 4 to 26. In the [Square 

Size] section, the field size of the board can be set, with 

possible values ranging from 44 to 66. In the [Square Colors] 

section, different colors can be selected for the "dark", "light" 

and "attacked" fields on the board. In the [Queen Figure] 

section, the image for the queens can be selected. The [Start] 

and [Stop] buttons start and stop the solution search process, 

respectively. When the [Use Interactive Mode] checkbox is 

checked, a new solution will be displayed immediately. When 
the [Save Solutions] checkbox is checked, the new solution 

will be saved (added) in the [Solutions] list. The text labels 

"Solutions", "Recursions" and "Time (in ms)" show the 

number of solutions found, the number of recursive calls and 

the elapsed time for finding all solutions, respectively. When 

a solution is selected from the "Solutions" list, the application 

immediately visualizes it. 

B. Experimental results 

The N Queens Problem Application generated the 

experimental results. The application was run on a computer 

with 32-bit Windows 10 Pro operating system and hardware 

configuration as follows: processor: Intel(c) Core i5-10400 

(2.9/4.3 GHz, 12M); RAM memory: 8 GB DDR4 2666 MHz. 

For conducting the experiments, 14 (fourteen) sizes of 

boards were selected, respectively from the standard size 8x8 

to 21x21. Table 1 shows summary information for the input 

data. 

TABLE I 
SUMMARY INFORMATION FOR THE INPUT DATA 

No Board 

Size 

Fields 

Count 

Fundamental 

Solutions (F) 

All 

Solutions (A) 

Ratio 

F/A 

Ratio 

F/(F-1) 

1 8 х 8 64 12 92 0.130 2.0000 

2 9 х 9 81 46 352 0.131 3.8333 

3 10 х 10 100 92 724 0.127 2.0000 

4 11 х 11 121 341 2680 0.127 3.7065 

5 12 х 12 144 1787 14200 0.126 5.2405 

6 13 х 13 169 9233 73712 0.125 5.1668 

7 14 х 14 196 45752 365596 0.125 4.9553 

8 15 х 15 225 285053 2279184 0.125 6.2304 

9 16 х 16 256 1846955 14772512 0.125 6.4793 

10 17 х 17 289 11977939 95815104 0.125 6.4852 

11 18 х 18 324 83263591 666090624 0.125 6.9514 

12 19 х 19 361 621012754 4968057848 0.125 7.4584 

13 20 x 20 400 4878666808 39029188884 0.125 7.8560 

14 21 x 21 441 39333324973 314666222712 0.125 8.0623 

 

The "Ratio (F/A)" column shows the ratio between the 

number of fundamental solutions and the number of all 

solutions. It can be seen that after a board size of 12x12, the 

values of this ratio are 12.5%. This ratio shows that the 

number of fundamental (asymmetric) solutions represents 

12.5% of the number of all possible solutions. Also, this value 

shows that the number of symmetric solutions is 8 times 

greater than the number of fundamental solutions. This can be 
calculated from the reciprocal value A/F. This dependence is 

a consequence of the fact that there are exactly 8 ways to turn 

and/or rotate a square symmetrically. Two ways horizontally, 

two ways vertically; two ways on the main diagonal and two 

ways on the secondary diagonal. The "Ratio (F/(F–1))" 

column shows the increase in the number of fundamental 

solutions relative to the number of fields on the board 

(respectively the size of the board). It can be seen that these 

values increase linearly in contrast to the number of 

fundamental solutions, which increase exponentially. 

The purpose of this study is to analyze the three different 

modes - internal, interactive and combined, in terms of the 

application execution time. Table 2 shows the results of the 

experiments. The values in the "Internal", "Interactive" and 

"Combined" columns are arithmetic mean of four different 

application runs (for each of the modes). 

TABLE IIIII 
RESULTS OF THE EXPERIMENTS PERFORMED 

Fields 

Count 

All 

Solutions 

Recursion 

Calls 

Time 

Internal 

Time 

Interactive 

Time 

Combined 

64 92 2057 0.02 s 0.24 s 0.38 s 

81 352 8394 0.02 s 1.02 s 1.45 s 

100 724 35539 0.03 s 2.66 s 3.22 s 

121 2680 166926 0.14 s 10.17 s 13.08 s 

144 14200 856189 0.75 s 55.35 s 1 min. 46 s 

169 73712 4674890 4.08 s 7 min. 19 s 19 min. 54 s 

196 365596 27358553 23.84 s 43 min. 20 s 2 h. 1 min 

225 2279184 171129072 2 min. 37 s 5 h. 19 min 15 h. 27 min 

256 14772512 1141190303 20 min. 14 s 17 h. 48 min > 3 days 

289 95815104 7473578112 2 h. 43 min N/A N/A 

 

For each of the input sizes, four tests were made in the three 

different modes of application - internal, interactive and 

combined. In the internal mode, the application does not 
visualize and does not save the found solutions. Both the "Use 

Interactive Mode" and "Save Solutions" checkboxes are 

unchecked in this mode. The "Use Interactive Mode" 

checkbox is checked in the application's interactive mode, but 

the "Save Solutions" checkbox is unchecked. In this mode, 

when a solution is found, it is immediately visualized. Both 

checkboxes - "Use Interactive Mode" and "Save Solutions" 

are checked in combined mode. In this way, when a solution 

is found, it is immediately visualized and stored into the 

"Solutions" list. 

Fig. 7 shows the influence of the number of fields (x-axis) 
on the number of all solutions (y-axis). 
 

 
Fig. 7 Influence of the number of fields on the number of all solutions 

 
Fig. 8 shows the influence of the number of fields (x-axis) 

on the number of recursive calls (y-axis). 
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Fig. 8 Influence of the number of fields on the number of recursive calls 

 

From the charts of Fig. 7 and Fig. 8, with a linear increase 

in the size of the board (respectively the number of fields on 

the board), the number of all solutions and the number of 

recursive calls increase exponentially. The ratio between the 

number of recursive calls and the number of all solutions 

changes from 22 times (for an 8 x 8 board) to 78 times (for a 

17 x 17 board). Fig. 9 shows the influence of the number of 

fields (x-axis) on the algorithm's execution time (y-axis) in the 

internal mode.  
 

 
Fig. 9 Influence of the number of fields on the execution time of the algorithm 

in the internal mode 
 

 
Fig. 10 Influence of the number of fields on the algorithm's execution time, 

summarized in the three modes. 

Fig. 10 shows the influence of the number of fields (x-axis) 

on the execution time (y-axis) summarized in the three modes. 

From the charts of Fig. 9 and Fig. 10, with a linear increase in 

the number of fields on the board, the execution time on the 

algorithm in the internal mode increases exponentially. It is 

important to specify that the values on the y scale in Fig. 10 

are on a logarithmic scale. This chart shows that the combined 

mode and the interactive mode are comparable in terms of the 

algorithm's execution time. In contrast, the internal mode is 

significantly faster, with differences in values of the order of 

hundreds of times. Therefore, the internal mode should be 
preferred in future studies of the N-Queens problem. 

IV. CONCLUSION 

In this paper, a study of the N-Queens Problem was 

presented. Different approaches to its solution, which are 

discussed in detail in the scientific literature, were analyzed. 

The implementation of an algorithm based on the 

backtracking method was also presented. The algorithm was 
optimized to find solutions in a specific subset of 

configurations among all possible ones. With this approach, 

the computational complexity of the algorithm was reduced 

from exponential to quadratic. In this way, the algorithm finds 

in a shorter time all possible solutions, both fundamental and 

their symmetrical equivalents. The definitions of the various 

global variables and the dynamic data structures - vectors 

(arrays) and matrices (two-dimensional arrays) that the 

algorithm uses were also described. The source codes of the 

implemented methods (procedures and functions) were 

presented and analyzed. The method for measuring the 

execution time of the algorithm used by the start-up procedure 
takes into account the multitasking mode of the operating 

system. 

The methodology for conducting the experiments was 

presented. The purpose of the study, the tasks to be performed 

and the conditions for conducting the experiments were 

presented as well. As part of the methodology, 14 board sizes 

were presented, from 8 x 8 (standard chessboard) to 21 x 21, 

respectively. The ratios between the number of fundamental 

solutions and the number of all solutions for each of the 

selected board sizes were calculated. For all solutions, the 

incremental step between every two consecutive values was 
calculated. In connection with the research, an application 

was developed that implements the presented algorithm. Its 

main functions were summarized. All results obtained in this 

study were generated by this application. 

The experimental results showed that with a linear increase 

in the number of queens (equivalent to a quadratic increase in 

the number of fields on the board), the number of recursive 

calls made by the algorithm increased exponentially. 

Similarly, the number of possible solutions, as well as the 

execution time of the algorithm (in the different modes of the 

application - internal, interactive and combined), also 
increased exponentially. However, the execution time of the 

algorithm in the internal mode was significantly shorter than 

in the other two modes - interactive and combined. The ratio 

between the number of recursive calls and the number of all 

solutions was also calculated. This ratio varied between 22 

times (with a board size of 8 x 8) to 78 times with a board size 

of 17 x 17. 
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